Abstract

Efficient, scalable, bufferless, and compact III–V lasers directly grown on (001)-oriented silicon-on-insulators (SOIs) are preferred light sources in Si-photonics. In this article, we present the design and operation of III–V telecom nanolaser arrays with integrated distributed Bragg reflectors (DBRs) epitaxially grown on industry-standard (001) SOI wafers. We simulated the mirror reflectance of different guided modes under various mirror architectures, and accordingly devised nanoscale DBR gratings to support high reflectivity around 1500 nm for the doughnut-shaped TE01 mode. Building from InP/InGaAs nanoridges grown on SOI, we fabricated subwavelength DBR mirrors at both ends of the nanoridge laser cavities and thus demonstrated room-temperature low-threshold InP/InGaAs nanolasers with a 0.28  μm2 cross-section and a 20 μm effective cavity length. The direct growth of these bufferless nanoscale III–V light emitters on Si-photonics standard (001) SOI wafers opens future options of fully integrated Si-based nanophotonic integrated circuits in the telecom wavelength regime.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator

Yu Han, Wai Kit Ng, Ying Xue, Qiang Li, Kam Sing Wong, and Kei May Lau
Opt. Lett. 44(4) 767-770 (2019)

Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands

Yu Han, Wai Kit Ng, Chao Ma, Qiang Li, Si Zhu, Christopher C. S. Chan, Kar Wei Ng, Stephen Lennon, Robert A. Taylor, Kam Sing Wong, and Kei May Lau
Optica 5(8) 918-923 (2018)

Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si

Si Zhu, Bei Shi, Qiang Li, and Kei May Lau
Opt. Express 26(11) 14514-14523 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  2. Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
    [Crossref]
  3. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  4. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
    [Crossref]
  5. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
    [Crossref]
  6. D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
    [Crossref]
  7. B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
    [Crossref]
  8. Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
    [Crossref]
  9. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  10. J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
    [Crossref]
  11. C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
    [Crossref]
  12. T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
    [Crossref]
  13. B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
    [Crossref]
  14. Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
    [Crossref]
  15. W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
    [Crossref]
  16. L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
    [Crossref]
  17. S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
    [Crossref]
  18. Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
    [Crossref]
  19. Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
    [Crossref]
  20. Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
    [Crossref]
  21. B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
    [Crossref]
  22. Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300  mm Si wafer,” Optica 4, 1468–1473 (2017).
    [Crossref]
  23. Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photon. 5, 216–273 (2013).
    [Crossref]
  24. F. Lu, I. Bhattacharya, H. Sun, T. D. Tran, K. W. Ng, G. N. Malheiros-Silveira, and C. C. Hasnain, “Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths,” Optica 4, 717–723 (2017).
    [Crossref]
  25. Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. S. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
    [Crossref]
  26. G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
    [Crossref]
  27. R. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol 14, 12–22 (2019).
    [Crossref]
  28. M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
    [Crossref]
  29. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [Crossref]
  30. H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
    [Crossref]
  31. H. Kim, W. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
    [Crossref]
  32. J. L. Jewell, J. P. Harbison, A. Scherer, Y. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
    [Crossref]
  33. Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
    [Crossref]
  34. Y. Han, Q. Li, S. Chang, W. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
    [Crossref]
  35. Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
    [Crossref]
  36. M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
    [Crossref]
  37. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–498 (1961).
    [Crossref]
  38. Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, and W. Li, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
    [Crossref]

2019 (4)

Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
[Crossref]

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

R. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol 14, 12–22 (2019).
[Crossref]

Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
[Crossref]

2018 (5)

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. S. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, and W. Li, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

2017 (8)

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

F. Lu, I. Bhattacharya, H. Sun, T. D. Tran, K. W. Ng, G. N. Malheiros-Silveira, and C. C. Hasnain, “Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths,” Optica 4, 717–723 (2017).
[Crossref]

H. Kim, W. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300  mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

2016 (8)

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Y. Han, Q. Li, S. Chang, W. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

2015 (1)

Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

2014 (4)

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

2013 (1)

2012 (1)

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

2007 (1)

J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

2004 (1)

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

1991 (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

1961 (1)

Abbasi, A.

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Absil, P.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Adekore, B.

J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Baek, J.

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Bai, J.

J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Balgarkashi, A.

H. Kim, W. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Bao, X.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Barla, K.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Baryshniskova, M.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

Bender, H.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Bhattacharya, I.

Bonef, B.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Bowers, J. E.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Cabinian, B. C.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Campenhout, J. V.

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300  mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Carroll, M.

J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Caymax, M.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Chan, C. C. S.

Chang, S.

Y. Han, Q. Li, S. Chang, W. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Chen, S.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, and W. Li, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Collaert, N.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Dai, L.

Date, L.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Dave, U.

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Dekoster, J.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Farrell, A. C.

H. Kim, W. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Fédéli, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Feng, K.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Florez, L. T.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Fox, K.

J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Gather, M. C.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

Gossard, A. C.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Gotoh, H.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Groote, A. D.

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Guo, W.

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300  mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Guo, X.

Han, Y.

Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
[Crossref]

Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
[Crossref]

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. S. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

Y. Han, Q. Li, S. Chang, W. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Hartmann, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Hasnain, C. C.

Herman, J. L.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Herrick, R.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Heyns, M.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Hill, M. T.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

Hsu, W.

Y. Han, Q. Li, S. Chang, W. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Hu, E. L.

Huang, D.

Huffaker, D. L.

H. Kim, W. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Jan, C.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jiang, S.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Ju, Y.

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Jung, D.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Kennedy, M. J.

Kim, H.

H. Kim, W. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Kim, S.

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Klamkin, J.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Kong, X.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Kumari, S.

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Kunert, B.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300  mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Kwon, S.

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Langer, R.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Lau, K. M.

Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
[Crossref]

Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
[Crossref]

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. S. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

Y. Han, Q. Li, S. Chang, W. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Lee, W.

H. Kim, W. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Lee, Y.

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Lennon, S.

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Li, J. Z.

J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Li, M.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Li, Q.

Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
[Crossref]

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. S. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

Y. Han, Q. Li, S. Chang, W. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Li, S.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Li, W.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, and W. Li, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

Liao, M.

Liu, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, A. Y.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liu, L.

Liu, Z.

Lochtefeld, A.

J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Loo, R.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Lu, F.

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Ma, C.

Ma, R.

R. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol 14, 12–22 (2019).
[Crossref]

Ma, Y.

Malheiros-Silveira, G. N.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Megalini, L.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Merckling, C.

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Mi, J.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Mols, Y.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Ng, K. W.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. S. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

F. Lu, I. Bhattacharya, H. Sun, T. D. Tran, K. W. Ng, G. N. Malheiros-Silveira, and C. C. Hasnain, “Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths,” Optica 4, 717–723 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Ng, W. K.

Norman, J.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Notomi, M.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

O’Brian, B.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Oktyabrsky, S. R.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Orzali, T.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Oulton, R. F.

R. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol 14, 12–22 (2019).
[Crossref]

Paladugu, M.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Pan, J.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Pantouvaki, M.

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300  mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Park, H.

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Park, J.-S.

J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Pena, V.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Rao, S. S.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Richard, O.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sanchez, E.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Scherer, A.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Schulze, A.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Shellenbarger, Z.

J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Shi, Y.

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300  mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Snitzer, E.

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Speck, J. S.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Sun, H.

Takiguchi, M.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Tang, M.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, and W. Li, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Tateno, K.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Tawara, T.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Taylor, A.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Taylor, R. A.

Thean, A.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Thourhout, D. V.

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300  mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Tian, B.

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Tong, L.

Torres, A.

Tran, T. D.

Turnlund, K.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Van Campenhout, J.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Van Gasse, K.

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Van Thourhout, D.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Vancoille, E.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Vandervorst, W.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Vert, A.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vivekanand, S.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Waldron, N.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Wan, Y.

Wang, M.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Wang, W.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Wang, Y.

Wang, Z.

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300  mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Wang, Z. C.

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Wong, K. S.

Wu, J.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, and W. Li, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Wu, X.

Xue, Y.

Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
[Crossref]

Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
[Crossref]

Yang, C.

Yang, J.

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Yu, Y.

Zhang, C.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Zhang, G.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Zhang, Z.

Zhao, H.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Zhou, L.

Zhou, X.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Zhu, S.

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. S. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (11)

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Y. Han, Q. Li, S. Chang, W. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

J. Z. Li, J. Bai, J.-S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
[Crossref]

Cryst. Growth Des. (1)

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

J. Appl. Phys. (3)

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Photon. Rev. (1)

Z. C. Wang, A. Abbasi, U. Dave, A. D. Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Nano Lett. (2)

H. Kim, W. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Nanotechnology (1)

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Nat. Nanotechnol (1)

R. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol 14, 12–22 (2019).
[Crossref]

Nat. Photonics (4)

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Z. C. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Opt. Lett. (1)

Optica (5)

Prog. Cryst. Growth Charact. Mater. (1)

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

Sci. Adv. (1)

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Science (1)

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Semicond. Sci. Technol. (1)

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the InP/InGaAs nanolaser with DBRs directly grown on (001)-oriented SOI wafers. The nanocavity and the two DBRs are marked. (b) Schematic depicting the improved optical feedback from the two defined DBRs. (c) Cross-sectional schematic of the InP/InGaAs nanolaser on SOI. Five In0.53Ga0.47As ridge quantum wells are embedded as the active gain medium. (d) Tilted-view SEM photo of the as-grown InP/InGaAs nanoridges on (001) SOI wafers. (e) Cross-sectional TEM image of the as-grown InP/InGaAs nanoridge on SOI wafers.
Fig. 2.
Fig. 2. Design of nanoscale DBRs with different parameters. (a) Calculated reflectivity from InP/air interface, 10 periods of DBRs with 325 nm InP and 225 nm air gaps, and 10 periods of DBRs with 225 nm InP and 225 nm air gaps. (b) Mode profiles of the first three supported transverse modes. (c) Calculated electric field distribution of the TE01 mode with the introduction of 10 periods of DBRs with 225 nm InP and 225 nm air gaps. (d) Calculated mirror loss of the TE01 mode of a 20 μm long nanocavity with different mirror architectures.
Fig. 3.
Fig. 3. (a) Top view SEM image of the fabricated InP/InGaAs nanolasers with defined DBRs (325 nm InP spacers and 225 nm air gaps) on SOI. (b) Tilted-view SEM image of InP/InGaAs nanolasers with labeled DBRs. (c) Zoomed-in SEM photo of one DBR composed of InP spacers and air gaps. (d) Zoomed-in SEM photo of one DBR showing the etched InP spacers and air gaps. (e) Close-up showing the details of the DBRs. The InP spacer exhibits a tapered morphology from the bottom to the top.
Fig. 4.
Fig. 4. (a) Room temperature PL spectra of one InP/InGaAs nanolaser with conventional 20 μm long FP cavity under different excitation levels. Equally spaced FP modes are detected. (b) Room temperature PL spectra of one InP/InGaAs nanolaser with DBRs (325 nm thick InP spacers and 225 nm thick air gaps) and a 20 μm active waveguide section under different excitation levels. Stimulated emission at 1442 nm is detected. (c) Room temperature PL spectra of one InP/InGaAs nanolaser with DBRs (225 nm thick InP spacers and 225 nm thick air gaps) and a 20 μm active waveguide section under different excitation levels. Stimulated emission at 1478 nm is detected.
Fig. 5.
Fig. 5. (a) Zoomed-in emission spectra of three different InP/InGaAs nanolasers under low excitation levels. The free spectral ranges are marked. (b) Light in–light out (L-L) curves of the three measured InP/InGaAs nanolasers with/without DBRs.