Abstract

We report an all-fiberized 30-W supercontinuum (SC) generation in a piece of ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber. The pump source is a thulium-doped fiber amplifier (TDFA) with broadband output spectrum spanning the 1.9 to 2.6  μm region. The used ZBLAN fiber has a core diameter of 10 μm, and was directly fusion-spliced to the pigtail of the TDFA without using a traditional mode field adapter (MFA) or a piece of transition fiber. Such a low-loss and robust fusion splice joint, together with a robust AlF3-fiber-based endcap, enables efficient and high-power SC generation in the ZBLAN fiber. An SC with an average power up to 30.0 W and a spectral coverage of 1.9–3.35 μm with 20-dB bandwidth of 1.92–3.20 μm was obtained. Moreover, an SC with a broader spectrum was achieved by raising the pump pulse peak power (via reducing the duty ratio of the pump laser pulse). An SC with an output power of 27.4 W and a spectral coverage of 1.9–3.63 μm (with 20-dB bandwidth of 1.92–3.47 μm) was obtained, as well as an SC with output power of 24.8 W and a spectral coverage of 1.9–3.70 μm (with 20-dB bandwidth of 1.93–3.56 μm). The power conversion efficiency was measured as >69%. To the best of the authors’ knowledge, this research demonstrates the record output power of SC lasers based on ZBLAN fibers, paving the way for broadband and efficient multi-tens-of-watts SC generation in soft-glass fibers.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Scaling all-fiber mid-infrared supercontinuum up to 10  W-level based on thermal-spliced silica fiber and ZBLAN fiber

Zhijian Zheng, Deqin Ouyang, Junqing Zhao, Minqiu Liu, Shuangchen Ruan, Peiguang Yan, and Jinzhang Wang
Photon. Res. 4(4) 135-139 (2016)

High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system

Weiqiang Yang, Bin Zhang, Ke Yin, Xuanfeng Zhou, and Jing Hou
Opt. Express 21(17) 19732-19742 (2013)

High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power

Kun Liu, Jiang Liu, Hongxing Shi, Fangzhou Tan, and Pu Wang
Opt. Express 22(20) 24384-24391 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Islam, M. J. Freeman, L. M. Peterson, K. Ke, A. Ifarraguerri, C. Bailey, F. Baxley, M. Wager, A. Absi, J. Leonard, H. Baker, and M. Rucci, “Field tests for round-trip imaging at a 1.4  km distance with change detection and ranging using a short-wave infrared super-continuum laser,” Appl. Opt. 55, 1584–1602 (2016).
    [Crossref]
  2. A. Mukherjee, S. Von der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150  m,” Appl. Opt. 49, 2072–2078 (2010).
    [Crossref]
  3. H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
    [Crossref]
  4. X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016  nm,” Opt. Lett. 43, 1019–1022 (2018).
    [Crossref]
  5. K. Yin, R. Zhu, B. Zhang, T. Jiang, S. Chen, and J. Hou, “Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications,” Opt. Express 24, 20010–20020 (2016).
    [Crossref]
  6. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
    [Crossref]
  7. C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
    [Crossref]
  8. L. Yang, B. Zhang, D. Jin, T. Wu, X. He, Y. Zhao, and J. Hou, “All-fiberized, multi-watt 2-5-μm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency,” Opt. Lett. 43, 5206–5209 (2018).
    [Crossref]
  9. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
    [Crossref]
  10. C. Yao, Z. Jia, Z. Li, S. Jia, Z. Zhao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “High-power mid-infrared supercontinuum laser source using fluorotellurite fiber,” Optica 5, 1264–1270 (2018).
    [Crossref]
  11. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
    [Crossref]
  12. K. Guo, R. A. Martinez, G. Plant, L. Maksymiuk, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, R. Bedford, R. Gibson, F. Chenard, S. Chatigny, and A. I. Ifarraguerri, “Generation of near-diffraction-limited, high-power supercontinuum from 1.57  μm to 12  μm with cascaded fluoride and chalcogenide fibers,” Appl. Opt. 57, 2519–2532 (2018).
    [Crossref]
  13. J. Swiderski, “High-power mid-infrared supercontinuum sources: current status and future perspectives,” Prog. Quantum Electron. 38, 189–235 (2014).
    [Crossref]
  14. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
    [Crossref]
  15. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8  W average output power,” Opt. Express 22, 24384–24391 (2014).
    [Crossref]
  16. Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10  W-level based on thermal-spliced silica fiber and ZBLAN fiber,” Photon. Res. 4, 135–139 (2016).
    [Crossref]
  17. K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2  W spectrally flat all-fiber supercontinuum laser source with >1  W power beyond 3.8  μm,” Opt. Lett. 42, 2334–2337 (2017).
    [Crossref]
  18. K. Yin, B. Zhang, L. Yang, and J. Hou, “30  W monolithic 2–3  μm supercontinuum laser,” Photon. Res. 6, 123–126 (2018).
    [Crossref]
  19. T. Wu, L. Yang, Z. Dou, K. Yin, X. He, B. Zhang, and J. Hou, “Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 44, 2378–2381 (2019).
    [Crossref]
  20. K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, and J. Hou, “Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers,” Opt. Lett. 41, 946–949 (2016).
    [Crossref]
  21. F. R. Arteaga-Sierra, A. Antikainen, and G. P. Agrawal, “Dynamics of soliton cascades in fiber amplifiers,” Opt. Lett. 41, 5198–5201 (2016).
    [Crossref]

2019 (1)

2018 (5)

2017 (1)

2016 (6)

2014 (3)

2013 (1)

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

2010 (1)

2009 (1)

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

2004 (1)

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

1993 (1)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Absi, A.

Agrawal, G. P.

Antikainen, A.

Arteaga-Sierra, F. R.

Bailey, C.

Baker, H.

Baxley, F.

Bedford, R.

Bekman, H. T.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Chatigny, S.

Chavez-Pirson, A.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Chen, S.

Chenard, F.

Dai, S.

Dou, Z.

Feng, Y.

Freeman, M. J.

Gibson, R.

Guo, K.

He, X.

Hou, J.

T. Wu, L. Yang, Z. Dou, K. Yin, X. He, B. Zhang, and J. Hou, “Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 44, 2378–2381 (2019).
[Crossref]

L. Yang, B. Zhang, D. Jin, T. Wu, X. He, Y. Zhao, and J. Hou, “All-fiberized, multi-watt 2-5-μm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency,” Opt. Lett. 43, 5206–5209 (2018).
[Crossref]

K. Yin, B. Zhang, L. Yang, and J. Hou, “30  W monolithic 2–3  μm supercontinuum laser,” Photon. Res. 6, 123–126 (2018).
[Crossref]

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016  nm,” Opt. Lett. 43, 1019–1022 (2018).
[Crossref]

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2  W spectrally flat all-fiber supercontinuum laser source with >1  W power beyond 3.8  μm,” Opt. Lett. 42, 2334–2337 (2017).
[Crossref]

K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, and J. Hou, “Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers,” Opt. Lett. 41, 946–949 (2016).
[Crossref]

K. Yin, R. Zhu, B. Zhang, T. Jiang, S. Chen, and J. Hou, “Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications,” Opt. Express 24, 20010–20020 (2016).
[Crossref]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
[Crossref]

Ifarraguerri, A.

Ifarraguerri, A. I.

Islam, M. N.

Izumitani, T.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Janiszewski, B.

Jia, S.

Jia, Z.

Jiang, T.

Jin, D.

Ke, K.

Leonard, J.

Li, Z.

Liu, J.

Liu, K.

Liu, M.

Liu, S.

Liu, T.

Liu, Z.

Maksymiuk, L.

Martinez, R. A.

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Maynard, R. L.

Mukherjee, A.

Nguyen, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Nie, Q.

Ohishi, Y.

Ou, Y.

Ouyang, D.

Pan, Z.

Patel, C. K. N.

Peterson, L. M.

Plant, G.

Qi, X.

Qin, G.

Qin, W.

Rhonehouse, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Ruan, S.

Rucci, M.

Schleijpen, R.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Shen, X.

Shi, H.

Smith, C.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Sun, L.

Swiderski, J.

J. Swiderski, “High-power mid-infrared supercontinuum sources: current status and future perspectives,” Prog. Quantum Electron. 38, 189–235 (2014).
[Crossref]

Tan, F.

Terry, F. L.

Terry, J. F. L.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Thapa, R.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Van Den Heuvel, J.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Van Putten, F.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Von der Porten, S.

Wager, M.

Wang, J.

Wang, N.

Wang, P.

Wang, R.

Wang, X.

Wiersma, K.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Wu, T.

Xia, C.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Xue, G.

Yan, P.

Yang, L.

Yang, W.

Yao, C.

Yao, J.

Yin, K.

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Zhang, B.

Zhang, L.

Zhang, P.

Zhao, J.

Zhao, Y.

Zhao, Z.

Zheng, Z.

Zhu, R.

Zong, J.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Zou, X.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

J. Non-Cryst. Solids (1)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Opt. Express (2)

Opt. Lett. (8)

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2  W spectrally flat all-fiber supercontinuum laser source with >1  W power beyond 3.8  μm,” Opt. Lett. 42, 2334–2337 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
[Crossref]

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016  nm,” Opt. Lett. 43, 1019–1022 (2018).
[Crossref]

L. Yang, B. Zhang, D. Jin, T. Wu, X. He, Y. Zhao, and J. Hou, “All-fiberized, multi-watt 2-5-μm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency,” Opt. Lett. 43, 5206–5209 (2018).
[Crossref]

T. Wu, L. Yang, Z. Dou, K. Yin, X. He, B. Zhang, and J. Hou, “Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 44, 2378–2381 (2019).
[Crossref]

K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, and J. Hou, “Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers,” Opt. Lett. 41, 946–949 (2016).
[Crossref]

F. R. Arteaga-Sierra, A. Antikainen, and G. P. Agrawal, “Dynamics of soliton cascades in fiber amplifiers,” Opt. Lett. 41, 5198–5201 (2016).
[Crossref]

Optica (1)

Photon. Res. (2)

Proc. SPIE (2)

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Prog. Quantum Electron. (1)

J. Swiderski, “High-power mid-infrared supercontinuum sources: current status and future perspectives,” Prog. Quantum Electron. 38, 189–235 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup of the 30-W SC laser source. EYDFA, erbium-ytterbium-codoped fiber amplifier; SMF, single-mode fiber; SM-TDFA, single-mode thulium-doped fiber amplifier; FS, fusion splice.
Fig. 2.
Fig. 2. (a) Power characteristics of the TDFA and (b) spectral characteristics of the TDFA with maximal launched pump power (100.9 W at 793 nm) under PRR and pulse duration of 3 MHz 3 ns, 3 MHz 1 ns, and 2 MHz 1 ns. (The measured spectra were not compensated by the detector response.)
Fig. 3.
Fig. 3. (a) SC spectrum evolution under different TDFA output power for PRR of 3 MHz and pulse duration of 1 ns. (b) SC spectrum comparison with maximal pump power under PRR and pulse duration of 3 MHz 3 ns, 3 MHz 1 ns, and 2 MHz 1 ns.
Fig. 4.
Fig. 4. SC power as a function of the TDFA output power under PRR and pulse duration of 3 MHz 3 ns, 3 MHz 1 ns, and 2 MHz 1 ns.
Fig. 5.
Fig. 5. Summary of the literature on 10 W level SC generation based on non-silica fibers with a spectrum extending beyond 3 μm. The bandwidth in the diagram represents full spectral range.

Metrics