Abstract

We report a dual-contrast method of simultaneously measuring and visualizing the volumetric structural information in live biological samples in three-dimensional (3D) space. By introducing a direct way of deriving the 3D scattering potential of the object from the synthesized angular spectra, we obtain the quantitative subcellular morphology in refractive indices (RIs) side-by-side with its fluorescence signals. The additional contrast in RI complements the fluorescent signal, providing additional information of the targeted zones. The simultaneous dual-contrast 3D mechanism unveiled interesting information inaccessible with previous methods, as we demonstrated in the human immune cell (T cell) experiment. Further validation has been demonstrated using a Monte Carlo model.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging

Kyoohyun Kim, Wei Sun Park, Sangchan Na, Sangbum Kim, Taehong Kim, Won Do Heo, and YongKeun Park
Biomed. Opt. Express 8(12) 5688-5697 (2017)

Optical diffraction tomography for high resolution live cell imaging

Yongjin Sung, Wonshik Choi, Christopher Fang-Yen, Kamran Badizadegan, Ramachandra R. Dasari, and Michael S. Feld
Opt. Express 17(1) 266-277 (2009)

Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction

Shwetadwip Chowdhury, Will J. Eldridge, Adam Wax, and Joseph A. Izatt
Biomed. Opt. Express 8(12) 5776-5793 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. M. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317, 748–749 (1985).
    [Crossref]
  2. R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, and S. W. Hell, “Mitochondrial cristae revealed with focused light,” Nano Lett. 9, 2508–2510 (2009).
    [Crossref]
  3. Z. Zeng and P. Xi, “Advances in three-dimensional super-resolution nanoscopy,” Microsc. Res. Tech. 79, 893–898 (2016).
    [Crossref]
  4. S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).
    [Crossref]
  5. C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973–980 (2008).
    [Crossref]
  6. N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
    [Crossref]
  7. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
    [Crossref]
  8. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
    [Crossref]
  9. K. Nagayama and R. Danev, “Phase contrast electron microscopy: development of thin-film phase plates and biological applications,” Philos. Trans. R. Soc. B 363, 2153–2162 (2008).
    [Crossref]
  10. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  11. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
    [Crossref]
  12. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
    [Crossref]
  13. K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10, 3318–3323 (2010).
    [Crossref]
  14. L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electron. Adv. 1, 170001 (2018).
    [Crossref]
  15. X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
    [Crossref]
  16. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [Crossref]
  17. H. Stark, Image Recovery: Theory and Application (Academic, 1987).
  18. O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
    [Crossref]
  19. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
    [Crossref]
  20. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
    [Crossref]
  21. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
    [Crossref]
  22. J. M. Soto, J. A. Rodrigo, and T. Alieva, “Label-free quantitative 3D tomographic imaging for partially coherent light microscopy,” Opt. Express 25, 15699–15712 (2017).
    [Crossref]
  23. M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4, 1600205 (2017).
    [Crossref]
  24. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).
    [Crossref]
  25. W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171–173 (2008).
    [Crossref]
  26. S. X. Pan and A. C. Kak, “A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered back propagation,” IEEE Trans. Acoust. Speech Signal Process. 31, 1262–1275 (1983).
    [Crossref]
  27. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  28. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 2005).
  29. C. J. R. Sheppard, J. Lin, and S. S. Kou, “Rayleigh–Sommerfeld diffraction formula in k space,” J. Opt. Soc. Am. A. 30, 1180–1183 (2013).
    [Crossref]
  30. S. S. Kou, C. J. R. Sheppard, and J. Lin, “Calculation of the volumetric diffracted field with a three-dimensional convolution: the three-dimensional angular spectrum method,” Opt. Lett. 38, 5296–5298 (2013).
    [Crossref]
  31. S. S. Kou and C. J. R. Sheppard, “Image formation in holographic tomography: high-aperture image conditions,” Appl. Opt. 48, H168–H175 (2009).
    [Crossref]
  32. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).
  33. S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy,” Biomed. Opt. Express 8, 2496–2518 (2017).
    [Crossref]
  34. M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography,” J. Biophoton. 11, e201700145 (2018).
    [Crossref]
  35. K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. Do Heo, and Y. Park, “Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging,” Biomed. Opt. Express 8, 5688–5697 (2017).
    [Crossref]
  36. J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
    [Crossref]
  37. S. Shin, D. Kim, K. Kim, and Y. Park, “Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device,” Sci. Rep. 8, 9183 (2018).
    [Crossref]
  38. S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
    [Crossref]
  39. M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, 2nd ed. (Wiley, 2008).
  40. B. Chyba, M. Mantler, and M. Reiter, “Monte Carlo simulation of projections in computed tomography,” Powder Diffr. 23, 150–153 (2008).
    [Crossref]
  41. D. Kumar, W. Cong, and G. Wang, “Monte Carlo method for bioluminescence tomography,” Indian J. Exp. Biol. 45, 58–63 (2007).
  42. G. Kail, C. Novak, B. Hofer, and F. Hlawatsch, “A blind Monte Carlo detection-estimation method for optical coherence tomography,” in International Conference on Acoustics, Speech, and Signal Processing (2009), pp. 493–496.
  43. G. Quan, K. Wang, X. Yang, Y. Deng, Q. Luo, and H. Gong, “Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography,” J. Biomed. Opt. 17, 086006 (2012).
    [Crossref]
  44. E. Harlow and D. Lane, “Fixing attached cells in paraformaldehyde,” CSH Protoc. 2006, 4294–4296 (2006).
    [Crossref]
  45. D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, and M. F. Olson, “Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration,” J. Cell Biol. 168, 245–255 (2005).
    [Crossref]
  46. J. F. R. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” Brit. J. Cancer 26, 239–257 (1972).
    [Crossref]
  47. I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, and K. S. Ravichandran, “Unexpected link between an antibiotic, pannexin channels, and apoptosis,” Nature 507, 329–334 (2014).
    [Crossref]

2019 (1)

X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
[Crossref]

2018 (4)

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electron. Adv. 1, 170001 (2018).
[Crossref]

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography,” J. Biophoton. 11, e201700145 (2018).
[Crossref]

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

S. Shin, D. Kim, K. Kim, and Y. Park, “Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device,” Sci. Rep. 8, 9183 (2018).
[Crossref]

2017 (5)

2016 (1)

Z. Zeng and P. Xi, “Advances in three-dimensional super-resolution nanoscopy,” Microsc. Res. Tech. 79, 893–898 (2016).
[Crossref]

2014 (2)

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, and K. S. Ravichandran, “Unexpected link between an antibiotic, pannexin channels, and apoptosis,” Nature 507, 329–334 (2014).
[Crossref]

2013 (4)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

C. J. R. Sheppard, J. Lin, and S. S. Kou, “Rayleigh–Sommerfeld diffraction formula in k space,” J. Opt. Soc. Am. A. 30, 1180–1183 (2013).
[Crossref]

S. S. Kou, C. J. R. Sheppard, and J. Lin, “Calculation of the volumetric diffracted field with a three-dimensional convolution: the three-dimensional angular spectrum method,” Opt. Lett. 38, 5296–5298 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

2012 (1)

G. Quan, K. Wang, X. Yang, Y. Deng, Q. Luo, and H. Gong, “Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography,” J. Biomed. Opt. 17, 086006 (2012).
[Crossref]

2010 (3)

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10, 3318–3323 (2010).
[Crossref]

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

2009 (2)

R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, and S. W. Hell, “Mitochondrial cristae revealed with focused light,” Nano Lett. 9, 2508–2510 (2009).
[Crossref]

S. S. Kou and C. J. R. Sheppard, “Image formation in holographic tomography: high-aperture image conditions,” Appl. Opt. 48, H168–H175 (2009).
[Crossref]

2008 (4)

W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171–173 (2008).
[Crossref]

B. Chyba, M. Mantler, and M. Reiter, “Monte Carlo simulation of projections in computed tomography,” Powder Diffr. 23, 150–153 (2008).
[Crossref]

C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973–980 (2008).
[Crossref]

K. Nagayama and R. Danev, “Phase contrast electron microscopy: development of thin-film phase plates and biological applications,” Philos. Trans. R. Soc. B 363, 2153–2162 (2008).
[Crossref]

2007 (4)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

D. Kumar, W. Cong, and G. Wang, “Monte Carlo method for bioluminescence tomography,” Indian J. Exp. Biol. 45, 58–63 (2007).

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

2006 (1)

E. Harlow and D. Lane, “Fixing attached cells in paraformaldehyde,” CSH Protoc. 2006, 4294–4296 (2006).
[Crossref]

2005 (1)

D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, and M. F. Olson, “Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration,” J. Cell Biol. 168, 245–255 (2005).
[Crossref]

2004 (1)

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[Crossref]

1996 (1)

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref]

1995 (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

1985 (1)

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. M. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317, 748–749 (1985).
[Crossref]

1983 (1)

S. X. Pan and A. C. Kak, “A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered back propagation,” IEEE Trans. Acoust. Speech Signal Process. 31, 1262–1275 (1983).
[Crossref]

1982 (1)

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).
[Crossref]

1972 (1)

J. F. R. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” Brit. J. Cancer 26, 239–257 (1972).
[Crossref]

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Alieva, T.

Armstrong, A. J.

I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, and K. S. Ravichandran, “Unexpected link between an antibiotic, pannexin channels, and apoptosis,” Nature 507, 329–334 (2014).
[Crossref]

Babacan, S. D.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171–173 (2008).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Barnea, I.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Barton, J.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[Crossref]

Bayliss, D. A.

I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, and K. S. Ravichandran, “Unexpected link between an antibiotic, pannexin channels, and apoptosis,” Nature 507, 329–334 (2014).
[Crossref]

Beaurepaire, E.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Belkebir, K.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 2005).

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Bourgine, P.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Brakenhoff, G. J.

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. M. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317, 748–749 (1985).
[Crossref]

Carney, P. S.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

Chen, L.

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electron. Adv. 1, 170001 (2018).
[Crossref]

Chiu, Y. H.

I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, and K. S. Ravichandran, “Unexpected link between an antibiotic, pannexin channels, and apoptosis,” Nature 507, 329–334 (2014).
[Crossref]

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171–173 (2008).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Chowdhury, S.

Chyba, B.

B. Chyba, M. Mantler, and M. Reiter, “Monte Carlo simulation of projections in computed tomography,” Powder Diffr. 23, 150–153 (2008).
[Crossref]

Cojoc, G.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography,” J. Biophoton. 11, e201700145 (2018).
[Crossref]

Coleman, M. L.

D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, and M. F. Olson, “Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration,” J. Cell Biol. 168, 245–255 (2005).
[Crossref]

Cong, W.

D. Kumar, W. Cong, and G. Wang, “Monte Carlo method for bioluminescence tomography,” Indian J. Exp. Biol. 45, 58–63 (2007).

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Croft, D. R.

D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, and M. F. Olson, “Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration,” J. Cell Biol. 168, 245–255 (2005).
[Crossref]

Currie, A. R.

J. F. R. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” Brit. J. Cancer 26, 239–257 (1972).
[Crossref]

Danev, R.

K. Nagayama and R. Danev, “Phase contrast electron microscopy: development of thin-film phase plates and biological applications,” Philos. Trans. R. Soc. B 363, 2153–2162 (2008).
[Crossref]

Dardikman, G.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Dasari, R. R.

W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171–173 (2008).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Débarre, D.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Deng, Y.

G. Quan, K. Wang, X. Yang, Y. Deng, Q. Luo, and H. Gong, “Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography,” J. Biomed. Opt. 17, 086006 (2012).
[Crossref]

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Devaney, A. J.

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).
[Crossref]

Do Heo, W.

Drezek, R.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[Crossref]

Duloquin, L.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Duschl, C.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Earnshaw, W. C.

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

Egner, A.

R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, and S. W. Hell, “Mitochondrial cristae revealed with focused light,” Nano Lett. 9, 2508–2510 (2009).
[Crossref]

Eldridge, W. J.

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171–173 (2008).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Faure, E.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Feld, M. S.

W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171–173 (2008).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Giovaninni, H.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

Girardo, S.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography,” J. Biophoton. 11, e201700145 (2018).
[Crossref]

Goddard, L. L.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Gong, H.

G. Quan, K. Wang, X. Yang, Y. Deng, Q. Luo, and H. Gong, “Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography,” J. Biomed. Opt. 17, 086006 (2012).
[Crossref]

Gu, M.

X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
[Crossref]

Guck, J.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography,” J. Biophoton. 11, e201700145 (2018).
[Crossref]

Guernth-Marschner, C.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Habaza, M.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Haeberlé, O.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

Halas, N.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[Crossref]

Harlow, E.

E. Harlow and D. Lane, “Fixing attached cells in paraformaldehyde,” CSH Protoc. 2006, 4294–4296 (2006).
[Crossref]

Hell, S. W.

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).
[Crossref]

R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, and S. W. Hell, “Mitochondrial cristae revealed with focused light,” Nano Lett. 9, 2508–2510 (2009).
[Crossref]

Hirano, K.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref]

Hirsch, L.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[Crossref]

Hlawatsch, F.

G. Kail, C. Novak, B. Hofer, and F. Hlawatsch, “A blind Monte Carlo detection-estimation method for optical coherence tomography,” in International Conference on Acoustics, Speech, and Signal Processing (2009), pp. 493–496.

Hofer, B.

G. Kail, C. Novak, B. Hofer, and F. Hlawatsch, “A blind Monte Carlo detection-estimation method for optical coherence tomography,” in International Conference on Acoustics, Speech, and Signal Processing (2009), pp. 493–496.

Hong, M.

X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
[Crossref]

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electron. Adv. 1, 170001 (2018).
[Crossref]

Hong, S. J.

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Itai, Y.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref]

Izatt, J. A.

Jakobs, S.

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).
[Crossref]

R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, and S. W. Hell, “Mitochondrial cristae revealed with focused light,” Nano Lett. 9, 2508–2510 (2009).
[Crossref]

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Juncadella, I. J.

I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, and K. S. Ravichandran, “Unexpected link between an antibiotic, pannexin channels, and apoptosis,” Nature 507, 329–334 (2014).
[Crossref]

Jung, J.

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Kail, G.

G. Kail, C. Novak, B. Hofer, and F. Hlawatsch, “A blind Monte Carlo detection-estimation method for optical coherence tomography,” in International Conference on Acoustics, Speech, and Signal Processing (2009), pp. 493–496.

Kak, A. C.

S. X. Pan and A. C. Kak, “A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered back propagation,” IEEE Trans. Acoust. Speech Signal Process. 31, 1262–1275 (1983).
[Crossref]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).

Kalos, M. H.

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, 2nd ed. (Wiley, 2008).

Kanouchi, H.

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

Kerr, J. F. R.

J. F. R. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” Brit. J. Cancer 26, 239–257 (1972).
[Crossref]

Kim, D.

S. Shin, D. Kim, K. Kim, and Y. Park, “Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device,” Sci. Rep. 8, 9183 (2018).
[Crossref]

Kim, D. J.

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Kim, G.

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Kim, H. B.

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Kim, K.

S. Shin, D. Kim, K. Kim, and Y. Park, “Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device,” Sci. Rep. 8, 9183 (2018).
[Crossref]

K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. Do Heo, and Y. Park, “Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging,” Biomed. Opt. Express 8, 5688–5697 (2017).
[Crossref]

Kim, S.

Kim, T.

Kinchen, J. M.

I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, and K. S. Ravichandran, “Unexpected link between an antibiotic, pannexin channels, and apoptosis,” Nature 507, 329–334 (2014).
[Crossref]

Kirschbaum, M.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Klumperman, J.

C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973–980 (2008).
[Crossref]

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Korenstein, R.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Kou, S. S.

Kumar, D.

D. Kumar, W. Cong, and G. Wang, “Monte Carlo method for bioluminescence tomography,” Indian J. Exp. Biol. 45, 58–63 (2007).

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Lane, D.

E. Harlow and D. Lane, “Fixing attached cells in paraformaldehyde,” CSH Protoc. 2006, 4294–4296 (2006).
[Crossref]

Lee, C. G.

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Lee, M.

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Lee, M. H.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[Crossref]

Lee, S.

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Lee, S. T.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10, 3318–3323 (2010).
[Crossref]

Li, S.

D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, and M. F. Olson, “Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration,” J. Cell Biol. 168, 245–255 (2005).
[Crossref]

Lin, A.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[Crossref]

Lin, J.

Linnemans, W. A. M.

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. M. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317, 748–749 (1985).
[Crossref]

Liu, Z.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10, 3318–3323 (2010).
[Crossref]

Loo, C.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[Crossref]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Luengo-Oroz, M. A.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Luo, Q.

G. Quan, K. Wang, X. Yang, Y. Deng, Q. Luo, and H. Gong, “Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography,” J. Biomed. Opt. 17, 086006 (2012).
[Crossref]

Luo, X.

X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
[Crossref]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Mantler, M.

B. Chyba, M. Mantler, and M. Reiter, “Monte Carlo simulation of projections in computed tomography,” Powder Diffr. 23, 150–153 (2008).
[Crossref]

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Minatogawa, Y.

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

Mir, M.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Momose, A.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref]

Müller, P.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography,” J. Biophoton. 11, e201700145 (2018).
[Crossref]

Na, S.

Nagayama, K.

K. Nagayama and R. Danev, “Phase contrast electron microscopy: development of thin-film phase plates and biological applications,” Philos. Trans. R. Soc. B 363, 2153–2162 (2008).
[Crossref]

Nanninga, N.

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. M. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317, 748–749 (1985).
[Crossref]

Novak, C.

G. Kail, C. Novak, B. Hofer, and F. Hlawatsch, “A blind Monte Carlo detection-estimation method for optical coherence tomography,” in International Conference on Acoustics, Speech, and Signal Processing (2009), pp. 493–496.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Olivier, N.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Olson, M. F.

D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, and M. F. Olson, “Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration,” J. Cell Biol. 168, 245–255 (2005).
[Crossref]

Oorschot, V.

C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973–980 (2008).
[Crossref]

Pan, S. X.

S. X. Pan and A. C. Kak, “A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered back propagation,” IEEE Trans. Acoust. Speech Signal Process. 31, 1262–1275 (1983).
[Crossref]

Park, W. S.

Park, Y.

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

S. Shin, D. Kim, K. Kim, and Y. Park, “Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device,” Sci. Rep. 8, 9183 (2018).
[Crossref]

K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. Do Heo, and Y. Park, “Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging,” Biomed. Opt. Express 8, 5688–5697 (2017).
[Crossref]

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Peyriéras, N.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Poon, I. K.

I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, and K. S. Ravichandran, “Unexpected link between an antibiotic, pannexin channels, and apoptosis,” Nature 507, 329–334 (2014).
[Crossref]

Popescu, G.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Punge, A.

R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, and S. W. Hell, “Mitochondrial cristae revealed with focused light,” Nano Lett. 9, 2508–2510 (2009).
[Crossref]

Quan, G.

G. Quan, K. Wang, X. Yang, Y. Deng, Q. Luo, and H. Gong, “Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography,” J. Biomed. Opt. 17, 086006 (2012).
[Crossref]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

Ravichandran, K. S.

I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, and K. S. Ravichandran, “Unexpected link between an antibiotic, pannexin channels, and apoptosis,” Nature 507, 329–334 (2014).
[Crossref]

Reiter, M.

B. Chyba, M. Mantler, and M. Reiter, “Monte Carlo simulation of projections in computed tomography,” Powder Diffr. 23, 150–153 (2008).
[Crossref]

Robertson, D.

D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, and M. F. Olson, “Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration,” J. Cell Biol. 168, 245–255 (2005).
[Crossref]

Rodrigo, J. A.

Sahl, S. J.

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).
[Crossref]

Samejima, K.

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

Santos, A.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Savy, T.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Schmidt, R.

R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, and S. W. Hell, “Mitochondrial cristae revealed with focused light,” Nano Lett. 9, 2508–2510 (2009).
[Crossref]

Schürmann, M.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography,” J. Biophoton. 11, e201700145 (2018).
[Crossref]

Sentenac, A.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

Shaked, N. T.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Sheppard, C. J. R.

Shin, S.

S. Shin, D. Kim, K. Kim, and Y. Park, “Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device,” Sci. Rep. 8, 9183 (2018).
[Crossref]

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Solinas, X.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Soto, J. M.

Stark, H.

H. Stark, Image Recovery: Theory and Application (Academic, 1987).

Stewart, C. L.

D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, and M. F. Olson, “Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration,” J. Cell Biol. 168, 245–255 (2005).
[Crossref]

Suda, T.

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

Sugimoto, K.

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

Sullivan, T.

D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, and M. F. Olson, “Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration,” J. Cell Biol. 168, 245–255 (2005).
[Crossref]

Sun, X.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10, 3318–3323 (2010).
[Crossref]

Takeda, T.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref]

Tanda, K.

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

Toné, S.

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Tsai, D.

X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
[Crossref]

Uehira, K.

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

Ulbricht, E.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography,” J. Biophoton. 11, e201700145 (2018).
[Crossref]

van der Voort, H. T.

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. M. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317, 748–749 (1985).
[Crossref]

Van Rijnsoever, C.

C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973–980 (2008).
[Crossref]

van Spronsen, E. A.

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. M. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317, 748–749 (1985).
[Crossref]

Veilleux, I.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Wang, G.

D. Kumar, W. Cong, and G. Wang, “Monte Carlo method for bioluminescence tomography,” Indian J. Exp. Biol. 45, 58–63 (2007).

Wang, K.

G. Quan, K. Wang, X. Yang, Y. Deng, Q. Luo, and H. Gong, “Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography,” J. Biomed. Opt. 17, 086006 (2012).
[Crossref]

Wax, A.

West, J.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[Crossref]

Whitlock, P. A.

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, 2nd ed. (Wiley, 2008).

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 2005).

Wu, M.

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electron. Adv. 1, 170001 (2018).
[Crossref]

Wurm, C. A.

R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, and S. W. Hell, “Mitochondrial cristae revealed with focused light,” Nano Lett. 9, 2508–2510 (2009).
[Crossref]

Wyllie, A. H.

J. F. R. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” Brit. J. Cancer 26, 239–257 (1972).
[Crossref]

Xi, P.

Z. Zeng and P. Xi, “Advances in three-dimensional super-resolution nanoscopy,” Microsc. Res. Tech. 79, 893–898 (2016).
[Crossref]

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Yang, K.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10, 3318–3323 (2010).
[Crossref]

Yang, X.

G. Quan, K. Wang, X. Yang, Y. Deng, Q. Luo, and H. Gong, “Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography,” J. Biomed. Opt. 17, 086006 (2012).
[Crossref]

Zeng, Z.

Z. Zeng and P. Xi, “Advances in three-dimensional super-resolution nanoscopy,” Microsc. Res. Tech. 79, 893–898 (2016).
[Crossref]

Zhang, G.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10, 3318–3323 (2010).
[Crossref]

Zhang, S.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10, 3318–3323 (2010).
[Crossref]

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Zhou, R.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Zhou, Y.

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electron. Adv. 1, 170001 (2018).
[Crossref]

Adv. Sci. (1)

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Brit. J. Cancer (1)

J. F. R. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” Brit. J. Cancer 26, 239–257 (1972).
[Crossref]

Chem. Soc. Rev. (1)

X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
[Crossref]

CSH Protoc. (1)

E. Harlow and D. Lane, “Fixing attached cells in paraformaldehyde,” CSH Protoc. 2006, 4294–4296 (2006).
[Crossref]

Exp. Cell. Res. (1)

S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, and W. C. Earnshaw, “Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis,” Exp. Cell. Res. 313, 3635–3644 (2007).
[Crossref]

IEEE Trans. Acoust. Speech Signal Process. (1)

S. X. Pan and A. C. Kak, “A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered back propagation,” IEEE Trans. Acoust. Speech Signal Process. 31, 1262–1275 (1983).
[Crossref]

Indian J. Exp. Biol. (1)

D. Kumar, W. Cong, and G. Wang, “Monte Carlo method for bioluminescence tomography,” Indian J. Exp. Biol. 45, 58–63 (2007).

J. Biomed. Opt. (1)

G. Quan, K. Wang, X. Yang, Y. Deng, Q. Luo, and H. Gong, “Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography,” J. Biomed. Opt. 17, 086006 (2012).
[Crossref]

J. Biophoton. (1)

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography,” J. Biophoton. 11, e201700145 (2018).
[Crossref]

J. Cell Biol. (1)

D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, and M. F. Olson, “Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration,” J. Cell Biol. 168, 245–255 (2005).
[Crossref]

J. Mod. Opt. (1)

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

J. Opt. Soc. Am. A. (1)

C. J. R. Sheppard, J. Lin, and S. S. Kou, “Rayleigh–Sommerfeld diffraction formula in k space,” J. Opt. Soc. Am. A. 30, 1180–1183 (2013).
[Crossref]

Microsc. Res. Tech. (1)

Z. Zeng and P. Xi, “Advances in three-dimensional super-resolution nanoscopy,” Microsc. Res. Tech. 79, 893–898 (2016).
[Crossref]

Nano Lett. (2)

R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, and S. W. Hell, “Mitochondrial cristae revealed with focused light,” Nano Lett. 9, 2508–2510 (2009).
[Crossref]

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10, 3318–3323 (2010).
[Crossref]

Nat. Med. (1)

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref]

Nat. Methods (2)

C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973–980 (2008).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Nat. Photonics (3)

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).
[Crossref]

Nature (2)

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. M. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317, 748–749 (1985).
[Crossref]

I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, and K. S. Ravichandran, “Unexpected link between an antibiotic, pannexin channels, and apoptosis,” Nature 507, 329–334 (2014).
[Crossref]

Opt. Commun. (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opto-Electron. Adv. (1)

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electron. Adv. 1, 170001 (2018).
[Crossref]

Philos. Trans. R. Soc. B (1)

K. Nagayama and R. Danev, “Phase contrast electron microscopy: development of thin-film phase plates and biological applications,” Philos. Trans. R. Soc. B 363, 2153–2162 (2008).
[Crossref]

Powder Diffr. (1)

B. Chyba, M. Mantler, and M. Reiter, “Monte Carlo simulation of projections in computed tomography,” Powder Diffr. 23, 150–153 (2008).
[Crossref]

Rev. Sci. Instrum. (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Sci. Rep. (2)

J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

S. Shin, D. Kim, K. Kim, and Y. Park, “Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device,” Sci. Rep. 8, 9183 (2018).
[Crossref]

Science (1)

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967–971 (2010).
[Crossref]

Technol. Cancer Res. Treat. (1)

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[Crossref]

Ultrason. Imag. (1)

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).
[Crossref]

Other (6)

H. Stark, Image Recovery: Theory and Application (Academic, 1987).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 2005).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).

G. Kail, C. Novak, B. Hofer, and F. Hlawatsch, “A blind Monte Carlo detection-estimation method for optical coherence tomography,” in International Conference on Acoustics, Speech, and Signal Processing (2009), pp. 493–496.

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, 2nd ed. (Wiley, 2008).

Supplementary Material (3)

NameDescription
» Visualization 1       The rotational view of the stain-free buccal cells with internal structures delineated from groupings of refractive index values.
» Visualization 2       The rotational view of the stain-free neuron with internal structures delineated from groupings of refractive index values.
» Visualization 3       The rotational view of ROCK inhibitor treated apoptotic Jurkat T cells with internal structures delineated from groupings of refractive index values.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Comparison of the 2D and 3D diffracted field using Fourier relationship. (a) 3D light field of a cell, shown as different planes of wavefront information; (b) 2D light field of a cell extracted from (a); (c) 3D and (d) 2D Fourier spectrum of the light fields. Under Fourier operation, a “slice” of the diffracted field results in a 2D spectrum as shown in (d), whereas the entire volumetric diffracted field results in a 3D “spherical cap,” as shown in (c).
Fig. 2.
Fig. 2. Complex spectra synthesis of the scattering potential using three example angles. (a) A cell is subject to a multiangle plane-wave illumination with a maximum subtended half-angle θ; hence, N.A.=sinθ. The 3D angular spectra under different incident angles can be acquired (only three angles shown). (b) 2D side view of the angular compensation method introduced during the synthesis of the 3D angular spectrum (only three angles shown). The green arc represents the center reference cap, the red and blue arcs represent the “compensated” caps from incident angles θ and θ, respectively. ΔFz is the amount of shift in axial direction for the incident angle θ. (c) 3D view of a “synthesized” angular spectrum under three example angles. In (a), the center illumination and two maximum subtended angles illuminations formed three individual spherical caps in the Fourier domain as the 3D angular spectra. The respective 3D angular spectra are then translated and shifted accordingly, as shown in (b), so that angular information introduced in the incident beams is compensated. A synthesized angular spectrum for the three example angles is shown in (c), where all the 0th-order components coincide at a point.
Fig. 3.
Fig. 3. Schematic diagram of the multimodal setup combining tomography with fluorescence. The tomography module is based on an off-axis digital holographic microscope setup in transmission. Different illumination angles are introduced by galvo mirror. The inset illustrates the tilted angle illumination situation. The fluorescence module is based on the epifluorescence microscopy. BS, beam splitter; GM, galvo mirror; SL, scanning lens; C, condenser; O, objective lens; TL, tube lens; Ex, excitation filter; Em, emission filter; DM, dichroic mirror.
Fig. 4.
Fig. 4. Results for 3D reconstructions. (a) Buccal cell and (c) neuron, with internal structures delineated by groupings of refractive indices. The rotating views of the buccal cells and neuron can be found in Visualization 1 and Visualization 2, respectively. Optical phase distribution of the same (b) buccal cell (in dashed box) and (d) neuron calculated from the interferometric measurements. The units for the color bars in (b) and (d) are radians. Part of the buccal cell in (a) is removed for clear visualization of the subcellular structures. The magnification is 20× with an N.A. of 0.45.
Fig. 5.
Fig. 5. Structures reconstructed using RI spatial mappings in apoptotic T cells are shown to be compatible with wide-field fluorescence counterparts. (a) Cells with internal structures delineated from groupings of RI values (top view). Inset gives an opened-up view of the cell through the central z plane of the nucleus. The rotating view of the cells can be found in Visualization 3. (b) 2D slice of RI distributions along xy plane; (c) wide-field fluorescence image of the same cells. The nuclear contents highlighted with blue contour lines in (b) are based on the intensity distributions of fluorescence in (c). The cell nuclei were stained with Hoechst dye. The value of RI in the range of 1.388–1.419 (pseudo-colored red orange) matches very well with what the fluorescent signal is showing, indicating that our technique is able to differentiate functional substructures within the cell. The magnification is 40× with an N.A. of 0.6.
Fig. 6.
Fig. 6. Distributions of RI values (row 1) and fluorescence intensities (row 2) for Jurkat T cells under different conditions (scale bar, 10 μm). (a), (b) Viable cell; (c), (d) UV light-induced apoptotic cells with trovafloxacin treatment; (e), (f) necrotic cell. The positions of stained DNA, where many proteins are localized, are highlighted with blue contour lines in RI mappings based on fluorescence imaging. The magnification is 40× with an N.A. of 0.6.
Fig. 7.
Fig. 7. Monte Carlo simulation of a phantom object volumetric diffraction and its quantitative reconstruction. (a) The configuration of the Monte Carlo simulation; (b) 3D view of the semispherical-shaped phantom object; (c) reconstructed RI distribution of the object in central yz plane; (d) cross section of the CTF (central fxfz plane), which is synthesized by 21 spherical Fourier caps.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G˜(f)=G˜H(f)+G˜IN(f)=iδ(f21/λ2)+1/[π(f21/λ2)],
G˜(f)=iδ[fz2(1λ2fx2fy2)]+1{π[fz2(1λ2fx2fy2)]}.
G˜p(f)=iMδ(fzM),z>0,=iMδ(fz+M),z<0,
U˜1(s)(f)=A(i)F˜(ffrs0)iMδ(fzM).
n(r)={nm2+4πnm2iA(i)km2F31[jU˜j(s)(fj)δj]}1/2,
Us(r)=1nfvi=1nF(ri)eiks0·rieik|rri||rri|,
Ums(r)=1nfvi=1nF(ri)Um1(ri)eik|rri||rri|,