Abstract

We design and present a switchable slow light rainbow trapping (SLRT) state in a strongly coupling topological photonic system made from a magneto-optical photonic crystal waveguide channel. The waveguide channel supports slow light states with extremely small group velocity (vg=2.1×106c), low group-velocity dispersion, and a broadband operation bandwidth (3.60–4.48 GHz, near 22% of bandwidth). These slow light states originate from the strong coupling between two counter propagating topological photonic states. Under a gradient magnetic field, different frequency components of a wave packet are separated and stored at different positions for a long temporal duration with high spatial precision (without crosstalk and overlap between the electric fields of different frequencies) to form SLRT. Besides, these SLRT states can be easily switched among the forbidden state, trapped state, and releasing state by tuning the external magnetic field. The results suggest that the topological photonic state can offer a precise route of spatial-temporal-spectral control upon a light signal and find applications for optical buffers, broadband slow light systems, optical filters, wavelength-division multiplexing, and other optical communication devices.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding

Jinlong He, Yi Jin, Zhi Hong, and Sailing He
Opt. Express 16(15) 11077-11082 (2008)

Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide

Daisuke Mori and Toshihiko Baba
Opt. Express 13(23) 9398-9408 (2005)

Experimental observation of slow light in photonic crystal coupled waveguides

Takashi Kawasaki, Daisuke Mori, and Toshihiko Baba
Opt. Express 15(16) 10274-10281 (2007)

References

  • View by:
  • |
  • |
  • |

  1. Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, “Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate,” Science 293, 663–668 (2001).
    [Crossref]
  2. F. Grusdt and M. Fleischhauer, “Tunable polarons of slow-light polaritons in a two-dimensional Bose–Einstein condensate,” Phys. Rev. Lett. 116, 053602 (2016).
    [Crossref]
  3. M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose–Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
    [Crossref]
  4. M. G. Herráez, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
    [Crossref]
  5. W. Qiu, J. Liu, Y. Wang, Y. Yang, Y. Gao, P. Lv, and Q. Jiang, “Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation,” Opt. Commun. 413, 207–211 (2018).
    [Crossref]
  6. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
    [Crossref]
  7. J. M. Shainline and J. Xu, “Slow light and band gaps in metallodielectric cylinder arrays,” Opt. Express 17, 8879–8891 (2009).
    [Crossref]
  8. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [Crossref]
  9. S. A. Schulz, J. Upham, L. O. Faolain, and R. W. Boyd, “Photonic crystal slow light waveguides in a kagome lattice,” Opt. Lett. 42, 3243–3246 (2017).
    [Crossref]
  10. K. L. Tsakmakidis and O. Hess, “Slow and stopped light in metamaterials, the trapped rainbow,” Proc. SPIE 6987, 698702 (2008).
    [Crossref]
  11. Y. Shen, J. Fu, and G. Yu, “Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs,” Phys. Lett. A 375, 3801–3803 (2011).
    [Crossref]
  12. H. Kurt and D. Yilmaz, “Rainbow trapping using chirped all-dielectric periodic structures,” Appl. Phys. B 110, 411–417 (2013).
    [Crossref]
  13. H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
    [Crossref]
  14. Z. Hayran, H. Kurt, and K. Staliunas, “Rainbow trapping in a chirped three-dimensional photonic crystal,” Sci. Rep. 7, 3046 (2017).
    [Crossref]
  15. Z. Tian and L. Yu, “Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates,” Sci. Rep. 7, 40004 (2017).
    [Crossref]
  16. W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold characteristics of slow-light photonic crystal lasers,” Phys. Rev. Lett. 116, 063901 (2016).
    [Crossref]
  17. Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
    [Crossref]
  18. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
    [Crossref]
  19. M. Hussein, M. F. O. Hameed, N. F. F. Areed, A. Yahia, and S. S. A. Obayya, “Funnel-shaped silicon nanowire for highly efficient light trapping,” Opt. Lett. 41, 1010–1013 (2016).
    [Crossref]
  20. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97, 153115 (2010).
    [Crossref]
  21. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107, 207401 (2011).
    [Crossref]
  22. B. Guo, W. Shi, and J. Yao, “Slowing and trapping THz waves system based on plasmonic graded period grating,” J. Opt. 45, 50–57 (2016).
    [Crossref]
  23. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
    [Crossref]
  24. J. He, Y. Jin, Z. Hong, and S. He, “Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding,” Opt. Express 16, 11077–11082 (2008).
    [Crossref]
  25. Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25, 1278–1287 (2017).
    [Crossref]
  26. Y. Yang, Y. Poo, R. X. Wu, Y. Gu, and P. Chen, “Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals,” Appl. Phys. Lett. 102, 231113 (2013).
    [Crossref]
  27. J. Chen, W. Liang, and Z. Y. Li, “Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals,” Phys. Rev. B 99, 014103 (2019).
    [Crossref]
  28. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
    [Crossref]
  29. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromganetic states,” Nature 461, 772–775 (2009).
    [Crossref]

2019 (1)

J. Chen, W. Liang, and Z. Y. Li, “Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals,” Phys. Rev. B 99, 014103 (2019).
[Crossref]

2018 (1)

W. Qiu, J. Liu, Y. Wang, Y. Yang, Y. Gao, P. Lv, and Q. Jiang, “Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation,” Opt. Commun. 413, 207–211 (2018).
[Crossref]

2017 (5)

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose–Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
[Crossref]

S. A. Schulz, J. Upham, L. O. Faolain, and R. W. Boyd, “Photonic crystal slow light waveguides in a kagome lattice,” Opt. Lett. 42, 3243–3246 (2017).
[Crossref]

Z. Hayran, H. Kurt, and K. Staliunas, “Rainbow trapping in a chirped three-dimensional photonic crystal,” Sci. Rep. 7, 3046 (2017).
[Crossref]

Z. Tian and L. Yu, “Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates,” Sci. Rep. 7, 40004 (2017).
[Crossref]

Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25, 1278–1287 (2017).
[Crossref]

2016 (5)

B. Guo, W. Shi, and J. Yao, “Slowing and trapping THz waves system based on plasmonic graded period grating,” J. Opt. 45, 50–57 (2016).
[Crossref]

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

M. Hussein, M. F. O. Hameed, N. F. F. Areed, A. Yahia, and S. S. A. Obayya, “Funnel-shaped silicon nanowire for highly efficient light trapping,” Opt. Lett. 41, 1010–1013 (2016).
[Crossref]

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold characteristics of slow-light photonic crystal lasers,” Phys. Rev. Lett. 116, 063901 (2016).
[Crossref]

F. Grusdt and M. Fleischhauer, “Tunable polarons of slow-light polaritons in a two-dimensional Bose–Einstein condensate,” Phys. Rev. Lett. 116, 053602 (2016).
[Crossref]

2013 (3)

H. Kurt and D. Yilmaz, “Rainbow trapping using chirped all-dielectric periodic structures,” Appl. Phys. B 110, 411–417 (2013).
[Crossref]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref]

Y. Yang, Y. Poo, R. X. Wu, Y. Gu, and P. Chen, “Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals,” Appl. Phys. Lett. 102, 231113 (2013).
[Crossref]

2011 (2)

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107, 207401 (2011).
[Crossref]

Y. Shen, J. Fu, and G. Yu, “Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs,” Phys. Lett. A 375, 3801–3803 (2011).
[Crossref]

2010 (1)

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97, 153115 (2010).
[Crossref]

2009 (3)

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromganetic states,” Nature 461, 772–775 (2009).
[Crossref]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

J. M. Shainline and J. Xu, “Slow light and band gaps in metallodielectric cylinder arrays,” Opt. Express 17, 8879–8891 (2009).
[Crossref]

2008 (6)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

K. L. Tsakmakidis and O. Hess, “Slow and stopped light in metamaterials, the trapped rainbow,” Proc. SPIE 6987, 698702 (2008).
[Crossref]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[Crossref]

J. He, Y. Jin, Z. Hong, and S. He, “Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding,” Opt. Express 16, 11077–11082 (2008).
[Crossref]

2006 (1)

2001 (1)

Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, “Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate,” Science 293, 663–668 (2001).
[Crossref]

Akram, M. J.

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose–Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
[Crossref]

Areed, N. F. F.

Atwater, H.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107, 207401 (2011).
[Crossref]

Baba, T.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

Bartoli, F. J.

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97, 153115 (2010).
[Crossref]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

Boyd, R. W.

Budde, M.

Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, “Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate,” Science 293, 663–668 (2001).
[Crossref]

Chen, J.

J. Chen, W. Liang, and Z. Y. Li, “Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals,” Phys. Rev. B 99, 014103 (2019).
[Crossref]

Chen, L.

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97, 153115 (2010).
[Crossref]

Chen, P.

Y. Yang, Y. Poo, R. X. Wu, Y. Gu, and P. Chen, “Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals,” Appl. Phys. Lett. 102, 231113 (2013).
[Crossref]

Chen, Y.

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold characteristics of slow-light photonic crystal lasers,” Phys. Rev. Lett. 116, 063901 (2016).
[Crossref]

Chong, Y.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromganetic states,” Nature 461, 772–775 (2009).
[Crossref]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

Dutton, Z.

Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, “Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate,” Science 293, 663–668 (2001).
[Crossref]

Engelen, R. J. P.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[Crossref]

Fang, C.

Faolain, L. O.

Feng, G.

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

Fleischhauer, M.

F. Grusdt and M. Fleischhauer, “Tunable polarons of slow-light polaritons in a two-dimensional Bose–Einstein condensate,” Phys. Rev. Lett. 116, 053602 (2016).
[Crossref]

Fu, J.

Y. Shen, J. Fu, and G. Yu, “Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs,” Phys. Lett. A 375, 3801–3803 (2011).
[Crossref]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

Gan, Q.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97, 153115 (2010).
[Crossref]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

Gao, Y.

W. Qiu, J. Liu, Y. Wang, Y. Yang, Y. Gao, P. Lv, and Q. Jiang, “Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation,” Opt. Commun. 413, 207–211 (2018).
[Crossref]

Ghafoor, F.

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose–Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
[Crossref]

Grusdt, F.

F. Grusdt and M. Fleischhauer, “Tunable polarons of slow-light polaritons in a two-dimensional Bose–Einstein condensate,” Phys. Rev. Lett. 116, 053602 (2016).
[Crossref]

Gu, T.

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

Gu, Y.

Y. Yang, Y. Poo, R. X. Wu, Y. Gu, and P. Chen, “Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals,” Appl. Phys. Lett. 102, 231113 (2013).
[Crossref]

Guo, B.

B. Guo, W. Shi, and J. Yao, “Slowing and trapping THz waves system based on plasmonic graded period grating,” J. Opt. 45, 50–57 (2016).
[Crossref]

Hameed, M. F. O.

Han, G.

Hao, Y.

Hau, L. V.

Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, “Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate,” Science 293, 663–668 (2001).
[Crossref]

Hayran, Z.

Z. Hayran, H. Kurt, and K. Staliunas, “Rainbow trapping in a chirped three-dimensional photonic crystal,” Sci. Rep. 7, 3046 (2017).
[Crossref]

He, J.

He, S.

Herráez, M. G.

Hess, O.

K. L. Tsakmakidis and O. Hess, “Slow and stopped light in metamaterials, the trapped rainbow,” Proc. SPIE 6987, 698702 (2008).
[Crossref]

Hong, Z.

Hu, H.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref]

Huang, Y.

Hussein, M.

Jang, M. S.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107, 207401 (2011).
[Crossref]

Ji, D.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref]

Jiang, Q.

W. Qiu, J. Liu, Y. Wang, Y. Yang, Y. Gao, P. Lv, and Q. Jiang, “Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation,” Opt. Commun. 413, 207–211 (2018).
[Crossref]

Jin, Y.

Joannopoulos, J. D.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromganetic states,” Nature 461, 772–775 (2009).
[Crossref]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

Khan, M. M.

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose–Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
[Crossref]

Kuipers, L.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[Crossref]

Kurt, H.

Z. Hayran, H. Kurt, and K. Staliunas, “Rainbow trapping in a chirped three-dimensional photonic crystal,” Sci. Rep. 7, 3046 (2017).
[Crossref]

H. Kurt and D. Yilmaz, “Rainbow trapping using chirped all-dielectric periodic structures,” Appl. Phys. B 110, 411–417 (2013).
[Crossref]

Kwong, D. L.

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

Li, Z. Y.

J. Chen, W. Liang, and Z. Y. Li, “Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals,” Phys. Rev. B 99, 014103 (2019).
[Crossref]

Liang, W.

J. Chen, W. Liang, and Z. Y. Li, “Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals,” Phys. Rev. B 99, 014103 (2019).
[Crossref]

Liu, J.

W. Qiu, J. Liu, Y. Wang, Y. Yang, Y. Gao, P. Lv, and Q. Jiang, “Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation,” Opt. Commun. 413, 207–211 (2018).
[Crossref]

Liu, K.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref]

Liu, Y.

Lo, G.

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

Lv, P.

W. Qiu, J. Liu, Y. Wang, Y. Yang, Y. Gao, P. Lv, and Q. Jiang, “Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation,” Opt. Commun. 413, 207–211 (2018).
[Crossref]

Mcmillan, J. F.

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

Mori, D.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[Crossref]

Mork, J.

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold characteristics of slow-light photonic crystal lasers,” Phys. Rev. Lett. 116, 063901 (2016).
[Crossref]

Obayya, S. S. A.

Ottaviano, L.

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold characteristics of slow-light photonic crystal lasers,” Phys. Rev. Lett. 116, 063901 (2016).
[Crossref]

Poo, Y.

Y. Yang, Y. Poo, R. X. Wu, Y. Gu, and P. Chen, “Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals,” Appl. Phys. Lett. 102, 231113 (2013).
[Crossref]

Qiu, W.

W. Qiu, J. Liu, Y. Wang, Y. Yang, Y. Gao, P. Lv, and Q. Jiang, “Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation,” Opt. Commun. 413, 207–211 (2018).
[Crossref]

Saif, F.

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose–Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
[Crossref]

Schulz, S. A.

Semenova, E.

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold characteristics of slow-light photonic crystal lasers,” Phys. Rev. Lett. 116, 063901 (2016).
[Crossref]

Shainline, J. M.

Shao, Y.

Shen, Y.

Y. Shen, J. Fu, and G. Yu, “Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs,” Phys. Lett. A 375, 3801–3803 (2011).
[Crossref]

Shi, W.

B. Guo, W. Shi, and J. Yao, “Slowing and trapping THz waves system based on plasmonic graded period grating,” J. Opt. 45, 50–57 (2016).
[Crossref]

Slowe, C.

Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, “Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate,” Science 293, 663–668 (2001).
[Crossref]

Soljacic, M.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromganetic states,” Nature 461, 772–775 (2009).
[Crossref]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

Staliunas, K.

Z. Hayran, H. Kurt, and K. Staliunas, “Rainbow trapping in a chirped three-dimensional photonic crystal,” Sci. Rep. 7, 3046 (2017).
[Crossref]

Tian, Z.

Z. Tian and L. Yu, “Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates,” Sci. Rep. 7, 40004 (2017).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis and O. Hess, “Slow and stopped light in metamaterials, the trapped rainbow,” Proc. SPIE 6987, 698702 (2008).
[Crossref]

Upham, J.

Wang, G. P.

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97, 153115 (2010).
[Crossref]

Wang, Y.

W. Qiu, J. Liu, Y. Wang, Y. Yang, Y. Gao, P. Lv, and Q. Jiang, “Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation,” Opt. Commun. 413, 207–211 (2018).
[Crossref]

Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25, 1278–1287 (2017).
[Crossref]

Wang, Z.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromganetic states,” Nature 461, 772–775 (2009).
[Crossref]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

Wong, C. W.

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

Wu, R. X.

Y. Yang, Y. Poo, R. X. Wu, Y. Gu, and P. Chen, “Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals,” Appl. Phys. Lett. 102, 231113 (2013).
[Crossref]

Xu, J.

Xue, W.

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold characteristics of slow-light photonic crystal lasers,” Phys. Rev. Lett. 116, 063901 (2016).
[Crossref]

Yahia, A.

Yang, Y.

W. Qiu, J. Liu, Y. Wang, Y. Yang, Y. Gao, P. Lv, and Q. Jiang, “Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation,” Opt. Commun. 413, 207–211 (2018).
[Crossref]

Y. Yang, Y. Poo, R. X. Wu, Y. Gu, and P. Chen, “Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals,” Appl. Phys. Lett. 102, 231113 (2013).
[Crossref]

Yao, J.

B. Guo, W. Shi, and J. Yao, “Slowing and trapping THz waves system based on plasmonic graded period grating,” J. Opt. 45, 50–57 (2016).
[Crossref]

Yilmaz, D.

H. Kurt and D. Yilmaz, “Rainbow trapping using chirped all-dielectric periodic structures,” Appl. Phys. B 110, 411–417 (2013).
[Crossref]

Yu, G.

Y. Shen, J. Fu, and G. Yu, “Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs,” Phys. Lett. A 375, 3801–3803 (2011).
[Crossref]

Yu, L.

Z. Tian and L. Yu, “Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates,” Sci. Rep. 7, 40004 (2017).
[Crossref]

Yu, M.

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

Yu, Y.

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold characteristics of slow-light photonic crystal lasers,” Phys. Rev. Lett. 116, 063901 (2016).
[Crossref]

Yvind, K.

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold characteristics of slow-light photonic crystal lasers,” Phys. Rev. Lett. 116, 063901 (2016).
[Crossref]

Zeng, X.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref]

Zhang, J.

Zhang, S.

Zhou, H.

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

Zhou, S.

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

Appl. Phys. B (1)

H. Kurt and D. Yilmaz, “Rainbow trapping using chirped all-dielectric periodic structures,” Appl. Phys. B 110, 411–417 (2013).
[Crossref]

Appl. Phys. Lett. (3)

H. Zhou, T. Gu, J. F. Mcmillan, M. Yu, G. Lo, D. L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108, 111106 (2016).
[Crossref]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97, 153115 (2010).
[Crossref]

Y. Yang, Y. Poo, R. X. Wu, Y. Gu, and P. Chen, “Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals,” Appl. Phys. Lett. 102, 231113 (2013).
[Crossref]

J. Opt. (1)

B. Guo, W. Shi, and J. Yao, “Slowing and trapping THz waves system based on plasmonic graded period grating,” J. Opt. 45, 50–57 (2016).
[Crossref]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

Nature (1)

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromganetic states,” Nature 461, 772–775 (2009).
[Crossref]

Opt. Commun. (1)

W. Qiu, J. Liu, Y. Wang, Y. Yang, Y. Gao, P. Lv, and Q. Jiang, “Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation,” Opt. Commun. 413, 207–211 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Lett. A (1)

Y. Shen, J. Fu, and G. Yu, “Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs,” Phys. Lett. A 375, 3801–3803 (2011).
[Crossref]

Phys. Rev. A (1)

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose–Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
[Crossref]

Phys. Rev. B (1)

J. Chen, W. Liang, and Z. Y. Li, “Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals,” Phys. Rev. B 99, 014103 (2019).
[Crossref]

Phys. Rev. Lett. (7)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

F. Grusdt and M. Fleischhauer, “Tunable polarons of slow-light polaritons in a two-dimensional Bose–Einstein condensate,” Phys. Rev. Lett. 116, 053602 (2016).
[Crossref]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107, 207401 (2011).
[Crossref]

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold characteristics of slow-light photonic crystal lasers,” Phys. Rev. Lett. 116, 063901 (2016).
[Crossref]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Proc. SPIE (1)

K. L. Tsakmakidis and O. Hess, “Slow and stopped light in metamaterials, the trapped rainbow,” Proc. SPIE 6987, 698702 (2008).
[Crossref]

Sci. Rep. (3)

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref]

Z. Hayran, H. Kurt, and K. Staliunas, “Rainbow trapping in a chirped three-dimensional photonic crystal,” Sci. Rep. 7, 3046 (2017).
[Crossref]

Z. Tian and L. Yu, “Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates,” Sci. Rep. 7, 40004 (2017).
[Crossref]

Science (1)

Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, “Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate,” Science 293, 663–668 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of SLRT in the MOPC waveguide.
Fig. 2.
Fig. 2. (a) Schematics of the MOPC waveguide involving strongly coupling TPSs. RTPS and LTPS indicate whether the TPSs are propagating rightwards or leftwards, respectively. (b) Band structure of the MOPC waveguide. (c)–(e) Electric field profiles at different frequencies: (c) f1=4.25  GHz, (d) f2=4.292  GHz, (e) f3=4.35  GHz. The area marked by the blue dashed box in (c) is the supercell used in the calculation of the photonic band.
Fig. 3.
Fig. 3. (a) Flat band with different H0 in the half-Brillouin zone. (b) Group velocities of different flat bands. (c) Electric field profiles at three frequencies: frd=4.292  GHz, fpl=4.346  GHz, and fbu=4.393  GHz. (d) Electric field amplitudes along the upper boundary as shown in (c).
Fig. 4.
Fig. 4. Electric field distributions with a local designed gradient magnetic field. (a) frd=4.292  GHz, (b) fpl=4.346  GHz, (c) fbu=4.393  GHz.
Fig. 5.
Fig. 5. Illustration of broadband large-length SLRT in the MOPC waveguide with a gradient magnetic field.
Fig. 6.
Fig. 6. Electric field amplitudes of the wave packet along the upper boundary at different times: (a) 10 ns, (b) 40 ns, (c) 70 ns, and (d) 100 ns. The magnetic field strengths applied to the regions 1, 2, and 3 are H1=1700  G, H2=1800  G, and H3=1900  G, respectively. (e) Fourier transformation spectrum normalized to each amplitude at x0=0, x1=3.5a, x2=10.5a, and x3=17.5a along the upper boundary of the waveguide. (f) The partial enlargement of the area marked by the black dashed box in (e).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ^=(μrjμk0jμkμr0001),