Abstract

We demonstrate both experimentally and theoretically the trapping and guiding of a weak signal pulse via a self-accelerating Airy pulse. This is achieved by launching the Airy pulse in the anomalous dispersion regime of an optical fiber, thereby inducing a gravity-like potential that can compel the signal pulse in the normal dispersion regime to undergo co-acceleration. Such guiding pulse by pulse can be controlled at ease simply by altering the acceleration conditions of the Airy pulse. Furthermore, the guided signal can be featured with either single or double peaks, which is explained by using the theory of fundamental and second-order quasi-modes associated with the gravity-like potential. Our work represents, to our knowledge, the first demonstration of pulse guiding in the anomalous dispersion regime of any self-accelerating pulse.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Soliton shedding from Airy pulses in Kerr media

Yiska Fattal, Amitay Rudnick, and Dan M. Marom
Opt. Express 19(18) 17298-17307 (2011)

Evolution of light trapped by a soliton in a microstructured fiber

S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. König
Opt. Express 17(16) 13588-13601 (2009)

Evolution of finite energy Airy pulses and soliton generation in optical fibers with cubic-quintic nonlinearity

Xianqiong Zhong, Xiantong Du, and Ke Cheng
Opt. Express 23(23) 29467-29475 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
    [Crossref]
  2. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
    [Crossref]
  3. K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
    [Crossref]
  4. A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
    [Crossref]
  5. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21, 14481–14486 (2013).
    [Crossref]
  6. S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40, 3320–3323 (2015).
    [Crossref]
  7. C. Brée, G. Steinmeyer, I. Babushkin, U. Morgner, and A. Demircan, “Controlling formation and suppression of fiber-optical rogue waves,” Opt. Lett. 41, 3515–3518 (2016).
    [Crossref]
  8. S. Pickartz, U. Bandelow, and S. Amiranashvili, “Asymptotically stable compensation of the soliton self-frequency shift,” Opt. Lett. 42, 1416–1419 (2017).
    [Crossref]
  9. E. Shiraki, N. Nishizawa, and K. Itoh, “Ultrashort pulse generation from continuous wave by pulse trapping in birefringent fibers,” Opt. Express 18, 23070–23078 (2010).
    [Crossref]
  10. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zero dispersion wavelength,” Opt. Express 10, 1151–1159 (2002).
    [Crossref]
  11. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
    [Crossref]
  12. A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express 15, 14560–14565 (2007).
    [Crossref]
  13. A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
    [Crossref]
  14. S. Batz and U. Peschel, “Diametrically driven self-accelerating pulses in a photonic crystal fiber,” Phys. Rev. Lett. 110, 193901 (2013).
    [Crossref]
  15. M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
    [Crossref]
  16. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
    [Crossref]
  17. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
    [Crossref]
  18. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
    [Crossref]
  19. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
    [Crossref]
  20. Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse Raman scattering control via asymmetric Airy pulses,” Phys. Rev. Lett. 114, 073901 (2015).
    [Crossref]
  21. C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
    [Crossref]
  22. L. Zhang, J. Zhang, Y. Chen, A. Liu, and G. Liu, “Dynamic propagation of finite-energy Airy pulses in the presence of higher-order effects,” J. Opt. Soc. Am. B 31, 889–897 (2014).
    [Crossref]
  23. Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express 19, 17298–17307 (2011).
    [Crossref]
  24. N. Götte, T. Winkler, T. Meinl, T. Kusserow, B. Zielinski, C. Sarpe, A. Senftleben, H. Hillmer, and T. Baumert, “Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics,” Optica 3, 389–395 (2016).
    [Crossref]
  25. W. Cai, M. S. Mills, D. N. Christodoulides, and S. Wen, “Soliton manipulation using Airy pulses,” Opt. Commun. 316, 127–131 (2014).
    [Crossref]
  26. Y. Hu, Z. Li, B. Wetzel, R. Morandotti, Z. Chen, and J. Xu, “Cherenkov radiation control via self-accelerating wave-packets,” Sci. Rep. 7, 8695 (2017).
    [Crossref]
  27. L. Zhang, X. Zhang, D. Pierangeli, Y. Li, D. Fan, and C. Conti, “Synchrotron resonant radiation from nonlinear self-accelerating pulses,” Opt. Express 26, 14710–14717 (2018).
    [Crossref]
  28. P. Rose, F. Diebel, M. Boguslawski, and C. Denz, “Airy beam induced optical routing,” Appl. Phys. Lett. 102, 101101 (2013).
    [Crossref]
  29. N. Wiersma, N. Marsal, M. Sciamanna, and D. Wolfersberger, “All-optical interconnects using Airy beams,” Opt. Lett. 39, 5997–6000 (2014).
    [Crossref]
  30. M. Goutsoulas, V. Paltoglou, and N. K. Efremidis, “Cross-phase modulation mediated pulse control with Airy pulses in optical fibers,” J. Opt. 19, 115505 (2017).
    [Crossref]
  31. G. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

2018 (1)

2017 (3)

M. Goutsoulas, V. Paltoglou, and N. K. Efremidis, “Cross-phase modulation mediated pulse control with Airy pulses in optical fibers,” J. Opt. 19, 115505 (2017).
[Crossref]

Y. Hu, Z. Li, B. Wetzel, R. Morandotti, Z. Chen, and J. Xu, “Cherenkov radiation control via self-accelerating wave-packets,” Sci. Rep. 7, 8695 (2017).
[Crossref]

S. Pickartz, U. Bandelow, and S. Amiranashvili, “Asymptotically stable compensation of the soliton self-frequency shift,” Opt. Lett. 42, 1416–1419 (2017).
[Crossref]

2016 (2)

2015 (2)

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse Raman scattering control via asymmetric Airy pulses,” Phys. Rev. Lett. 114, 073901 (2015).
[Crossref]

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40, 3320–3323 (2015).
[Crossref]

2014 (4)

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref]

L. Zhang, J. Zhang, Y. Chen, A. Liu, and G. Liu, “Dynamic propagation of finite-energy Airy pulses in the presence of higher-order effects,” J. Opt. Soc. Am. B 31, 889–897 (2014).
[Crossref]

W. Cai, M. S. Mills, D. N. Christodoulides, and S. Wen, “Soliton manipulation using Airy pulses,” Opt. Commun. 316, 127–131 (2014).
[Crossref]

N. Wiersma, N. Marsal, M. Sciamanna, and D. Wolfersberger, “All-optical interconnects using Airy beams,” Opt. Lett. 39, 5997–6000 (2014).
[Crossref]

2013 (5)

P. Rose, F. Diebel, M. Boguslawski, and C. Denz, “Airy beam induced optical routing,” Appl. Phys. Lett. 102, 101101 (2013).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21, 14481–14486 (2013).
[Crossref]

S. Batz and U. Peschel, “Diametrically driven self-accelerating pulses in a photonic crystal fiber,” Phys. Rev. Lett. 110, 193901 (2013).
[Crossref]

M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

2011 (3)

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref]

Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express 19, 17298–17307 (2011).
[Crossref]

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
[Crossref]

2010 (3)

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[Crossref]

E. Shiraki, N. Nishizawa, and K. Itoh, “Ultrashort pulse generation from continuous wave by pulse trapping in birefringent fibers,” Opt. Express 18, 23070–23078 (2010).
[Crossref]

2009 (1)

2008 (1)

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref]

2007 (3)

2002 (2)

Abdollahpour, D.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[Crossref]

Agrawal, G.

G. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

Ament, C.

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
[Crossref]

Amiranashvili, S.

S. Pickartz, U. Bandelow, and S. Amiranashvili, “Asymptotically stable compensation of the soliton self-frequency shift,” Opt. Lett. 42, 1416–1419 (2017).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref]

Babushkin, I.

Bandelow, U.

Batz, S.

S. Batz and U. Peschel, “Diametrically driven self-accelerating pulses in a photonic crystal fiber,” Phys. Rev. Lett. 110, 193901 (2013).
[Crossref]

M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Baumert, T.

Bersch, C.

M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Boguslawski, M.

P. Rose, F. Diebel, M. Boguslawski, and C. Denz, “Airy beam induced optical routing,” Appl. Phys. Lett. 102, 101101 (2013).
[Crossref]

Brée, C.

C. Brée, G. Steinmeyer, I. Babushkin, U. Morgner, and A. Demircan, “Controlling formation and suppression of fiber-optical rogue waves,” Opt. Lett. 41, 3515–3518 (2016).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

Broderick, N. G. R.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref]

Cai, W.

W. Cai, M. S. Mills, D. N. Christodoulides, and S. Wen, “Soliton manipulation using Airy pulses,” Opt. Commun. 316, 127–131 (2014).
[Crossref]

Chen, Y.

Chen, Z.

Y. Hu, Z. Li, B. Wetzel, R. Morandotti, Z. Chen, and J. Xu, “Cherenkov radiation control via self-accelerating wave-packets,” Sci. Rep. 7, 8695 (2017).
[Crossref]

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse Raman scattering control via asymmetric Airy pulses,” Phys. Rev. Lett. 114, 073901 (2015).
[Crossref]

Chong, A.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

Christodoulides, D. N.

W. Cai, M. S. Mills, D. N. Christodoulides, and S. Wen, “Soliton manipulation using Airy pulses,” Opt. Commun. 316, 127–131 (2014).
[Crossref]

M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[Crossref]

Conforti, M.

Conti, C.

Demircan, A.

C. Brée, G. Steinmeyer, I. Babushkin, U. Morgner, and A. Demircan, “Controlling formation and suppression of fiber-optical rogue waves,” Opt. Lett. 41, 3515–3518 (2016).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref]

Denz, C.

P. Rose, F. Diebel, M. Boguslawski, and C. Denz, “Airy beam induced optical routing,” Appl. Phys. Lett. 102, 101101 (2013).
[Crossref]

Diebel, F.

P. Rose, F. Diebel, M. Boguslawski, and C. Denz, “Airy beam induced optical routing,” Appl. Phys. Lett. 102, 101101 (2013).
[Crossref]

Driben, R.

Dudley, J. M.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref]

Efremidis, N. K.

M. Goutsoulas, V. Paltoglou, and N. K. Efremidis, “Cross-phase modulation mediated pulse control with Airy pulses in optical fibers,” J. Opt. 19, 115505 (2017).
[Crossref]

Erkintalo, M.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref]

Fan, D.

Fattal, Y.

Genty, G.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref]

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express 15, 14560–14565 (2007).
[Crossref]

Goto, T.

Götte, N.

Goutsoulas, M.

M. Goutsoulas, V. Paltoglou, and N. K. Efremidis, “Cross-phase modulation mediated pulse control with Airy pulses in optical fibers,” J. Opt. 19, 115505 (2017).
[Crossref]

Hill, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref]

Hillmer, H.

Hu, Y.

Y. Hu, Z. Li, B. Wetzel, R. Morandotti, Z. Chen, and J. Xu, “Cherenkov radiation control via self-accelerating wave-packets,” Sci. Rep. 7, 8695 (2017).
[Crossref]

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse Raman scattering control via asymmetric Airy pulses,” Phys. Rev. Lett. 114, 073901 (2015).
[Crossref]

Itoh, K.

Kashyap, R.

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse Raman scattering control via asymmetric Airy pulses,” Phys. Rev. Lett. 114, 073901 (2015).
[Crossref]

König, F.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref]

Kudlinski, A.

Kuklewicz, C.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref]

Kusserow, T.

Leonhardt, U.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref]

Li, Y.

Li, Z.

Y. Hu, Z. Li, B. Wetzel, R. Morandotti, Z. Chen, and J. Xu, “Cherenkov radiation control via self-accelerating wave-packets,” Sci. Rep. 7, 8695 (2017).
[Crossref]

Liu, A.

Liu, G.

Malomed, B. A.

Marom, D. M.

Marsal, N.

Meinl, T.

Mills, M. S.

W. Cai, M. S. Mills, D. N. Christodoulides, and S. Wen, “Soliton manipulation using Airy pulses,” Opt. Commun. 316, 127–131 (2014).
[Crossref]

Miri, M. A.

M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Moloney, J. V.

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
[Crossref]

Morandotti, R.

Y. Hu, Z. Li, B. Wetzel, R. Morandotti, Z. Chen, and J. Xu, “Cherenkov radiation control via self-accelerating wave-packets,” Sci. Rep. 7, 8695 (2017).
[Crossref]

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse Raman scattering control via asymmetric Airy pulses,” Phys. Rev. Lett. 114, 073901 (2015).
[Crossref]

Morgner, U.

Murdoch, S. G.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref]

Mussot, A.

Nishizawa, N.

Onishchukov, G.

M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Paltoglou, V.

M. Goutsoulas, V. Paltoglou, and N. K. Efremidis, “Cross-phase modulation mediated pulse control with Airy pulses in optical fibers,” J. Opt. 19, 115505 (2017).
[Crossref]

Papazoglou, D. G.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[Crossref]

Peschel, U.

M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

S. Batz and U. Peschel, “Diametrically driven self-accelerating pulses in a photonic crystal fiber,” Phys. Rev. Lett. 110, 193901 (2013).
[Crossref]

Philbin, T. G.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref]

Pickartz, S.

Pierangeli, D.

Polynkin, P.

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
[Crossref]

Regensburger, A.

M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Renninger, W. H.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

Robertson, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref]

Rose, P.

P. Rose, F. Diebel, M. Boguslawski, and C. Denz, “Airy beam induced optical routing,” Appl. Phys. Lett. 102, 101101 (2013).
[Crossref]

Rudnick, A.

Sarpe, C.

Sciamanna, M.

Senftleben, A.

Shiraki, E.

Siviloglou, G. A.

Skryabin, D. V.

Steinmeyer, G.

C. Brée, G. Steinmeyer, I. Babushkin, U. Morgner, and A. Demircan, “Controlling formation and suppression of fiber-optical rogue waves,” Opt. Lett. 41, 3515–3518 (2016).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref]

Suntsov, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[Crossref]

Taylor, J. R.

Tehranchi, A.

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse Raman scattering control via asymmetric Airy pulses,” Phys. Rev. Lett. 114, 073901 (2015).
[Crossref]

Travers, J. C.

Tzortzakis, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[Crossref]

Wabnitz, S.

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse Raman scattering control via asymmetric Airy pulses,” Phys. Rev. Lett. 114, 073901 (2015).
[Crossref]

Wang, S. F.

Webb, K. E.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref]

Wen, S.

W. Cai, M. S. Mills, D. N. Christodoulides, and S. Wen, “Soliton manipulation using Airy pulses,” Opt. Commun. 316, 127–131 (2014).
[Crossref]

Wetzel, B.

Y. Hu, Z. Li, B. Wetzel, R. Morandotti, Z. Chen, and J. Xu, “Cherenkov radiation control via self-accelerating wave-packets,” Sci. Rep. 7, 8695 (2017).
[Crossref]

Wiersma, N.

Wimmer, M.

M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Winkler, T.

Wise, F. W.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

Wolfersberger, D.

Xu, J.

Y. Hu, Z. Li, B. Wetzel, R. Morandotti, Z. Chen, and J. Xu, “Cherenkov radiation control via self-accelerating wave-packets,” Sci. Rep. 7, 8695 (2017).
[Crossref]

Xu, Y.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref]

Yulin, A. V.

Zeng, X. L.

Zhang, J.

Zhang, L.

Zhang, X.

Zielinski, B.

Appl. Phys. Lett. (1)

P. Rose, F. Diebel, M. Boguslawski, and C. Denz, “Airy beam induced optical routing,” Appl. Phys. Lett. 102, 101101 (2013).
[Crossref]

J. Opt. (1)

M. Goutsoulas, V. Paltoglou, and N. K. Efremidis, “Cross-phase modulation mediated pulse control with Airy pulses in optical fibers,” J. Opt. 19, 115505 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref]

Nat. Photonics (2)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

Nat. Phys. (1)

M. Wimmer, A. Regensburger, C. Bersch, M. A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Opt. Commun. (1)

W. Cai, M. S. Mills, D. N. Christodoulides, and S. Wen, “Soliton manipulation using Airy pulses,” Opt. Commun. 316, 127–131 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Optica (1)

Phys. Rev. Lett. (6)

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[Crossref]

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse Raman scattering control via asymmetric Airy pulses,” Phys. Rev. Lett. 114, 073901 (2015).
[Crossref]

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
[Crossref]

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref]

S. Batz and U. Peschel, “Diametrically driven self-accelerating pulses in a photonic crystal fiber,” Phys. Rev. Lett. 110, 193901 (2013).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

Sci. Rep. (1)

Y. Hu, Z. Li, B. Wetzel, R. Morandotti, Z. Chen, and J. Xu, “Cherenkov radiation control via self-accelerating wave-packets,” Sci. Rep. 7, 8695 (2017).
[Crossref]

Science (1)

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref]

Other (1)

G. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the experiment setup. (b) Measured spectra of an Airy pulse (green) and a signal (cyan), trimmed from a femtosecond laser pulse of a broad band (red), where the vertical dashed line marks the zero-dispersion wavelength (ZDW). The inset shows the relative group delay of the DSF we used in experiment. (c) Experimental measurement (black) and numerical simulation (blue) of the input profiles of an Airy pulse with a=0.5  ps3.
Fig. 2.
Fig. 2. Trapping and guiding of a weak signal pulse of Gaussian-like shape via a nonlinear Airy pulse. (a) Experimental measurements of the wavelength conversion for the signal with different initial time delays. (b) Numerical simulations corresponding to (a). (c)–(f) Simulations of propagation dynamics for (c) the Airy pulse and (d)–(f) the signal pulse corresponding to three different initial time delays marked by D, E, F in (b) and (c). The white dotted lines in (c)–(f) are added to trace the main lobe of the Airy pulse.
Fig. 3.
Fig. 3. Spectral (upper row) and temporal (bottom row) outputs of the signals with different input pulse durations. (a) Experimental measurements in the presence of the Airy pulse. (b)–(d) Numerical simulations using the experimental parameters associated with (a), but in (d) the Airy pulse is assumed to be absent.
Fig. 4.
Fig. 4. Experimental measurements (left column) and numerical simulations (right column) on the control of the signal guiding by using reconfigurable accelerating potentials. Upper row has the same description with Figs. 2(a) and 2(b) but with an opposite acceleration sign. Bottom row shows the output spectra of the signal pulse driven by the control pulse of different accelerations while keeping near-zero time delay of signal.
Fig. 5.
Fig. 5. Guiding and routing a double-peak signal via an accelerating potential. (a) Simulated signal propagation in the presence of the Airy pulse shown in Fig. 2(c). (b) and (c) Spectral input and output obtained from both simulation and experiment corresponding to (a), respectively. (d) Output spectrum for a deteriorated guiding of the double-peak signal under inappropriate input conditions.
Fig. 6.
Fig. 6. (a) Potential (blue curve) induced by the Airy pulse in the accelerating frame, and the plateau in orange is artificially introduced. (b) Fundamental (upper panel) and the second-order (bottom panel) modes associated with the AP in (a). (c) and (d) Propagation of the two modes in (b) under the action of the Airy pulse in the laboratory coordinate, where the white dotted lines trace the accelerating potential.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

iAz=β2A22AT2+iβ3A63AT3γA|A|2A,
iBz=β2B22BT2+iβ3B63BT32γB|A|2B,
iBz=β2B22BT2n(Tgz2/2)B,
vB0=β2B22B0s2V(s)B0,