Abstract

Based on a silicon platform, we design and fabricate a four-mode division (de)multiplexer for chip-scale optical data transmission in the 2 μm waveband for the first time, to the best of our knowledge. The (de)multiplexer is composed of three tapered directional couplers for both mode multiplexing and demultiplexing processes. In the experiment, the average crosstalk for four channels is measured to be less than 18  dB over a wide wavelength range (70 nm) from 1950 to 2020 nm, and the insertion losses are also assessed. Moreover, we further demonstrate stable 5 Gbit/s direct modulation data transmission through the fabricated silicon photonic devices with non-return-to-zero on–off keying signals. The experimental results show clear eye diagrams, and the penalties at a bit error rate of 3.8×103 are all less than 2.5 dB after on-chip data transmission. The obtained results indicate that the presented silicon four-mode division multiplexer in the mid-infrared wavelength band might be a promising candidate facilitating chip-scale high-speed optical interconnects.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer

Yunhong Ding, Jing Xu, Francesco Da Ros, Bo Huang, Haiyan Ou, and Christophe Peucheret
Opt. Express 21(8) 10376-10382 (2013)

Demonstration of terabit-scale data transmission in silicon vertical slot waveguides

Chengcheng Gui, Chao Li, Qi Yang, and Jian Wang
Opt. Express 23(8) 9736-9745 (2015)

Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip

Hao Jia, Ting Zhou, Lei Zhang, Jianfeng Ding, Xin Fu, and Lin Yang
Opt. Express 25(17) 20698-20707 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  2. R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
    [Crossref]
  3. V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 452–463 (2017).
    [Crossref]
  4. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
    [Crossref]
  5. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2  μm,” Opt. Express 21, 9289–9297 (2013).
    [Crossref]
  6. H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
    [Crossref]
  7. M. U. Sadiq, H. Zhang, J. O’Callaghan, B. Roycroft, N. Kavanagh, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. R. Hayes, Z. Li, S.-U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, E. Pelucchi, P. O’Brien, F. H. Peters, F. Gunning, and B. Corbett, “40  Gb/s WDM transmission over 1.15-km HC-PBGF using an InP-based Mach–Zehnder modulator at 2 μm,” J. Lightwave Technol. 34, 1706–1711 (2016).
    [Crossref]
  8. K. Xu, Q. Wu, Y. Xie, M. Tang, S. Fu, and D. Liu, “High speed single-wavelength modulation and transmission at 2  μm under bandwidth-constrained condition,” Opt. Express 25, 4528–4534 (2017).
    [Crossref]
  9. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
    [Crossref]
  10. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  11. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
    [Crossref]
  12. J. Wang, “Chip-scale optical interconnects and optical data processing using silicon photonic devices,” Photon. Netw. Commun. 31, 353–372 (2016).
    [Crossref]
  13. J. Wang and Y. Long, “On-chip silicon photonic signaling and processing: a review,” Sci. Bull. 63, 1267–1310 (2018).
    [Crossref]
  14. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
    [Crossref]
  15. C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23, 9736–9745 (2015).
    [Crossref]
  16. J. Du and J. Wang, “Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty terabit-scale data transmission,” Opt. Express 25, 30124–30134 (2017).
    [Crossref]
  17. Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  μm for chip-scale data transmisson,” Nanophotonics 7, 865–871 (2018).
    [Crossref]
  18. Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2  μm,” Opt. Lett. 38, 4739–4742 (2013).
    [Crossref]
  19. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925  nm and 2200  nm,” Opt. Express 22, 5387–5399 (2014).
    [Crossref]
  20. K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2  μm,” Opt. Express 22, 19947–19952 (2014).
    [Crossref]
  21. S. Latkowski, A. Hänsel, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. J. A. Thijs, H. P. M. M. Ambrosius, M. K. Smit, and K. A. Williams, “Monolithically integrated widely tunable laser source operating at 2  μm,” Optica 3, 1412–1417 (2016).
    [Crossref]
  22. M. A. V. Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165  nm using a silicon Mach–Zehnder interferometer,” Opt. Express 20, 28009–28016 (2012).
    [Crossref]
  23. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
    [Crossref]
  24. S. Liu, K. Xu, Q. Song, Z. Cheng, and H. K. Tsang, “Design of mid-infrared electro-optic modulators based on aluminum nitride waveguides,” J. Lightwave Technol. 34, 3837–3842 (2016).
    [Crossref]
  25. W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. A. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2  μm wavelength band,” Optica 5, 1055–1062 (2018).
    [Crossref]
  26. J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
    [Crossref]
  27. A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
    [Crossref]
  28. H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
    [Crossref]
  29. J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
    [Crossref]
  30. N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
    [Crossref]
  31. Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2  MMI based on air-gap beneath silicon rib waveguides,” Opt. Express 19, 15803–15809 (2011).
    [Crossref]
  32. M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
    [Crossref]
  33. M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
    [Crossref]
  34. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
    [Crossref]
  35. A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
    [Crossref]
  36. P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5  μm,” Opt. Express 23, 26168–26181 (2015).
    [Crossref]
  37. H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
    [Crossref]
  38. E. J. Stanton, N. Volet, and J. E. Bowers, “Silicon arrayed waveguide gratings at 2.0  μm wavelength characterized with an on-chip resonator,” Opt. Lett. 43, 1135–1138 (2018).
    [Crossref]
  39. M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
    [Crossref]
  40. B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
    [Crossref]
  41. T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
    [Crossref]
  42. M. Huang, S. Zheng, Y. Long, L. Wang, Z. Ruan, S. Li, L. Shen, and J. Wang, “Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer,” in Optical Fiber Communication Conference (2018), paper Tu3A.6.
  43. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
    [Crossref]
  44. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
    [Crossref]
  45. C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7, 7905807 (2015).
    [Crossref]
  46. D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
    [Crossref]
  47. J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in European Conference on Optical Communication (ECOC) (IEEE, 2016), pp. 1–3.

2018 (5)

J. Wang and Y. Long, “On-chip silicon photonic signaling and processing: a review,” Sci. Bull. 63, 1267–1310 (2018).
[Crossref]

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  μm for chip-scale data transmisson,” Nanophotonics 7, 865–871 (2018).
[Crossref]

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. A. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2  μm wavelength band,” Optica 5, 1055–1062 (2018).
[Crossref]

E. J. Stanton, N. Volet, and J. E. Bowers, “Silicon arrayed waveguide gratings at 2.0  μm wavelength characterized with an on-chip resonator,” Opt. Lett. 43, 1135–1138 (2018).
[Crossref]

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

2017 (3)

2016 (8)

M. U. Sadiq, H. Zhang, J. O’Callaghan, B. Roycroft, N. Kavanagh, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. R. Hayes, Z. Li, S.-U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, E. Pelucchi, P. O’Brien, F. H. Peters, F. Gunning, and B. Corbett, “40  Gb/s WDM transmission over 1.15-km HC-PBGF using an InP-based Mach–Zehnder modulator at 2 μm,” J. Lightwave Technol. 34, 1706–1711 (2016).
[Crossref]

J. Wang, “Chip-scale optical interconnects and optical data processing using silicon photonic devices,” Photon. Netw. Commun. 31, 353–372 (2016).
[Crossref]

S. Latkowski, A. Hänsel, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. J. A. Thijs, H. P. M. M. Ambrosius, M. K. Smit, and K. A. Williams, “Monolithically integrated widely tunable laser source operating at 2  μm,” Optica 3, 1412–1417 (2016).
[Crossref]

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

S. Liu, K. Xu, Q. Song, Z. Cheng, and H. K. Tsang, “Design of mid-infrared electro-optic modulators based on aluminum nitride waveguides,” J. Lightwave Technol. 34, 3837–3842 (2016).
[Crossref]

2015 (5)

P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5  μm,” Opt. Express 23, 26168–26181 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7, 7905807 (2015).
[Crossref]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23, 9736–9745 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

2014 (6)

2013 (7)

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2  μm,” Opt. Express 21, 9289–9297 (2013).
[Crossref]

Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2  μm,” Opt. Lett. 38, 4739–4742 (2013).
[Crossref]

2012 (4)

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

M. A. V. Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165  nm using a silicon Mach–Zehnder interferometer,” Opt. Express 20, 28009–28016 (2012).
[Crossref]

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

2011 (1)

2010 (2)

2008 (1)

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

2006 (2)

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

2005 (1)

Agarwal, A. M.

Alam, S.

Alam, S. U.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2  μm,” Opt. Express 21, 9289–9297 (2013).
[Crossref]

Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2  μm,” Opt. Lett. 38, 4739–4742 (2013).
[Crossref]

Alam, S.-U.

Ambrosius, H. P. M. M.

Ashanovich, G. Z.

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Assefa, S.

Baddela, N. K.

Baets, R.

Barritault, P.

Barwicz, T.

Becker, M.

Beckx, S.

Becla, P.

Benamara, M.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Bergman, K.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Bhattacharya, N.

Biberman, A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Bienstman, P.

Bogaerts, W.

Boulila, F.

Bowers, J. E.

Bradley, T.

Brun, M.

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Camp, M. A. V.

Campenhout, J. V.

Cao, W.

Carras, M.

Chen, S.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Chen, X.

Chen, Y.

Cheng, B.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

Cheng, Z.

Chiles, J.

Chong, H. M. H.

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Chou, C.-Y.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Cong, H.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

Corbett, B.

D’Agostino, D.

Da Ros, F.

Dadap, J. I.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Dai, D.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

Dai, T.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

Daniel, J. M. O.

Ding, Y.

Docter, B.

Du, J.

Dumon, P.

Ellis, A. D.

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Emerson, N. G.

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Fathpour, S.

Fu, S.

Gao, S.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

Gao, Y.

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7, 7905807 (2015).
[Crossref]

Garcia Gunning, F. C.

Gardes, F.

Gardes, F. Y.

Gassenq, A.

Gencarelli, F.

Gill, D. M.

Gleeson, M.

Gocalinska, A.

Gray, D. R.

Green, W. M. J.

M. A. V. Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165  nm using a silicon Mach–Zehnder interferometer,” Opt. Express 20, 28009–28016 (2012).
[Crossref]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Grüner-Nielsen, L.

Gui, C.

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23, 9736–9745 (2015).
[Crossref]

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7, 7905807 (2015).
[Crossref]

Gunning, F.

Guo, X.

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

Hagan, D.

Hänsel, A.

Hao, Y.

Haodong, Q.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

Hartmann, J.-M.

Hattasan, N.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Hayes, J. R.

M. U. Sadiq, H. Zhang, J. O’Callaghan, B. Roycroft, N. Kavanagh, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. R. Hayes, Z. Li, S.-U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, E. Pelucchi, P. O’Brien, F. H. Peters, F. Gunning, and B. Corbett, “40  Gb/s WDM transmission over 1.15-km HC-PBGF using an InP-based Mach–Zehnder modulator at 2 μm,” J. Lightwave Technol. 34, 1706–1711 (2016).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

He, S.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

Heidt, A. M.

Hou, J.

Hsieh, I.-W.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Hu, J.

Hu, T.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

Hu, Y.

Huang, B.

Huang, M.

M. Huang, S. Zheng, Y. Long, L. Wang, Z. Ruan, S. Li, L. Shen, and J. Wang, “Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer,” in Optical Fiber Communication Conference (2018), paper Tu3A.6.

Jaberansary, E.

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Jakoby, B.

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 452–463 (2017).
[Crossref]

Jiang, Q.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Jiang, X.

Jung, Y.

Kavanagh, N.

Kelly, B.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Khokhar, A. Z.

Kimerling, L. C.

Knights, A.

Kuyken, B.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Labeye, P.

Latkowski, S.

Lavchiev, V. M.

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 452–463 (2017).
[Crossref]

Lee, B. G.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Leo, F.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Lepage, G.

Li, C.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23, 9736–9745 (2015).
[Crossref]

Li, G.

Li, J.

Li, K.

Li, L.

Li, S.

M. Huang, S. Zheng, Y. Long, L. Wang, Z. Ruan, S. Li, L. Shen, and J. Wang, “Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer,” in Optical Fiber Communication Conference (2018), paper Tu3A.6.

Li, Y.

Li, Z.

M. U. Sadiq, H. Zhang, J. O’Callaghan, B. Roycroft, N. Kavanagh, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. R. Hayes, Z. Li, S.-U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, E. Pelucchi, P. O’Brien, F. H. Peters, F. Gunning, and B. Corbett, “40  Gb/s WDM transmission over 1.15-km HC-PBGF using an InP-based Mach–Zehnder modulator at 2 μm,” J. Lightwave Technol. 34, 1706–1711 (2016).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2  μm,” Opt. Express 21, 9289–9297 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2  μm,” Opt. Lett. 38, 4739–4742 (2013).
[Crossref]

Littlejohns, C. G.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. A. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2  μm wavelength band,” Optica 5, 1055–1062 (2018).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

Liu, C.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

Liu, D.

Liu, G. N.

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in European Conference on Optical Communication (ECOC) (IEEE, 2016), pp. 1–3.

Liu, H.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Liu, L.

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in European Conference on Optical Communication (ECOC) (IEEE, 2016), pp. 1–3.

Liu, S.

Liu, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Liu, Y.

Liu, Z.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

Loncar, M.

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

Long, Y.

J. Wang and Y. Long, “On-chip silicon photonic signaling and processing: a review,” Sci. Bull. 63, 1267–1310 (2018).
[Crossref]

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  μm for chip-scale data transmisson,” Nanophotonics 7, 865–871 (2018).
[Crossref]

M. Huang, S. Zheng, Y. Long, L. Wang, Z. Ruan, S. Li, L. Shen, and J. Wang, “Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer,” in Optical Fiber Communication Conference (2018), paper Tu3A.6.

Loo, R.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

Luo, H.

Luyssaert, B.

MacSuibhne, N.

Maidaniuk, Y.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Malik, A.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

Masaud, T. M. B.

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Mashanovich, G. Z.

Masselink, W. T.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Mazur, Y. I.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Milosevic, M. M.

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Morrissey, P. E.

Muneeb, M.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

Narcy, G.

Nedeljkovic, M.

Nicoletti, S.

Numkam, E.

Numkam Fokoua, E.

O’Brien, P.

O’Callaghan, J.

O’Carroll, J.

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Osgood, R. M.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Ou, H.

Ouyang, X.

Pálsdóttir, B.

Parmigiani, F.

Passaro, V. M. N.

Pathak, S.

Pavarelli, N.

Pelucchi, E.

Penades, J. S.

Peters, F.

Peters, F. H.

Petropoulos, P.

Petrovich, M. N.

M. U. Sadiq, H. Zhang, J. O’Callaghan, B. Roycroft, N. Kavanagh, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. R. Hayes, Z. Li, S.-U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, E. Pelucchi, P. O’Brien, F. H. Peters, F. Gunning, and B. Corbett, “40  Gb/s WDM transmission over 1.15-km HC-PBGF using an InP-based Mach–Zehnder modulator at 2 μm,” J. Lightwave Technol. 34, 1706–1711 (2016).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Peucheret, C.

Phelan, R.

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Poletti, F.

M. U. Sadiq, H. Zhang, J. O’Callaghan, B. Roycroft, N. Kavanagh, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. R. Hayes, Z. Li, S.-U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, E. Pelucchi, P. O’Brien, F. H. Peters, F. Gunning, and B. Corbett, “40  Gb/s WDM transmission over 1.15-km HC-PBGF using an InP-based Mach–Zehnder modulator at 2 μm,” J. Lightwave Technol. 34, 1706–1711 (2016).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Qi, M.

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in European Conference on Optical Communication (ECOC) (IEEE, 2016), pp. 1–3.

Qiu, H.

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

Rabbani-Haghighi, H.

Reed, G. T.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. A. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2  μm wavelength band,” Optica 5, 1055–1062 (2018).
[Crossref]

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Rice, P. M.

Richardson, D. J.

M. U. Sadiq, H. Zhang, J. O’Callaghan, B. Roycroft, N. Kavanagh, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. R. Hayes, Z. Li, S.-U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, E. Pelucchi, P. O’Brien, F. H. Peters, F. Gunning, and B. Corbett, “40  Gb/s WDM transmission over 1.15-km HC-PBGF using an InP-based Mach–Zehnder modulator at 2 μm,” J. Lightwave Technol. 34, 1706–1711 (2016).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2  μm,” Opt. Express 21, 9289–9297 (2013).
[Crossref]

Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2  μm,” Opt. Lett. 38, 4739–4742 (2013).
[Crossref]

Robert, C.

Roelkens, G.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

Rouifed, M. S.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. A. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2  μm wavelength band,” Optica 5, 1055–1062 (2018).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

Rouifed, M.-S.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

Roycroft, B.

Ruan, Z.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  μm for chip-scale data transmisson,” Nanophotonics 7, 865–871 (2018).
[Crossref]

M. Huang, S. Zheng, Y. Long, L. Wang, Z. Ruan, S. Li, L. Shen, and J. Wang, “Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer,” in Optical Fiber Communication Conference (2018), paper Tu3A.6.

Ryckeboer, E.

Ryckeboer, E. M. P.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Sablon, K. A.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Sadiq, M. U.

Salamo, G. J.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Sandoghchi, S. R.

Sekaric, L.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Semtsiv, M. P.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Shank, S. M.

Shankar, R.

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

Shen, L.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  μm for chip-scale data transmisson,” Nanophotonics 7, 865–871 (2018).
[Crossref]

M. Huang, S. Zheng, Y. Long, L. Wang, Z. Ruan, S. Li, L. Shen, and J. Wang, “Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer,” in Optical Fiber Communication Conference (2018), paper Tu3A.6.

Shi, Y.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

Shimura, Y.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

Slavík, R.

Smit, M. K.

Soler Penades, J.

Song, Q.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Soref, R. A.

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Stankovic, S.

Stanton, E. J.

Sun, Z.

Taillaert, D.

Tang, M.

K. Xu, Q. Wu, Y. Xie, M. Tang, S. Fu, and D. Liu, “High speed single-wavelength modulation and transmission at 2  μm under bandwidth-constrained condition,” Opt. Express 25, 4528–4534 (2017).
[Crossref]

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Thijs, P. J. A.

Thomas, K.

Thomson, D. J.

Thourhout, D. V.

Tina, G. X.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

Topuria, T.

Troia, B.

Tsang, H. K.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

S. Liu, K. Xu, Q. Song, Z. Cheng, and H. K. Tsang, “Design of mid-infrared electro-optic modulators based on aluminum nitride waveguides,” J. Lightwave Technol. 34, 3837–3842 (2016).
[Crossref]

Van Campenhout, J.

van Veldhoven, P. J.

Verheyen, P.

Vermeulen, D.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Vincent, B.

Vlasov, Y. A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Volet, N.

Wang, A.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  μm for chip-scale data transmisson,” Nanophotonics 7, 865–871 (2018).
[Crossref]

Wang, H.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. A. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2  μm wavelength band,” Optica 5, 1055–1062 (2018).
[Crossref]

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

Wang, J.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  μm for chip-scale data transmisson,” Nanophotonics 7, 865–871 (2018).
[Crossref]

J. Wang and Y. Long, “On-chip silicon photonic signaling and processing: a review,” Sci. Bull. 63, 1267–1310 (2018).
[Crossref]

J. Du and J. Wang, “Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty terabit-scale data transmission,” Opt. Express 25, 30124–30134 (2017).
[Crossref]

J. Wang, “Chip-scale optical interconnects and optical data processing using silicon photonic devices,” Photon. Netw. Commun. 31, 353–372 (2016).
[Crossref]

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7, 7905807 (2015).
[Crossref]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23, 9736–9745 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
[Crossref]

M. Huang, S. Zheng, Y. Long, L. Wang, Z. Ruan, S. Li, L. Shen, and J. Wang, “Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer,” in Optical Fiber Communication Conference (2018), paper Tu3A.6.

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in European Conference on Optical Communication (ECOC) (IEEE, 2016), pp. 1–3.

Wang, J. A.

Wang, L.

M. Huang, S. Zheng, Y. Long, L. Wang, Z. Ruan, S. Li, L. Shen, and J. Wang, “Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer,” in Optical Fiber Communication Conference (2018), paper Tu3A.6.

Wang, M.

Wang, Q.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

Wang, S.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

Wang, W.

Wei, Y.

Wheeler, N. V.

Wiaux, V.

Williams, K. A.

Wooler, J. P.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Wu, H.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

Wu, J.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Wu, Q.

Wu, Z.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

Xia, F.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

Xie, Y.

Xin, G.

Xu, J.

Xu, K.

Xuan, Y.

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in European Conference on Optical Communication (ECOC) (IEEE, 2016), pp. 1–3.

Xue, C.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

Xue, G.

Yan, Z.

Yang, F.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

Yang, H.

Yang, J.

Yang, Q.

Ye, N.

Yin, K.

Yu, H.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

Yu, K.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

Zhang, B.

Zhang, H.

Zhang, L.

Zhang, W.

Zhang, X.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

Zhang, Z.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7, 7905807 (2015).
[Crossref]

Zhao, J.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating,” Opt. Lett. 40, 3308–3311 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Zheng, J.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

Zheng, S.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  μm for chip-scale data transmisson,” Nanophotonics 7, 865–871 (2018).
[Crossref]

M. Huang, S. Zheng, Y. Long, L. Wang, Z. Ruan, S. Li, L. Shen, and J. Wang, “Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer,” in Optical Fiber Communication Conference (2018), paper Tu3A.6.

Zhou, K.

Zhou, N.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  μm for chip-scale data transmisson,” Nanophotonics 7, 865–871 (2018).
[Crossref]

ACS Photon. (1)

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Appl. Phys. Lett. (2)

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 452–463 (2017).
[Crossref]

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

IEEE Photon. J. (2)

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 6804706 (2016).
[Crossref]

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7, 7905807 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (4)

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. A (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Laser Photon. Rev. (2)

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10-channel mode (de)multiplexer with dual polarizations,” Laser Photon. Rev. 12, 1700109 (2018).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

Nanophotonics (2)

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  μm for chip-scale data transmisson,” Nanophotonics 7, 865–871 (2018).
[Crossref]

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

Nat. Photonics (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Opt. Express (16)

K. Xu, Q. Wu, Y. Xie, M. Tang, S. Fu, and D. Liu, “High speed single-wavelength modulation and transmission at 2  μm under bandwidth-constrained condition,” Opt. Express 25, 4528–4534 (2017).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2  μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
[Crossref]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2  μm,” Opt. Express 21, 9289–9297 (2013).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23, 9736–9745 (2015).
[Crossref]

J. Du and J. Wang, “Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty terabit-scale data transmission,” Opt. Express 25, 30124–30134 (2017).
[Crossref]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925  nm and 2200  nm,” Opt. Express 22, 5387–5399 (2014).
[Crossref]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2  μm,” Opt. Express 22, 19947–19952 (2014).
[Crossref]

M. A. V. Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165  nm using a silicon Mach–Zehnder interferometer,” Opt. Express 20, 28009–28016 (2012).
[Crossref]

Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2  MMI based on air-gap beneath silicon rib waveguides,” Opt. Express 19, 15803–15809 (2011).
[Crossref]

P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5  μm,” Opt. Express 23, 26168–26181 (2015).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (3)

Photon. Netw. Commun. (1)

J. Wang, “Chip-scale optical interconnects and optical data processing using silicon photonic devices,” Photon. Netw. Commun. 31, 353–372 (2016).
[Crossref]

Sci. Bull. (1)

J. Wang and Y. Long, “On-chip silicon photonic signaling and processing: a review,” Sci. Bull. 63, 1267–1310 (2018).
[Crossref]

Other (2)

M. Huang, S. Zheng, Y. Long, L. Wang, Z. Ruan, S. Li, L. Shen, and J. Wang, “Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer,” in Optical Fiber Communication Conference (2018), paper Tu3A.6.

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in European Conference on Optical Communication (ECOC) (IEEE, 2016), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic structure for four-mode (de)multiplexer on silicon platform. Inset is the zoom-in view of the tapered directional coupler for mode conversion.
Fig. 2.
Fig. 2. (a) Simulated effective indices of four multiplexed eigenmodes of a SiO2-cladding silicon waveguide versus waveguide width w for a waveguide height h=220  nm. (b)–(d) Simulated mode transmission and crosstalk for three high-order modes. Insets are the mode evolution processes.
Fig. 3.
Fig. 3. Optical microscope image and scanning electron microscope (SEM) pictures of the fabricated four-mode division multiplexing device in the 2 μm waveband. (a) The microphotograph of the whole structure. (b)–(d) The details of three tapered directional couplers for (b) TE1, (c) TE2, and (d) TE3 modes. Insets of (d) show the zoom-in details with marked geometric parameters.
Fig. 4.
Fig. 4. (a) Measured and simulated transmission spectra of the vertical grating coupler. (b), (c) Measured transmission spectra at two output ports when the TE0 mode is launched at the input ports of the two-mode multiplexing structure.
Fig. 5.
Fig. 5. Measured transmission spectra at four output ports when the TE0 mode is launched at input ports of (a) CH1, (b) CH2, (c) CH3, and (d) CH4, corresponding to the TE0, TE1, TE2, and TE3 modes, respectively.
Fig. 6.
Fig. 6. (a) Experimental setup for 5 Gbit/s OOK data transmission through the MDM system. AWG, arbitrary waveform generator; DML, directly modulated laser; TDFA, thulium-doped fiber amplifier; SMF, single-mode fiber; TF, tunable filter; VOA, variable optical attenuator; PD, photodetector. (b) Measured optical spectra before modulation (red) and after modulation (blue).
Fig. 7.
Fig. 7. Measured BER curves versus received OSNR and eye diagrams for (a) two-channel and (b) four-channel data transmission through MDM system. B to B, back-to-back.

Tables (1)

Tables Icon

Table 1. Optimal Geometric Parameters of the Designed 2  μm Mode (De)Multiplexer