Abstract

The spin Hall effect of light (SHEL) is a photonic version of the spin Hall effect in electronic systems and has been studied for more than 10 years. However, the lack of effective methods for dynamic modulation of spin-dependent splitting may hinder its applications. By introducing additional spin-orbit coupling of photons or nonreciprocal phase shift (NRPS), the magneto-optical Kerr effect may be one of the methods to alleviate the situation. Here, we experimentally reveal an enhanced and tunable SHEL in magneto-optical oxide thin films under the transverse magneto-optical Kerr effect configuration for the first time, to the best of our knowledge, which can be regarded as the magneto-optical SHEL (MOSHEL). We study the magneto-optical response of the multilayer structure and select the optimal structural parameters by the magneto-optical transfer matrix method. With a transverse magnetic field along opposite directions, an obvious SHEL shift difference of H-polarized light caused by NRPS is observed via a weak measurement method. With optimal parameters, the maximum measured shift difference of the SHEL achieves about 70 μm. The demonstrated MOSHEL phenomenon may accelerate the application of the SHEL in the field of spin photonics devices and precision metrology.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate

Jie Li, Tingting Tang, Li Luo, Nengxi Li, and Pengyu Zhang
Opt. Express 25(16) 19117-19128 (2017)

Unveiling the spin Hall effect of light in Imbert-Fedorov shift at the Brewster angle with weak measurements

Linguo Xie, Xinxing Zhou, Xiaodong Qiu, Lan Luo, Xiong Liu, Zhaoxue Li, Yu He, Jinglei Du, Zhiyou Zhang, and Deqiang Wang
Opt. Express 26(18) 22934-22943 (2018)

Weak measurement of magneto-optical Goos-Hänchen effect

Tingting Tang, Jie Li, Li Luo, Jian Shen, Chaoyang Li, Jun Qin, Lei Bi, and Junyong Hou
Opt. Express 27(13) 17638-17647 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
    [Crossref]
  2. N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sens. Actuators B Chem. 265, 644–651 (2018).
    [Crossref]
  3. C. C. Chan, H. F. Liew, L. H. Chen, P. Zu, and C. W. Wei, “Magneto-optical fiber sensor based on magnetic fluid,” Opt. Lett. 37, 398–400 (2012).
    [Crossref]
  4. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
    [Crossref]
  5. S. Ghosh, S. Keyvavinia, W. V. Roy, T. Mizumoto, and G. Roelkens, “CeYIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
    [Crossref]
  6. M. Fronk, B. Bräuer, J. Kortus, O. G. Schmidt, and D. R. T. Zahn, “Determination of the Voigt constant of phthalocyanines by magneto-optical Kerr-effect spectroscopy,” Phys. Rev. B 79, 1377–1381 (2009).
    [Crossref]
  7. K. Aoshima, N. Funabashi, K. Machida, and Y. Miyamoto, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light,” Appl. Phys. Lett. 91, 052507 (2007).
    [Crossref]
  8. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
    [Crossref]
  9. I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, and T. Rasing, “Nonlinear surface magnetoplasmonics in Kretschmann multilayers,” ACS Photon. 3, 179–183 (2016).
    [Crossref]
  10. J. B. Gonzálezdíaz, A. Garcíamartín, J. M. Garcíamartín, A. Cebollada, and G. Armelles, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
    [Crossref]
  11. T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos–Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22, 27042–27055 (2014).
    [Crossref]
  12. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos–Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
    [Crossref]
  13. J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25, 19117–19128 (2017).
    [Crossref]
  14. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
    [Crossref]
  15. P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).
    [Crossref]
  16. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011).
    [Crossref]
  17. S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, and R. P. Mirin, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).
    [Crossref]
  18. G. Jayaswal, G. Mistura, and M. Merano, “Weak measurement of the Goos–Hänchen shift,” Opt. Lett. 38, 1232–1234 (2013).
    [Crossref]
  19. S. Chen, C. Mi, L. Cai, M. Liu, and H. Luo, “Observation of the Goos–Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110, 031105 (2016).
    [Crossref]
  20. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
    [Crossref]
  21. H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 1452–1457 (2011).
    [Crossref]
  22. Y. Qin, Y. Li, X. Feng, Z. Liu, and H. He, “Spin Hall effect of reflected light at the air-uniaxial crystal interface,” Opt. Express 18, 16832–16839 (2010).
    [Crossref]
  23. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
    [Crossref]
  24. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
    [Crossref]
  25. K. Y. Bliokh, F. J. Rodríguezfortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
    [Crossref]
  26. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin Hall effect,” Phys. Rev. Lett. 101, 030404 (2008).
    [Crossref]
  27. X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” App. Phys. Lett. 101, 251602 (2012).
    [Crossref]
  28. J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
    [Crossref]
  29. X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105, 131111 (2014).
    [Crossref]
  30. T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
    [Crossref]
  31. W. Zhu, M. Jiang, H. Guan, J. Yu, H. Lu, J. Zhang, and Z. Chen, “Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials,” Photon. Res. 5, 684–688 (2017).
    [Crossref]
  32. J. Li, T. Tang, L. Luo, and J. Yao, “Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystal with graphene,” Carbon 134, 293–300 (2018).
    [Crossref]
  33. X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
    [Crossref]

2019 (2)

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

2018 (3)

T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos–Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, and J. Yao, “Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystal with graphene,” Carbon 134, 293–300 (2018).
[Crossref]

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sens. Actuators B Chem. 265, 644–651 (2018).
[Crossref]

2017 (3)

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25, 19117–19128 (2017).
[Crossref]

W. Zhu, M. Jiang, H. Guan, J. Yu, H. Lu, J. Zhang, and Z. Chen, “Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials,” Photon. Res. 5, 684–688 (2017).
[Crossref]

2016 (2)

I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, and T. Rasing, “Nonlinear surface magnetoplasmonics in Kretschmann multilayers,” ACS Photon. 3, 179–183 (2016).
[Crossref]

S. Chen, C. Mi, L. Cai, M. Liu, and H. Luo, “Observation of the Goos–Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110, 031105 (2016).
[Crossref]

2015 (1)

K. Y. Bliokh, F. J. Rodríguezfortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

2014 (3)

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105, 131111 (2014).
[Crossref]

X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]

T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos–Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22, 27042–27055 (2014).
[Crossref]

2013 (2)

G. Jayaswal, G. Mistura, and M. Merano, “Weak measurement of the Goos–Hänchen shift,” Opt. Lett. 38, 1232–1234 (2013).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

2012 (3)

2011 (4)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011).
[Crossref]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, and R. P. Mirin, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 1452–1457 (2011).
[Crossref]

2010 (1)

2009 (2)

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).
[Crossref]

M. Fronk, B. Bräuer, J. Kortus, O. G. Schmidt, and D. R. T. Zahn, “Determination of the Voigt constant of phthalocyanines by magneto-optical Kerr-effect spectroscopy,” Phys. Rev. B 79, 1377–1381 (2009).
[Crossref]

2008 (3)

J. B. Gonzálezdíaz, A. Garcíamartín, J. M. Garcíamartín, A. Cebollada, and G. Armelles, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref]

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin Hall effect,” Phys. Rev. Lett. 101, 030404 (2008).
[Crossref]

2007 (1)

K. Aoshima, N. Funabashi, K. Machida, and Y. Miyamoto, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light,” Appl. Phys. Lett. 91, 052507 (2007).
[Crossref]

2006 (1)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

2004 (1)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

1988 (1)

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Aharonov, Y.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Albert, D. Z.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Aoshima, K.

K. Aoshima, N. Funabashi, K. Machida, and Y. Miyamoto, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light,” Appl. Phys. Lett. 91, 052507 (2007).
[Crossref]

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

J. B. Gonzálezdíaz, A. Garcíamartín, J. M. Garcíamartín, A. Cebollada, and G. Armelles, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref]

Bamber, C.

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011).
[Crossref]

Bi, L.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos–Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22, 27042–27055 (2014).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguezfortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin Hall effect,” Phys. Rev. Lett. 101, 030404 (2008).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

Bräuer, B.

M. Fronk, B. Bräuer, J. Kortus, O. G. Schmidt, and D. R. T. Zahn, “Determination of the Voigt constant of phthalocyanines by magneto-optical Kerr-effect spectroscopy,” Phys. Rev. B 79, 1377–1381 (2009).
[Crossref]

Braverman, B.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, and R. P. Mirin, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).
[Crossref]

Cai, L.

S. Chen, C. Mi, L. Cai, M. Liu, and H. Luo, “Observation of the Goos–Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110, 031105 (2016).
[Crossref]

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

J. B. Gonzálezdíaz, A. Garcíamartín, J. M. Garcíamartín, A. Cebollada, and G. Armelles, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref]

Chan, C. C.

Chen, C. F.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

Chen, L. H.

Chen, S.

S. Chen, C. Mi, L. Cai, M. Liu, and H. Luo, “Observation of the Goos–Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110, 031105 (2016).
[Crossref]

Chen, Z.

Deng, L.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos–Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22, 27042–27055 (2014).
[Crossref]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Dixon, P. B.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).
[Crossref]

Du, J.

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105, 131111 (2014).
[Crossref]

Fan, D.

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 1452–1457 (2011).
[Crossref]

Feng, X.

Fronk, M.

M. Fronk, B. Bräuer, J. Kortus, O. G. Schmidt, and D. R. T. Zahn, “Determination of the Voigt constant of phthalocyanines by magneto-optical Kerr-effect spectroscopy,” Phys. Rev. B 79, 1377–1381 (2009).
[Crossref]

Funabashi, N.

K. Aoshima, N. Funabashi, K. Machida, and Y. Miyamoto, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light,” Appl. Phys. Lett. 91, 052507 (2007).
[Crossref]

Gao, F.

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105, 131111 (2014).
[Crossref]

Garcíamartín, A.

J. B. Gonzálezdíaz, A. Garcíamartín, J. M. Garcíamartín, A. Cebollada, and G. Armelles, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref]

Garcíamartín, J. M.

J. B. Gonzálezdíaz, A. Garcíamartín, J. M. Garcíamartín, A. Cebollada, and G. Armelles, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

Ghosh, S.

Gong, Q. H.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

Gonzálezdíaz, J. B.

J. B. Gonzálezdíaz, A. Garcíamartín, J. M. Garcíamartín, A. Cebollada, and G. Armelles, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref]

Gorodetski, Y.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin Hall effect,” Phys. Rev. Lett. 101, 030404 (2008).
[Crossref]

Guan, H.

Hasman, E.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin Hall effect,” Phys. Rev. Lett. 101, 030404 (2008).
[Crossref]

He, H.

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Howell, J. C.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).
[Crossref]

Hu, D.

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105, 131111 (2014).
[Crossref]

Hu, J.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Huang, J. Y.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

Jayaswal, G.

Jiang, M.

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Jordan, A. N.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).
[Crossref]

Kang, T.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Keyvavinia, S.

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kirilyuk, A.

I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, and T. Rasing, “Nonlinear surface magnetoplasmonics in Kretschmann multilayers,” ACS Photon. 3, 179–183 (2016).
[Crossref]

Kleiner, V.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin Hall effect,” Phys. Rev. Lett. 101, 030404 (2008).
[Crossref]

Kocsis, S.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, and R. P. Mirin, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).
[Crossref]

Kortus, J.

M. Fronk, B. Bräuer, J. Kortus, O. G. Schmidt, and D. R. T. Zahn, “Determination of the Voigt constant of phthalocyanines by magneto-optical Kerr-effect spectroscopy,” Phys. Rev. B 79, 1377–1381 (2009).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Li, G. R.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

Li, J.

J. Li, T. Tang, L. Luo, and J. Yao, “Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystal with graphene,” Carbon 134, 293–300 (2018).
[Crossref]

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sens. Actuators B Chem. 265, 644–651 (2018).
[Crossref]

T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos–Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25, 19117–19128 (2017).
[Crossref]

Li, N.

T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos–Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sens. Actuators B Chem. 265, 644–651 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25, 19117–19128 (2017).
[Crossref]

Li, X.

X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]

Li, Y.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

Y. Qin, Y. Li, X. Feng, Z. Liu, and H. He, “Spin Hall effect of reflected light at the air-uniaxial crystal interface,” Opt. Express 18, 16832–16839 (2010).
[Crossref]

Liang, X.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Liew, H. F.

Ling, X.

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” App. Phys. Lett. 101, 251602 (2012).
[Crossref]

Liu, C.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Liu, M.

S. Chen, C. Mi, L. Cai, M. Liu, and H. Luo, “Observation of the Goos–Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110, 031105 (2016).
[Crossref]

Liu, Z.

Liu, Z. W.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

Lou, Y. J.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

Lu, H.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

W. Zhu, M. Jiang, H. Guan, J. Yu, H. Lu, J. Zhang, and Z. Chen, “Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials,” Photon. Res. 5, 684–688 (2017).
[Crossref]

Lundeen, J. S.

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011).
[Crossref]

Luo, H.

S. Chen, C. Mi, L. Cai, M. Liu, and H. Luo, “Observation of the Goos–Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110, 031105 (2016).
[Crossref]

X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105, 131111 (2014).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” App. Phys. Lett. 101, 251602 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 1452–1457 (2011).
[Crossref]

Luo, H. L.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

Luo, L.

J. Li, T. Tang, L. Luo, and J. Yao, “Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystal with graphene,” Carbon 134, 293–300 (2018).
[Crossref]

T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos–Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sens. Actuators B Chem. 265, 644–651 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25, 19117–19128 (2017).
[Crossref]

Machida, K.

K. Aoshima, N. Funabashi, K. Machida, and Y. Miyamoto, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light,” Appl. Phys. Lett. 91, 052507 (2007).
[Crossref]

Makarov, D.

I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, and T. Rasing, “Nonlinear surface magnetoplasmonics in Kretschmann multilayers,” ACS Photon. 3, 179–183 (2016).
[Crossref]

Merano, M.

Mi, C.

S. Chen, C. Mi, L. Cai, M. Liu, and H. Luo, “Observation of the Goos–Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110, 031105 (2016).
[Crossref]

Mirin, R. P.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, and R. P. Mirin, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).
[Crossref]

Mistura, G.

Miyamoto, Y.

K. Aoshima, N. Funabashi, K. Machida, and Y. Miyamoto, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light,” Appl. Phys. Lett. 91, 052507 (2007).
[Crossref]

Mizumoto, T.

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

Nori, F.

K. Y. Bliokh, F. J. Rodríguezfortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

Patel, A.

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011).
[Crossref]

Peng, B.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Qian, H. L.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

Qin, J.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos–Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22, 27042–27055 (2014).
[Crossref]

Qin, Y.

Qiu, M.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

Qiu, X.

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105, 131111 (2014).
[Crossref]

Rasing, T.

I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, and T. Rasing, “Nonlinear surface magnetoplasmonics in Kretschmann multilayers,” ACS Photon. 3, 179–183 (2016).
[Crossref]

Ravets, S.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, and R. P. Mirin, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).
[Crossref]

Razdolski, I.

I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, and T. Rasing, “Nonlinear surface magnetoplasmonics in Kretschmann multilayers,” ACS Photon. 3, 179–183 (2016).
[Crossref]

Rodríguezfortuño, F. J.

K. Y. Bliokh, F. J. Rodríguezfortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Roelkens, G.

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Roy, W. V.

Ruan, Z. C.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

Schmidt, O. G.

I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, and T. Rasing, “Nonlinear surface magnetoplasmonics in Kretschmann multilayers,” ACS Photon. 3, 179–183 (2016).
[Crossref]

M. Fronk, B. Bräuer, J. Kortus, O. G. Schmidt, and D. R. T. Zahn, “Determination of the Voigt constant of phthalocyanines by magneto-optical Kerr-effect spectroscopy,” Phys. Rev. B 79, 1377–1381 (2009).
[Crossref]

Shu, W.

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 1452–1457 (2011).
[Crossref]

Starling, D. J.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).
[Crossref]

Stevens, M. J.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, and R. P. Mirin, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).
[Crossref]

Stewart, C.

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011).
[Crossref]

Sun, P.

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sens. Actuators B Chem. 265, 644–651 (2018).
[Crossref]

Sutherland, B.

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011).
[Crossref]

Tang, T.

T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos–Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sens. Actuators B Chem. 265, 644–651 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, and J. Yao, “Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystal with graphene,” Carbon 134, 293–300 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25, 19117–19128 (2017).
[Crossref]

T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos–Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22, 27042–27055 (2014).
[Crossref]

Vaidman, L.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Wang, C.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Wang, X.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Wei, C. W.

Wen, S.

X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” App. Phys. Lett. 101, 251602 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 1452–1457 (2011).
[Crossref]

Wen, S. C.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

Wu, Q. Y.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

Xie, J.

Yao, J.

J. Li, T. Tang, L. Luo, and J. Yao, “Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystal with graphene,” Carbon 134, 293–300 (2018).
[Crossref]

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sens. Actuators B Chem. 265, 644–651 (2018).
[Crossref]

T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos–Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

Yu, J.

Zahn, D. R. T.

M. Fronk, B. Bräuer, J. Kortus, O. G. Schmidt, and D. R. T. Zahn, “Determination of the Voigt constant of phthalocyanines by magneto-optical Kerr-effect spectroscopy,” Phys. Rev. B 79, 1377–1381 (2009).
[Crossref]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguezfortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Zhang, J.

Zhang, J. H.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

Zhang, L.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Zhang, P.

T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos–Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25, 19117–19128 (2017).
[Crossref]

Zhang, Y.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Zhang, Z.

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105, 131111 (2014).
[Crossref]

Zhao, J. X.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

Zhou, J. X.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

Zhou, P.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Zhou, X.

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105, 131111 (2014).
[Crossref]

X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” App. Phys. Lett. 101, 251602 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 1452–1457 (2011).
[Crossref]

Zhou, Y. H.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

Zhu, M.

T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos–Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

Zhu, S. Y.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

Zhu, T. F.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

Zhu, W.

Zu, P.

ACS Photon. (2)

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magneto plasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, and T. Rasing, “Nonlinear surface magnetoplasmonics in Kretschmann multilayers,” ACS Photon. 3, 179–183 (2016).
[Crossref]

Adv. Opt. Mater. (1)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

App. Phys. Lett. (1)

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” App. Phys. Lett. 101, 251602 (2012).
[Crossref]

Appl. Phys. Lett. (4)

X. Qiu, X. Zhou, D. Hu, J. Du, F. Gao, Z. Zhang, and H. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105, 131111 (2014).
[Crossref]

X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]

S. Chen, C. Mi, L. Cai, M. Liu, and H. Luo, “Observation of the Goos–Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110, 031105 (2016).
[Crossref]

K. Aoshima, N. Funabashi, K. Machida, and Y. Miyamoto, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light,” Appl. Phys. Lett. 91, 052507 (2007).
[Crossref]

Carbon (2)

T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos–Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, and J. Yao, “Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystal with graphene,” Carbon 134, 293–300 (2018).
[Crossref]

Nat. Photonics (2)

K. Y. Bliokh, F. J. Rodríguezfortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Nature (1)

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. A (1)

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 1452–1457 (2011).
[Crossref]

Phys. Rev. Appl. (1)

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection,” Phys. Rev. Appl. 11, 034043 (2019).
[Crossref]

Phys. Rev. B (1)

M. Fronk, B. Bräuer, J. Kortus, O. G. Schmidt, and D. R. T. Zahn, “Determination of the Voigt constant of phthalocyanines by magneto-optical Kerr-effect spectroscopy,” Phys. Rev. B 79, 1377–1381 (2009).
[Crossref]

Phys. Rev. Lett. (5)

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).
[Crossref]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin Hall effect,” Phys. Rev. Lett. 101, 030404 (2008).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. USA 116, 11137–11140 (2019).
[Crossref]

Science (2)

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, and R. P. Mirin, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).
[Crossref]

Sens. Actuators B Chem. (1)

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sens. Actuators B Chem. 265, 644–651 (2018).
[Crossref]

Small (1)

J. B. Gonzálezdíaz, A. Garcíamartín, J. M. Garcíamartín, A. Cebollada, and G. Armelles, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of the SHEL on an MO oxide multilayer. A linearly polarized light beam is incident on the structure composed of Ce1Y2Fe5O12, cerium-substituted yttrium iron garnet (CeYIG), yttrium iron garnet (YIG) film, and the silicon substrate, and the reflected beam splits into left and right circularly polarized light. The applied magnetic field is perpendicular to the incident plane and provided by an electromagnet. (b) Experimental setup: a half-wave plate (HWP) is used for beam intensity adjustment, and L1 (f=100  mm) and L2 (f=250  mm) are lenses for beam focusing and collimation, respectively. Polarizers P1 and P2 are used to determine the pre-selected and post-selected state. CCD, charge-coupled device (Coherent LaserCam HR).
Fig. 2.
Fig. 2. (a) Fresnel reflection coefficient of the multilayer structure without an applied magnetic field. (b) Relative change of reflectivity caused by magnetic field directions, which is obtained by using the MO transfer matrix method.
Fig. 3.
Fig. 3. (a) Original SHEL shift (left-handed circularly polarized) in the TMOKE condition for different CeYIG thicknesses. The inset shows spin-dependent splitting of left-handed and right-handed circularly polarized light when dCeYIG=50  nm. (b) SHEL shifts with opposite magnetic fields (black solid and red dotted line) and the shift difference δMO=δ(H)δ(H+) (green solid line) after weak measurements amplification, where Δ=2  deg.
Fig. 4.
Fig. 4. (a) Theoretical (solid and dashed lines) and experimental (dot marks) results of the amplified SHEL shifts in the transverse magnetic field with opposite directions, where the incident angle is 73.9 deg. (b) and (c) Amplified SHEL shifts without the applied magnetic field, where the incident angle is 55.5 deg and 80.5 deg, respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ε=ε0[ε10εod0ε10εod0ε1],
ΔβTM=2βTMωε0Nεod/ε12HyxHydydz,
E˜i=w02πexp[w02(kix2+kiy2)4],
E˜i+=(eix+ieiy)E˜i2,
E˜i=(eixieiy)E˜i2.
[E˜rHE˜rV]=[rpkry(rp+rs)cotθik0kry(rp+rs)cotθik0rs][E˜iHE˜iV],
rp,s=rp,s(θi)+rp,sθikixk0,
Er(xr,yr,zr)=E˜r(krx,kry)exp[i(krxxr+kryyrkrx2+kry22krzr)]dkrxdkry.
Mp2·Er(xr,yr,zr)=(sinΔerx+cosΔery)·Er(xr,yr,zr),
AwδtH=yrIdxrdyrIdxrdyr,
AwH=zrk0rp2sin(2Δ)(rp+rs)2cot2Δcot2θi+2k0zRrp2sin2Δ.
RMO=R(H)R(H+)R(H)+R(H+),
δMO=δ(H)δ(H+).