Abstract

We report the first (to the best of our knowledge) tunable passively Q-switched Er3+-doped ZrF4 fiber laser around 3.5 μm. In this case, a Fe2+:ZnSe crystal is used as the saturable absorber, and a plane-ruled grating in a Littrow configuration acts as the tuning element. At the tuned wavelength of 3478.0 nm, stable Q-switching with a maximum average power of 583.7 mW was achieved with a slope efficiency of 15.2% relative to the launched 1981 nm pump power. Further power scaling is mainly limited by the available 1981 nm pump power. The corresponding pulse width, repetition rate, and pulse energy are 1.18 μs, 71.43 kHz, and 7.54 μJ, respectively. By rotating the grating, the Q-switching can be continuously tuned in the region of 3.4–3.7 μm. To the best of our knowledge, this is the first pulsed rare-earth-doped fiber laser tunable in the region beyond 3.4 μm.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm

Jianfeng Li, Hongyu Luo, Lele Wang, Bo Zhai, Heping Li, and Yong Liu
Opt. Express 23(17) 22362-22370 (2015)

Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm

Gongwen Zhu, Xiushan Zhu, Kaushik Balakrishnan, Robert A. Norwood, and N. Peyghambarian
Opt. Mater. Express 3(9) 1365-1377 (2013)

Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser

Shougui Ning, Guoying Feng, Hong Zhang, Wei Zhang, Shenyu Dai, Yao Xiao, Wei Li, Xiaoxu Chen, and Shouhuan Zhou
Opt. Mater. Express 8(4) 865-874 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Hoffman and C. Gmachl, “Extending opportunities,” Nat. Photonics 6, 407 (2012).
    [Crossref]
  2. N. Y. Kostyukova, A. A. Boyko, V. Badikov, D. Badikov, G. Shevyrdyaeva, V. Panyutin, G. M. Marchev, D. B. Kolker, and V. Petrov, “Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064  nm,” Opt. Lett. 41, 3667–3670 (2016).
    [Crossref]
  3. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
    [Crossref]
  4. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Physique 8, 1100–1128 (2007).
    [Crossref]
  5. https://www.rp-photonics.com/mid_infrared_laser_sources.html .
  6. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  7. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20  W passively cooled single-mode all-fiber laser at 2.8  μm,” Opt. Lett. 36, 1104–1106 (2011).
    [Crossref]
  8. Y. O. Aydin, V. Fortin, R. Vallée, and M. Bernier, “Towards power scaling of 2.8  μm fiber lasers,” Opt. Lett. 43, 4542–4545 (2018).
    [Crossref]
  9. G. A. Newburgh, M. Dubinskii, J. Zhang, and W. Lu, “A power scaled diode cladding pumped 2.8  μm Er:ZBLAN fiber laser,” Proc. SPIE 10981, 1098107 (2019).
    [Crossref]
  10. X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3  μm [invited],” J. Opt. Soc. Am. B 34, A15–A28 (2017).
    [Crossref]
  11. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 36, 2812–2814 (2011).
    [Crossref]
  12. S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.
  13. C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
    [Crossref]
  14. P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10  W-level gain-switched all-fiber laser at 2.8  μm,” Opt. Lett. 43, 3196–3199 (2018).
    [Crossref]
  15. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
    [Crossref]
  16. J. F. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3  μm,” Opt. Lett. 36, 3642–3644 (2011).
    [Crossref]
  17. S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photon. J. 7, 1502309 (2015).
    [Crossref]
  18. S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3, 1373–1376 (2016).
    [Crossref]
  19. H. Y. Luo, J. F. Li, Y. C. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94  μm,” Opt. Express 26, 63–79 (2018).
    [Crossref]
  20. H. Y. Luo, X. L. Tian, Y. Gai, R. F. Wei, J. F. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6, 900–907 (2018).
    [Crossref]
  21. M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm,” Opt. Lett. 43, 971–974 (2018).
    [Crossref]
  22. R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm,” APL Photon. 3, 116106 (2018).
    [Crossref]
  23. Y. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy3+:fluoride fiber laser beyond 3  μm,” Opt. Lett. 44, 395–398 (2019).
    [Crossref]
  24. R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, and S. D. Jackson, “Q-switched Dy:ZBLAN fiber lasers beyond 3  μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus,” Opt. Express 27, 15032–15045 (2019).
    [Crossref]
  25. H. Y. Luo, J. Yang, Y. Gao, Y. Xu, X. H. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08  μm using PbS nanoparticles,” Opt. Lett. 44, 2322–2325 (2019).
    [Crossref]
  26. H. Többen, “CW lasing at 3.45  μm in erbium-doped fluorozirconate fibres,” Frequenz 45, 250–252 (1991).
    [Crossref]
  27. C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44  μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
    [Crossref]
  28. A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39  μm,” Meas. Sci. Technol. 17, 1950–1957 (2006).
    [Crossref]
  29. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
    [Crossref]
  30. O. Henderson-Sapir, S. D. Jackson, and D. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41, 1676–1679 (2016).
    [Crossref]
  31. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6  W monolithic fiber laser at 3.55  μm,” Opt. Lett. 42, 2054–2057 (2017).
    [Crossref]
  32. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers,” Opt. Express 24, 6869–6883 (2016).
    [Crossref]
  33. A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5  μm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52, 1600412 (2016).
    [Crossref]
  34. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4  μm dual-wavelength pumped erbium doped fiber lasers,” IEEE J. Quantum Electron. 53, 1600208 (2017).
    [Crossref]
  35. F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55  μm,” Opt. Lett. 43, 1770–1773 (2018).
    [Crossref]
  36. H. Y. Luo, J. Yang, F. Liu, Z. Hu, Y. Xu, F. Yan, H. L. Peng, F. Ouellette, J. F. Li, and Y. Liu, “Watt-level gain-switched fiber laser at 3.46  μm,” Opt. Express 27, 1367–1375 (2019).
    [Crossref]
  37. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “A higher power 3.5  μm fiber laser,” in Advanced Solid State Lasers (2014), paper ATu1A.3.
  38. O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5  μm erbium doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 6–14 (2016).
    [Crossref]
  39. N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47  μm,” Opt. Lett. 43, 2724–2727 (2018).
    [Crossref]
  40. Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5  μm wavelength,” Opt. Express 26, 8224–8231 (2018).
    [Crossref]
  41. B. Guo, “2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [invited],” Chin. Opt. Lett. 16, 020004 (2018).
    [Crossref]
  42. K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
    [Crossref]
  43. C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
    [Crossref]
  44. G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm,” Opt. Mater. Express 3, 1365–1377 (2013).
    [Crossref]
  45. T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
    [Crossref]
  46. S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and X. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8, 865–874 (2018).
    [Crossref]
  47. V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
    [Crossref]
  48. https://www.ipgphotonics.com/en/88/Widget/Passive+Q-switch+Fe_ZnS+and+Fe_ZnSe+Datasheet.pdf .
  49. C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
    [Crossref]

2019 (5)

2018 (13)

F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55  μm,” Opt. Lett. 43, 1770–1773 (2018).
[Crossref]

S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and X. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8, 865–874 (2018).
[Crossref]

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44  μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47  μm,” Opt. Lett. 43, 2724–2727 (2018).
[Crossref]

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5  μm wavelength,” Opt. Express 26, 8224–8231 (2018).
[Crossref]

B. Guo, “2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [invited],” Chin. Opt. Lett. 16, 020004 (2018).
[Crossref]

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Y. O. Aydin, V. Fortin, R. Vallée, and M. Bernier, “Towards power scaling of 2.8  μm fiber lasers,” Opt. Lett. 43, 4542–4545 (2018).
[Crossref]

P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10  W-level gain-switched all-fiber laser at 2.8  μm,” Opt. Lett. 43, 3196–3199 (2018).
[Crossref]

H. Y. Luo, J. F. Li, Y. C. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94  μm,” Opt. Express 26, 63–79 (2018).
[Crossref]

H. Y. Luo, X. L. Tian, Y. Gai, R. F. Wei, J. F. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6, 900–907 (2018).
[Crossref]

M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm,” Opt. Lett. 43, 971–974 (2018).
[Crossref]

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm,” APL Photon. 3, 116106 (2018).
[Crossref]

2017 (4)

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3  μm [invited],” J. Opt. Soc. Am. B 34, A15–A28 (2017).
[Crossref]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6  W monolithic fiber laser at 3.55  μm,” Opt. Lett. 42, 2054–2057 (2017).
[Crossref]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4  μm dual-wavelength pumped erbium doped fiber lasers,” IEEE J. Quantum Electron. 53, 1600208 (2017).
[Crossref]

2016 (7)

O. Henderson-Sapir, S. D. Jackson, and D. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41, 1676–1679 (2016).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers,” Opt. Express 24, 6869–6883 (2016).
[Crossref]

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5  μm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52, 1600412 (2016).
[Crossref]

S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3, 1373–1376 (2016).
[Crossref]

N. Y. Kostyukova, A. A. Boyko, V. Badikov, D. Badikov, G. Shevyrdyaeva, V. Panyutin, G. M. Marchev, D. B. Kolker, and V. Petrov, “Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064  nm,” Opt. Lett. 41, 3667–3670 (2016).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5  μm erbium doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 6–14 (2016).
[Crossref]

2015 (2)

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photon. J. 7, 1502309 (2015).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (5)

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

A. Hoffman and C. Gmachl, “Extending opportunities,” Nat. Photonics 6, 407 (2012).
[Crossref]

2011 (3)

2007 (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Physique 8, 1100–1128 (2007).
[Crossref]

2006 (2)

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39  μm,” Meas. Sci. Technol. 17, 1950–1957 (2006).
[Crossref]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

1991 (1)

H. Többen, “CW lasing at 3.45  μm in erbium-doped fluorozirconate fibres,” Frequenz 45, 250–252 (1991).
[Crossref]

Akimov, V. A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Albrow-Owen, T.

Androz, G.

Antipov, S.

Aydin, Y. O.

Badikov, D.

Badikov, D. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Badikov, V.

Balakrishnan, K.

Bawden, N.

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47  μm,” Opt. Lett. 43, 2724–2727 (2018).
[Crossref]

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5  μm erbium doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 6–14 (2016).
[Crossref]

Benson, T.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Bernier, M.

Bérubé, J.-P.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44  μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Boyko, A. A.

Caron, N.

Chen, B. H.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Chen, J. P.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Chen, X. X.

Crawford, S.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photon. J. 7, 1502309 (2015).
[Crossref]

Dai, S. Y.

S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and X. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8, 865–874 (2018).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Dubinskii, M.

G. A. Newburgh, M. Dubinskii, J. Zhang, and W. Lu, “A power scaled diode cladding pumped 2.8  μm Er:ZBLAN fiber laser,” Proc. SPIE 10981, 1098107 (2019).
[Crossref]

Duval, S.

Farries, M.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Faucher, D.

Fedorov, V. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Feng, G. Y.

S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and X. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8, 865–874 (2018).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Fortin, V.

Francis, M.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Fraser, A.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44  μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Frayssinous, C.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44  μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Frolov, M. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Fuerbach, A.

Fuhrberg, P.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Gai, Y.

Gallian, A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Galzerano, G.

Gao, Y.

Genest, J.

Gmachl, C.

A. Hoffman and C. Gmachl, “Extending opportunities,” Nat. Photonics 6, 407 (2012).
[Crossref]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Godard, A.

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Physique 8, 1100–1128 (2007).
[Crossref]

Gorjan, M.

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5  μm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52, 1600412 (2016).
[Crossref]

Guo, B.

Guo, C. S.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Hai, T.

Hai, Y. C.

Hanson, R. K.

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39  μm,” Meas. Sci. Technol. 17, 1950–1957 (2006).
[Crossref]

Hasan, T.

Hashida, M.

Henderson-Sapir, O.

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47  μm,” Opt. Lett. 43, 2724–2727 (2018).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers,” Opt. Express 24, 6869–6883 (2016).
[Crossref]

O. Henderson-Sapir, S. D. Jackson, and D. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41, 1676–1679 (2016).
[Crossref]

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5  μm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52, 1600412 (2016).
[Crossref]

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5  μm erbium doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 6–14 (2016).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “A higher power 3.5  μm fiber laser,” in Advanced Solid State Lasers (2014), paper ATu1A.3.

Hoffman, A.

A. Hoffman and C. Gmachl, “Extending opportunities,” Nat. Photonics 6, 407 (2012).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Hu, G.

Hu, Z.

Hudson, D. D.

Jackson, S. D.

R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, and S. D. Jackson, “Q-switched Dy:ZBLAN fiber lasers beyond 3  μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus,” Opt. Express 27, 15032–15045 (2019).
[Crossref]

M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm,” Opt. Lett. 43, 971–974 (2018).
[Crossref]

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm,” APL Photon. 3, 116106 (2018).
[Crossref]

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5  μm erbium doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 6–14 (2016).
[Crossref]

S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3, 1373–1376 (2016).
[Crossref]

O. Henderson-Sapir, S. D. Jackson, and D. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41, 1676–1679 (2016).
[Crossref]

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photon. J. 7, 1502309 (2015).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

J. F. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3  μm,” Opt. Lett. 36, 3642–3644 (2011).
[Crossref]

Jeffries, J. B.

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39  μm,” Meas. Sci. Technol. 17, 1950–1957 (2006).
[Crossref]

Jobin, F.

Klantsataya, E.

Klingbeil, A. E.

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39  μm,” Meas. Sci. Technol. 17, 1950–1957 (2006).
[Crossref]

Kolker, D. B.

Konynenbelt, K.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

Korostelin, Y. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Kostyukova, N. Y.

Kotov, L. V.

Kozlovsky, V. I.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Lai, X.

Lamrini, S.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Landman, A. I.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Laporta, P.

Li, C.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Li, J. F.

Li, L.

Li, W.

Li, X. H.

Liu, F.

Liu, Y.

Lu, W.

G. A. Newburgh, M. Dubinskii, J. Zhang, and W. Lu, “A power scaled diode cladding pumped 2.8  μm Er:ZBLAN fiber laser,” Proc. SPIE 10981, 1098107 (2019).
[Crossref]

Luo, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

Luo, H. Y.

Ma, J.

Macadam, N.

Maes, F.

Majewski, M. R.

Malouf, A.

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5  μm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52, 1600412 (2016).
[Crossref]

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5  μm erbium doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 6–14 (2016).
[Crossref]

Marchev, G. M.

Matsukuma, H.

Mirov, S. B.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Munch, J.

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers,” Opt. Express 24, 6869–6883 (2016).
[Crossref]

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5  μm erbium doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 6–14 (2016).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “A higher power 3.5  μm fiber laser,” in Advanced Solid State Lasers (2014), paper ATu1A.3.

Murakami, M.

Napier, B.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Newburgh, G. A.

G. A. Newburgh, M. Dubinskii, J. Zhang, and W. Lu, “A power scaled diode cladding pumped 2.8  μm Er:ZBLAN fiber laser,” Proc. SPIE 10981, 1098107 (2019).
[Crossref]

Ning, S. G.

Norwood, R. A.

Oladeji, A.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Ottaway, D.

Ottaway, D. J.

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47  μm,” Opt. Lett. 43, 2724–2727 (2018).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers,” Opt. Express 24, 6869–6883 (2016).
[Crossref]

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5  μm erbium doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 6–14 (2016).
[Crossref]

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5  μm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52, 1600412 (2016).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “A higher power 3.5  μm fiber laser,” in Advanced Solid State Lasers (2014), paper ATu1A.3.

Ouellette, F.

Panyutin, V.

Paradis, P.

Peng, H. L.

Petrov, V.

Peyghambarian, N.

Piché, M.

Podmar’kov, Y. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Qian, L.

Qin, Z.

Qiu, J.

Sakabe, S.

Schäfer, M.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Scholle, K.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Seddon, A.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Shen, D.

Shevyrdyaeva, G.

Shi, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

Shimizu, S.

Sujecki, S.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Tian, X. L.

Többen, H.

H. Többen, “CW lasing at 3.45  μm in erbium-doped fluorozirconate fibres,” Frequenz 45, 250–252 (1991).
[Crossref]

Tokita, S.

Tong, M.

Vallée, R.

Y. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy3+:fluoride fiber laser beyond 3  μm,” Opt. Lett. 44, 395–398 (2019).
[Crossref]

Y. O. Aydin, V. Fortin, R. Vallée, and M. Bernier, “Towards power scaling of 2.8  μm fiber lasers,” Opt. Lett. 43, 4542–4545 (2018).
[Crossref]

P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10  W-level gain-switched all-fiber laser at 2.8  μm,” Opt. Lett. 43, 3196–3199 (2018).
[Crossref]

F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55  μm,” Opt. Lett. 43, 1770–1773 (2018).
[Crossref]

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44  μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4  μm dual-wavelength pumped erbium doped fiber lasers,” IEEE J. Quantum Electron. 53, 1600208 (2017).
[Crossref]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6  W monolithic fiber laser at 3.55  μm,” Opt. Lett. 42, 2054–2057 (2017).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
[Crossref]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20  W passively cooled single-mode all-fiber laser at 2.8  μm,” Opt. Lett. 36, 1104–1106 (2011).
[Crossref]

Voronov, A. A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

Wang, J.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3  μm [invited],” J. Opt. Soc. Am. B 34, A15–A28 (2017).
[Crossref]

Wang, Y.

Ward, J.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Wei, C.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3  μm [invited],” J. Opt. Soc. Am. B 34, A15–A28 (2017).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Wei, R. F.

Woodward, R. I.

Wu, K.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Xiao, P. S.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Xiao, Y.

Xie, G.

Xu, Y.

Yan, F.

Yang, J.

Yang, X. H.

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Yuan, P.

Zhang, H.

S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and X. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8, 865–874 (2018).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Zhang, J.

G. A. Newburgh, M. Dubinskii, J. Zhang, and W. Lu, “A power scaled diode cladding pumped 2.8  μm Er:ZBLAN fiber laser,” Proc. SPIE 10981, 1098107 (2019).
[Crossref]

Zhang, S. F.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Zhang, T.

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Zhang, W.

Zhang, X. Y.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Zhao, L.

Zhou, L. J.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Zhou, S. H.

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Zhou, X. H.

Zhu, G.

Zhu, G. W.

Zhu, X.

Zhu, X. S.

Zou, W. W.

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

APL Photon. (1)

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm,” APL Photon. 3, 116106 (2018).
[Crossref]

C. R. Physique (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Physique 8, 1100–1128 (2007).
[Crossref]

Chin. Opt. Lett. (1)

Frequenz (1)

H. Többen, “CW lasing at 3.45  μm in erbium-doped fluorozirconate fibres,” Frequenz 45, 250–252 (1991).
[Crossref]

IEEE J. Quantum Electron. (3)

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5  μm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52, 1600412 (2016).
[Crossref]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4  μm dual-wavelength pumped erbium doped fiber lasers,” IEEE J. Quantum Electron. 53, 1600208 (2017).
[Crossref]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5  μm erbium doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 6–14 (2016).
[Crossref]

IEEE Photon. J. (1)

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photon. J. 7, 1502309 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

J. Mater. Process. Technol. (1)

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44  μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Meas. Sci. Technol. (1)

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39  μm,” Meas. Sci. Technol. 17, 1950–1957 (2006).
[Crossref]

Nat. Photonics (3)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

A. Hoffman and C. Gmachl, “Extending opportunities,” Nat. Photonics 6, 407 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Opt. Commun. (1)

K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, and J. P. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (15)

M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm,” Opt. Lett. 43, 971–974 (2018).
[Crossref]

H. Y. Luo, J. Yang, Y. Gao, Y. Xu, X. H. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08  μm using PbS nanoparticles,” Opt. Lett. 44, 2322–2325 (2019).
[Crossref]

F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55  μm,” Opt. Lett. 43, 1770–1773 (2018).
[Crossref]

Y. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy3+:fluoride fiber laser beyond 3  μm,” Opt. Lett. 44, 395–398 (2019).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref]

O. Henderson-Sapir, S. D. Jackson, and D. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41, 1676–1679 (2016).
[Crossref]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6  W monolithic fiber laser at 3.55  μm,” Opt. Lett. 42, 2054–2057 (2017).
[Crossref]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20  W passively cooled single-mode all-fiber laser at 2.8  μm,” Opt. Lett. 36, 1104–1106 (2011).
[Crossref]

Y. O. Aydin, V. Fortin, R. Vallée, and M. Bernier, “Towards power scaling of 2.8  μm fiber lasers,” Opt. Lett. 43, 4542–4545 (2018).
[Crossref]

N. Y. Kostyukova, A. A. Boyko, V. Badikov, D. Badikov, G. Shevyrdyaeva, V. Panyutin, G. M. Marchev, D. B. Kolker, and V. Petrov, “Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064  nm,” Opt. Lett. 41, 3667–3670 (2016).
[Crossref]

J. F. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3  μm,” Opt. Lett. 36, 3642–3644 (2011).
[Crossref]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 36, 2812–2814 (2011).
[Crossref]

P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10  W-level gain-switched all-fiber laser at 2.8  μm,” Opt. Lett. 43, 3196–3199 (2018).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
[Crossref]

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47  μm,” Opt. Lett. 43, 2724–2727 (2018).
[Crossref]

Opt. Mater. Express (2)

Optica (2)

Photon. Res. (1)

Proc. SPIE (1)

G. A. Newburgh, M. Dubinskii, J. Zhang, and W. Lu, “A power scaled diode cladding pumped 2.8  μm Er:ZBLAN fiber laser,” Proc. SPIE 10981, 1098107 (2019).
[Crossref]

Other (4)

https://www.rp-photonics.com/mid_infrared_laser_sources.html .

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “A higher power 3.5  μm fiber laser,” in Advanced Solid State Lasers (2014), paper ATu1A.3.

https://www.ipgphotonics.com/en/88/Widget/Passive+Q-switch+Fe_ZnS+and+Fe_ZnSe+Datasheet.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup of the Fe2+:ZnSe crystal passively Q-switched Er3+-doped ZrF4 fiber laser tunable around 3.5 μm. DM1–DM4, four DMs; L1–L6, six lenses.
Fig. 2.
Fig. 2. Q-switched pulse train and single pulse waveform (inset) at different launched 1981 nm pump powers. (a) 2.24 W, (b) 2.78 W, (c) 4.19 W, and (d) 5.25 W. (Plaunched976nm=2.47  W.)
Fig. 3.
Fig. 3. (a) Optical and (b) RF spectra at the launched 1981 nm pump power of 5.25 W. (Plaunched 976 nm=2.47  W.)
Fig. 4.
Fig. 4. (a) Repetition rate and pulse width; (b) average power and pulse energy as functions of the launched 1981 nm pump power. (Plaunched976nm=2.47  W.)
Fig. 5.
Fig. 5. Optical spectrum and output average power with the tuned wavelength. (Plaunched 1981 nm=5.25  W, Plaunched976nm=2.47  W.)
Fig. 6.
Fig. 6. (a) Repetition rate and pulse width; (b) peak power and pulse energy as functions of the tuned wavelength. (Plaunched 1981 nm=5.25  W, Plaunched976nm=2.47  W.)