Abstract

The Cr4+-doped yttrium aluminum garnet (Cr4+:YAG) saturable absorber, a new generation of passively Q-switched solid-state laser material, faces a significant obstacle of low conversion rate of chromium from trivalent to tetravalent, degrading efficiency in a passively Q-switched laser. In this paper, highly transparent Cr4+:YAG ceramics were fabricated and committed to compare the laser performance with Cr4+:YAG crystals on a 1 μm passively Q-switched laser. Thanks to the grain boundary effect, the Cr4+ conversion efficiency of 0.05 at.% Cr4+:YAG transparent ceramics coated with high transparency (HT) films (T=86.46% at 1064 nm) was nine times higher than that of 0.1 at.% Cr4+:YAG single crystals coated with HT films (T=84.00% at 1064 nm). Differing from the counterpart Cr4+:YAG crystals, no absorption saturation tendency was observed for the 0.05 at.% Cr:YAG ceramics when the pump power exceeded 1900  mW. Furthermore, the repetition frequency reached 217 kHz for 0.05 at.% Cr:YAG ceramics, which was a three-fold factor increase from that of the corresponding single crystal. The advantages of transparent ceramics over single crystals were proved through laser performance for the first time, to the best of our knowledge. This study also provided compelling evidence for replacing single crystals with ceramics for ultrafast dynamics.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched ceramic Nd3+:YAG/Cr4+:YAG lasers

Yan Feng, Jianren Lu, Kazunori Takaichi, Ken-ichi Ueda, Hideki Yagi, Takagimi Yanagitani, and Alexander A. Kaminskii
Appl. Opt. 43(14) 2944-2947 (2004)

Continuous-wave and passively Q-switched tape casting YAG/Nd:YAG/YAG ceramic laser

Y. F. Ma, Y. He, X. D. Li, X. Yu, L. Ge, J. Li, R. P. Yan, and R. Sun
Opt. Mater. Express 6(9) 2966-2974 (2016)

Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers

Jun Dong, Ken-ichi Ueda, Akira Shirakawa, Hideki Yagi, Takagimi Yanagitani, and Alexander A. Kaminskii
Opt. Express 15(22) 14516-14523 (2007)

References

  • View by:
  • |
  • |
  • |

  1. Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
    [Crossref]
  2. Z. Fan, J. Qiu, Z. Kang, Y. Chen, W. Ge, and X. Tang, “High beam quality 5 J, 200  Hz Nd:YAG laser system,” Light Sci. Appl. 6, e17004 (2017).
    [Crossref]
  3. Y. Ma, H. Dang, F. Liu, X. Liu, F. Peng, S. Ding, and Q. Zhang, “Diode-pumped acousto-optically Q-switched laser using a novel Nd:GdYTaO4 mixed crystal,” J. Russ. Laser Res. 40, 76–79 (2019).
    [Crossref]
  4. N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47 μm,” Opt. Lett. 43, 2724–2727 (2018).
    [Crossref]
  5. Y. Shen, Y. Wang, K. Luan, H. Chen, M. Tao, and J. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3  μm,” Appl. Phys. B 123, 105 (2017).
    [Crossref]
  6. D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
    [Crossref]
  7. D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum 24, 1100406 (2018).
    [Crossref]
  8. Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photon. Res. 6, 549–553 (2018).
    [Crossref]
  9. L. Li, X. Yang, L. Zhou, W. Xie, Y. Wang, Y. Shen, Y. Yang, W. Yang, W. Wang, and Z. Lv, “Active/passive Q-switching operation of 2 μm Tm, Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror,” Photon. Res. 6, 614–619 (2018).
    [Crossref]
  10. S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
    [Crossref]
  11. B. Zhang, Y. Chen, P. Wang, Y. Wang, J. Liu, S. Hu, X. Xia, Y. Sang, H. Yuan, and X. Cai, “Direct bleaching of a Cr4+:YAG saturable absorber in a passively Q-switched Nd:YAG laser,” Appl. Opt. 57, 4595–4600 (2018).
    [Crossref]
  12. F. Lou, R. Zhao, J. He, Z. Jia, X. Su, Z. Wang, J. Hou, and B. Zhang, “Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber,” Photon. Res. 3, A25–A29 (2015).
    [Crossref]
  13. T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
    [Crossref]
  14. X. Guan, J. Wang, Y. Zhang, B. Xu, Z. Luo, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, “Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers,” Photon. Res. 6, 830–836 (2018).
    [Crossref]
  15. C. Li and J. Dong, “Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr:YAG passively Q-switched microchip laser,” J. Mod. Opt. 63, 1323–1330 (2016).
    [Crossref]
  16. Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
    [Crossref]
  17. X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, and P. Deng, “Effects of growth atmosphere, annealing temperature, Cr content, and Ca/Cr ratio on the Cr4+ absorption of Cr, Yb:YAG crystals,” J. Opt. Soc. Am. B 21, 1289–1293 (2004).
    [Crossref]
  18. J. Dong, P. Deng, X. U. Jun, and F. Gan, “Investigation of absorption spectra of (Cr4+, Yb3+):YAG crystal,” Chin. J. Lasers B 8, 475–510 (1999).
  19. B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
    [Crossref]
  20. L. Zhang, J. Wu, P. Stepanov, M. Haseman, T. Zhou, D. Winarski, P. Saadatkia, and S. Agarwal, “Defects and solarization in YAG transparent ceramics,” Photon. Res. 7, 549–557 (2019).
    [Crossref]
  21. K. Vikrant and R. E. García, “Charged grain boundary transitions in ionic ceramics for energy applications,” NPJ Comput. Mater. 5, 24 (2019).
    [Crossref]
  22. M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
    [Crossref]
  23. K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
    [Crossref]
  24. T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
    [Crossref]
  25. X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
    [Crossref]
  26. K. Shortiss, M. Shayesteh, W. Cotter, A. H. Perrott, M. Dernaika, and F. H. Peters, “Mode suppression in injection locked multi-mode and single-mode lasers for optical demultiplexing,” Photonics 6, 27 (2019).
    [Crossref]
  27. M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nat. Commun. 10, 1345 (2019).
    [Crossref]
  28. T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
    [Crossref]
  29. D. Krishnakumar and N. P. Rajesh, “Growth and optical characterization of europium and cerium doped KCl single crystals by Czochralski method for dosimetric applications,” J. Electron. Mater. 48, 1629–1633 (2019).
    [Crossref]
  30. Y. Wu, J. Li, F. Qiu, Y. Pan, Q. Liu, and J. Guo, “Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method,” Ceram. Int. 32, 785–788 (2006).
    [Crossref]
  31. S. Omori, “Development of a lens-less mid-infrared laser head for the optical fiber tip oscillation to apply to therapeutic treatment,” IEEJ Trans. Electron. Inf. Syst. 137, 561–564 (2018).
    [Crossref]
  32. J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
    [Crossref]

2019 (10)

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Y. Ma, H. Dang, F. Liu, X. Liu, F. Peng, S. Ding, and Q. Zhang, “Diode-pumped acousto-optically Q-switched laser using a novel Nd:GdYTaO4 mixed crystal,” J. Russ. Laser Res. 40, 76–79 (2019).
[Crossref]

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

K. Vikrant and R. E. García, “Charged grain boundary transitions in ionic ceramics for energy applications,” NPJ Comput. Mater. 5, 24 (2019).
[Crossref]

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

K. Shortiss, M. Shayesteh, W. Cotter, A. H. Perrott, M. Dernaika, and F. H. Peters, “Mode suppression in injection locked multi-mode and single-mode lasers for optical demultiplexing,” Photonics 6, 27 (2019).
[Crossref]

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nat. Commun. 10, 1345 (2019).
[Crossref]

D. Krishnakumar and N. P. Rajesh, “Growth and optical characterization of europium and cerium doped KCl single crystals by Czochralski method for dosimetric applications,” J. Electron. Mater. 48, 1629–1633 (2019).
[Crossref]

L. Zhang, J. Wu, P. Stepanov, M. Haseman, T. Zhou, D. Winarski, P. Saadatkia, and S. Agarwal, “Defects and solarization in YAG transparent ceramics,” Photon. Res. 7, 549–557 (2019).
[Crossref]

2018 (10)

S. Omori, “Development of a lens-less mid-infrared laser head for the optical fiber tip oscillation to apply to therapeutic treatment,” IEEJ Trans. Electron. Inf. Syst. 137, 561–564 (2018).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photon. Res. 6, 549–553 (2018).
[Crossref]

L. Li, X. Yang, L. Zhou, W. Xie, Y. Wang, Y. Shen, Y. Yang, W. Yang, W. Wang, and Z. Lv, “Active/passive Q-switching operation of 2 μm Tm, Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror,” Photon. Res. 6, 614–619 (2018).
[Crossref]

B. Zhang, Y. Chen, P. Wang, Y. Wang, J. Liu, S. Hu, X. Xia, Y. Sang, H. Yuan, and X. Cai, “Direct bleaching of a Cr4+:YAG saturable absorber in a passively Q-switched Nd:YAG laser,” Appl. Opt. 57, 4595–4600 (2018).
[Crossref]

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47 μm,” Opt. Lett. 43, 2724–2727 (2018).
[Crossref]

X. Guan, J. Wang, Y. Zhang, B. Xu, Z. Luo, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, “Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers,” Photon. Res. 6, 830–836 (2018).
[Crossref]

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum 24, 1100406 (2018).
[Crossref]

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

2017 (5)

Y. Shen, Y. Wang, K. Luan, H. Chen, M. Tao, and J. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3  μm,” Appl. Phys. B 123, 105 (2017).
[Crossref]

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Z. Fan, J. Qiu, Z. Kang, Y. Chen, W. Ge, and X. Tang, “High beam quality 5 J, 200  Hz Nd:YAG laser system,” Light Sci. Appl. 6, e17004 (2017).
[Crossref]

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

2016 (2)

C. Li and J. Dong, “Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr:YAG passively Q-switched microchip laser,” J. Mod. Opt. 63, 1323–1330 (2016).
[Crossref]

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

2015 (2)

T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
[Crossref]

F. Lou, R. Zhao, J. He, Z. Jia, X. Su, Z. Wang, J. Hou, and B. Zhang, “Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber,” Photon. Res. 3, A25–A29 (2015).
[Crossref]

2006 (1)

Y. Wu, J. Li, F. Qiu, Y. Pan, Q. Liu, and J. Guo, “Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method,” Ceram. Int. 32, 785–788 (2006).
[Crossref]

2004 (1)

1999 (1)

J. Dong, P. Deng, X. U. Jun, and F. Gan, “Investigation of absorption spectra of (Cr4+, Yb3+):YAG crystal,” Chin. J. Lasers B 8, 475–510 (1999).

Agarwal, S.

Aguiló, M.

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Aksimsek, S.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Astier, Y.

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

Balasubramanian, K.

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

Bawden, N.

Biswas, T.

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

Bu, W.

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

Cai, X.

Cai, Z.

Chekurov, N.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Chen, H.

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

Y. Shen, Y. Wang, K. Luan, H. Chen, M. Tao, and J. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3  μm,” Appl. Phys. B 123, 105 (2017).
[Crossref]

Chen, X.

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

Chen, Y.

B. Zhang, Y. Chen, P. Wang, Y. Wang, J. Liu, S. Hu, X. Xia, Y. Sang, H. Yuan, and X. Cai, “Direct bleaching of a Cr4+:YAG saturable absorber in a passively Q-switched Nd:YAG laser,” Appl. Opt. 57, 4595–4600 (2018).
[Crossref]

Z. Fan, J. Qiu, Z. Kang, Y. Chen, W. Ge, and X. Tang, “High beam quality 5 J, 200  Hz Nd:YAG laser system,” Light Sci. Appl. 6, e17004 (2017).
[Crossref]

T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
[Crossref]

Cheng, X.

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Chowdhury, E.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nat. Commun. 10, 1345 (2019).
[Crossref]

Cong, Z.

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

Cotter, W.

K. Shortiss, M. Shayesteh, W. Cotter, A. H. Perrott, M. Dernaika, and F. H. Peters, “Mode suppression in injection locked multi-mode and single-mode lasers for optical demultiplexing,” Photonics 6, 27 (2019).
[Crossref]

Cui, X.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum 24, 1100406 (2018).
[Crossref]

Dang, H.

Y. Ma, H. Dang, F. Liu, X. Liu, F. Peng, S. Ding, and Q. Zhang, “Diode-pumped acousto-optically Q-switched laser using a novel Nd:GdYTaO4 mixed crystal,” J. Russ. Laser Res. 40, 76–79 (2019).
[Crossref]

Deng, P.

Dernaika, M.

K. Shortiss, M. Shayesteh, W. Cotter, A. H. Perrott, M. Dernaika, and F. H. Peters, “Mode suppression in injection locked multi-mode and single-mode lasers for optical demultiplexing,” Photonics 6, 27 (2019).
[Crossref]

Díaz, F.

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Ding, S.

Y. Ma, H. Dang, F. Liu, X. Liu, F. Peng, S. Ding, and Q. Zhang, “Diode-pumped acousto-optically Q-switched laser using a novel Nd:GdYTaO4 mixed crystal,” J. Russ. Laser Res. 40, 76–79 (2019).
[Crossref]

Dong, J.

C. Li and J. Dong, “Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr:YAG passively Q-switched microchip laser,” J. Mod. Opt. 63, 1323–1330 (2016).
[Crossref]

J. Dong, P. Deng, X. U. Jun, and F. Gan, “Investigation of absorption spectra of (Cr4+, Yb3+):YAG crystal,” Chin. J. Lasers B 8, 475–510 (1999).

Fan, Z.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nat. Commun. 10, 1345 (2019).
[Crossref]

Z. Fan, J. Qiu, Z. Kang, Y. Chen, W. Ge, and X. Tang, “High beam quality 5 J, 200  Hz Nd:YAG laser system,” Light Sci. Appl. 6, e17004 (2017).
[Crossref]

Feng, J.

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

Fu, Z.

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

Gan, F.

J. Dong, P. Deng, X. U. Jun, and F. Gan, “Investigation of absorption spectra of (Cr4+, Yb3+):YAG crystal,” Chin. J. Lasers B 8, 475–510 (1999).

Gan, X.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum 24, 1100406 (2018).
[Crossref]

García, R. E.

K. Vikrant and R. E. García, “Charged grain boundary transitions in ionic ceramics for energy applications,” NPJ Comput. Mater. 5, 24 (2019).
[Crossref]

Ge, W.

Z. Fan, J. Qiu, Z. Kang, Y. Chen, W. Ge, and X. Tang, “High beam quality 5 J, 200  Hz Nd:YAG laser system,” Light Sci. Appl. 6, e17004 (2017).
[Crossref]

Georgiou, V.

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

Ghosh, P.

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

Graf, M.

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

Griebner, U.

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Guan, X.

Guo, J.

Y. Wu, J. Li, F. Qiu, Y. Pan, Q. Liu, and J. Guo, “Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method,” Ceram. Int. 32, 785–788 (2006).
[Crossref]

Guo, W.

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

Haseman, M.

He, J.

Henderson-Sapir, O.

Hou, J.

Hu, S.

Hua, T.

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

Ilic, B. R.

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

Jain, M.

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

Jia, Z.

Jiang, L.

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

Jiang, Z.

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

Jun, X. U.

J. Dong, P. Deng, X. U. Jun, and F. Gan, “Investigation of absorption spectra of (Cr4+, Yb3+):YAG crystal,” Chin. J. Lasers B 8, 475–510 (1999).

Kang, Z.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photon. Res. 6, 549–553 (2018).
[Crossref]

Z. Fan, J. Qiu, Z. Kang, Y. Chen, W. Ge, and X. Tang, “High beam quality 5 J, 200  Hz Nd:YAG laser system,” Light Sci. Appl. 6, e17004 (2017).
[Crossref]

Kim, W.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Klantsataya, E.

Kong, D.

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Konyushkin, V. A.

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

Krishnakumar, D.

D. Krishnakumar and N. P. Rajesh, “Growth and optical characterization of europium and cerium doped KCl single crystals by Czochralski method for dosimetric applications,” J. Electron. Mater. 48, 1629–1633 (2019).
[Crossref]

Li, C.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

C. Li and J. Dong, “Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr:YAG passively Q-switched microchip laser,” J. Mod. Opt. 63, 1323–1330 (2016).
[Crossref]

Li, D.

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Li, G.

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Li, J.

Y. Wu, J. Li, F. Qiu, Y. Pan, Q. Liu, and J. Guo, “Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method,” Ceram. Int. 32, 785–788 (2006).
[Crossref]

Li, L.

Li, M.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum 24, 1100406 (2018).
[Crossref]

Li, S.

Li, T.

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Li, X.

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

Li, Z.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photon. Res. 6, 549–553 (2018).
[Crossref]

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

Lihter, M.

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

Lin, G.

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

Liu, C.

Liu, F.

Y. Ma, H. Dang, F. Liu, X. Liu, F. Peng, S. Ding, and Q. Zhang, “Diode-pumped acousto-optically Q-switched laser using a novel Nd:GdYTaO4 mixed crystal,” J. Russ. Laser Res. 40, 76–79 (2019).
[Crossref]

Liu, J.

B. Zhang, Y. Chen, P. Wang, Y. Wang, J. Liu, S. Hu, X. Xia, Y. Sang, H. Yuan, and X. Cai, “Direct bleaching of a Cr4+:YAG saturable absorber in a passively Q-switched Nd:YAG laser,” Appl. Opt. 57, 4595–4600 (2018).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Liu, K.

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

Liu, M.

Liu, P.

T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
[Crossref]

Liu, Q.

Y. Wu, J. Li, F. Qiu, Y. Pan, Q. Liu, and J. Guo, “Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method,” Ceram. Int. 32, 785–788 (2006).
[Crossref]

Liu, X.

Y. Ma, H. Dang, F. Liu, X. Liu, F. Peng, S. Ding, and Q. Zhang, “Diode-pumped acousto-optically Q-switched laser using a novel Nd:GdYTaO4 mixed crystal,” J. Russ. Laser Res. 40, 76–79 (2019).
[Crossref]

Liu, Y.

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

Liu, Z.

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

Loiko, P.

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Lou, F.

Lu, H.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum 24, 1100406 (2018).
[Crossref]

Lu, T.

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

Lu, Z.

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

Luan, K.

Y. Shen, Y. Wang, K. Luan, H. Chen, M. Tao, and J. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3  μm,” Appl. Phys. B 123, 105 (2017).
[Crossref]

Luo, Z.

Lv, Z.

Ma, Y.

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

Y. Ma, H. Dang, F. Liu, X. Liu, F. Peng, S. Ding, and Q. Zhang, “Diode-pumped acousto-optically Q-switched laser using a novel Nd:GdYTaO4 mixed crystal,” J. Russ. Laser Res. 40, 76–79 (2019).
[Crossref]

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

Mao, D.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum 24, 1100406 (2018).
[Crossref]

Mateos, X.

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Matsukuma, H.

Men, S.

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

Mishra, A.

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

Mishra, R.

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

Omori, S.

S. Omori, “Development of a lens-less mid-infrared laser head for the optical fiber tip oscillation to apply to therapeutic treatment,” IEEJ Trans. Electron. Inf. Syst. 137, 561–564 (2018).
[Crossref]

Ottaway, D. J.

Pan, Y.

Y. Wu, J. Li, F. Qiu, Y. Pan, Q. Liu, and J. Guo, “Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method,” Ceram. Int. 32, 785–788 (2006).
[Crossref]

Peng, F.

Y. Ma, H. Dang, F. Liu, X. Liu, F. Peng, S. Ding, and Q. Zhang, “Diode-pumped acousto-optically Q-switched laser using a novel Nd:GdYTaO4 mixed crystal,” J. Russ. Laser Res. 40, 76–79 (2019).
[Crossref]

Peng, Z.

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

Perrott, A. H.

K. Shortiss, M. Shayesteh, W. Cotter, A. H. Perrott, M. Dernaika, and F. H. Peters, “Mode suppression in injection locked multi-mode and single-mode lasers for optical demultiplexing,” Photonics 6, 27 (2019).
[Crossref]

Peters, F. H.

K. Shortiss, M. Shayesteh, W. Cotter, A. H. Perrott, M. Dernaika, and F. H. Peters, “Mode suppression in injection locked multi-mode and single-mode lasers for optical demultiplexing,” Photonics 6, 27 (2019).
[Crossref]

Petrov, V.

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Pratap, R.

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

Qi, J.

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

Qi, M.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Qian, Q.

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Qiao, X.

T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
[Crossref]

Qin, G.

Qin, W.

Qiu, F.

Y. Wu, J. Li, F. Qiu, Y. Pan, Q. Liu, and J. Guo, “Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method,” Ceram. Int. 32, 785–788 (2006).
[Crossref]

Qiu, J.

Z. Fan, J. Qiu, Z. Kang, Y. Chen, W. Ge, and X. Tang, “High beam quality 5 J, 200  Hz Nd:YAG laser system,” Light Sci. Appl. 6, e17004 (2017).
[Crossref]

Radenovic, A.

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

Rajesh, N. P.

D. Krishnakumar and N. P. Rajesh, “Growth and optical characterization of europium and cerium doped KCl single crystals by Czochralski method for dosimetric applications,” J. Electron. Mater. 48, 1629–1633 (2019).
[Crossref]

Rao, H.

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

Riikonen, J.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Saadatkia, P.

Sachan, R.

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

Sang, Y.

Selim, F. A.

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

Serres, J. M.

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Shao, C.

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

Shayesteh, M.

K. Shortiss, M. Shayesteh, W. Cotter, A. H. Perrott, M. Dernaika, and F. H. Peters, “Mode suppression in injection locked multi-mode and single-mode lasers for optical demultiplexing,” Photonics 6, 27 (2019).
[Crossref]

Shcherbakov, M. R.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nat. Commun. 10, 1345 (2019).
[Crossref]

Shen, Y.

Shi, Y.

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

Shortiss, K.

K. Shortiss, M. Shayesteh, W. Cotter, A. H. Perrott, M. Dernaika, and F. H. Peters, “Mode suppression in injection locked multi-mode and single-mode lasers for optical demultiplexing,” Photonics 6, 27 (2019).
[Crossref]

Shvets, G.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nat. Commun. 10, 1345 (2019).
[Crossref]

Si, J.

Y. Shen, Y. Wang, K. Luan, H. Chen, M. Tao, and J. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3  μm,” Appl. Phys. B 123, 105 (2017).
[Crossref]

Song, P.

Stepanov, P.

Su, X.

Sun, B.

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

Suran, S.

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

Talisa, N.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nat. Commun. 10, 1345 (2019).
[Crossref]

Tang, D.

T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
[Crossref]

Tang, X.

Z. Fan, J. Qiu, Z. Kang, Y. Chen, W. Ge, and X. Tang, “High beam quality 5 J, 200  Hz Nd:YAG laser system,” Light Sci. Appl. 6, e17004 (2017).
[Crossref]

Tao, M.

Y. Shen, Y. Wang, K. Luan, H. Chen, M. Tao, and J. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3  μm,” Appl. Phys. B 123, 105 (2017).
[Crossref]

Thakur, M.

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

Tokita, S.

Topolancik, J.

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

Varma, M.

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

Vikrant, K.

K. Vikrant and R. E. García, “Charged grain boundary transitions in ionic ceramics for energy applications,” NPJ Comput. Mater. 5, 24 (2019).
[Crossref]

Wang, J.

Wang, L.

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

Wang, N.

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Wang, P.

Wang, W.

Wang, Y.

Wang, Z.

Wei, N.

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

Wei, S.

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

Werner, K.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nat. Commun. 10, 1345 (2019).
[Crossref]

Winarski, D.

Wong, C.

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

Wu, J.

L. Zhang, J. Wu, P. Stepanov, M. Haseman, T. Zhou, D. Winarski, P. Saadatkia, and S. Agarwal, “Defects and solarization in YAG transparent ceramics,” Photon. Res. 7, 549–557 (2019).
[Crossref]

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

Wu, Y.

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

Y. Wu, J. Li, F. Qiu, Y. Pan, Q. Liu, and J. Guo, “Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method,” Ceram. Int. 32, 785–788 (2006).
[Crossref]

Xia, X.

Xie, W.

Xin, Y.

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

Xu, B.

Xu, H.

Xu, J.

Xu, X.

Xue, H.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Yan, R.

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

Yang, H.

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
[Crossref]

Yang, K.

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Yang, W.

Yang, X.

Yang, Y.

Yao, Q.

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

Yao, T.

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

Ye, F.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Ying, H.

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

Yuan, H.

Yumashev, K.

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Zang, J.

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Zeng, Q.

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

Zhang, B.

Zhang, H.

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Zhang, J.

X. Guan, J. Wang, Y. Zhang, B. Xu, Z. Luo, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, “Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers,” Photon. Res. 6, 830–836 (2018).
[Crossref]

T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
[Crossref]

Zhang, L.

L. Zhang, J. Wu, P. Stepanov, M. Haseman, T. Zhou, D. Winarski, P. Saadatkia, and S. Agarwal, “Defects and solarization in YAG transparent ceramics,” Photon. Res. 7, 549–557 (2019).
[Crossref]

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
[Crossref]

Zhang, Q.

Y. Ma, H. Dang, F. Liu, X. Liu, F. Peng, S. Ding, and Q. Zhang, “Diode-pumped acousto-optically Q-switched laser using a novel Nd:GdYTaO4 mixed crystal,” J. Russ. Laser Res. 40, 76–79 (2019).
[Crossref]

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

Zhang, S.

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

Zhang, W.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum 24, 1100406 (2018).
[Crossref]

Zhang, X.

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

Zhang, Y.

Zhao, J.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum 24, 1100406 (2018).
[Crossref]

Zhao, R.

Zhao, S.

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Zhao, Z.

Zhou, G.

Zhou, L.

Zhou, T.

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

L. Zhang, J. Wu, P. Stepanov, M. Haseman, T. Zhou, D. Winarski, P. Saadatkia, and S. Agarwal, “Defects and solarization in YAG transparent ceramics,” Photon. Res. 7, 549–557 (2019).
[Crossref]

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
[Crossref]

Zverev, P. G.

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

2D Mater. (1)

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, and F. Ye, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Shen, Y. Wang, K. Luan, H. Chen, M. Tao, and J. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3  μm,” Appl. Phys. B 123, 105 (2017).
[Crossref]

Ceram. Int. (2)

T. Zhou, L. Zhang, C. Shao, B. Sun, W. Bu, H. Yang, H. Chen, F. A. Selim, and Q. Zhang, “Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics,” Ceram. Int. 44, 13820–13826 (2018).
[Crossref]

Y. Wu, J. Li, F. Qiu, Y. Pan, Q. Liu, and J. Guo, “Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method,” Ceram. Int. 32, 785–788 (2006).
[Crossref]

Chin. J. Lasers B (1)

J. Dong, P. Deng, X. U. Jun, and F. Gan, “Investigation of absorption spectra of (Cr4+, Yb3+):YAG crystal,” Chin. J. Lasers B 8, 475–510 (1999).

IEEE J. Sel. Top. Quantum (1)

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum 24, 1100406 (2018).
[Crossref]

IEEJ Trans. Electron. Inf. Syst. (1)

S. Omori, “Development of a lens-less mid-infrared laser head for the optical fiber tip oscillation to apply to therapeutic treatment,” IEEJ Trans. Electron. Inf. Syst. 137, 561–564 (2018).
[Crossref]

J. Alloys Compd. (1)

T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, C. Wong, and Q. Zhang, “Enhanced conversion efficiency of Cr4+ ion in Cr:YAG transparent ceramic by optimizing the annealing process and doping concentration,” J. Alloys Compd. 703, 34–39 (2017).
[Crossref]

J. Am. Ceram. Soc. (1)

X. Chen, Y. Wu, Z. Lu, N. Wei, J. Qi, Y. Shi, T. Hua, Q. Zeng, W. Guo, and T. Lu, “Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding,” J. Am. Ceram. Soc. 101, 5098–5109 (2018).
[Crossref]

J. Electron. Mater. (1)

D. Krishnakumar and N. P. Rajesh, “Growth and optical characterization of europium and cerium doped KCl single crystals by Czochralski method for dosimetric applications,” J. Electron. Mater. 48, 1629–1633 (2019).
[Crossref]

J. Mater. Chem. C (1)

B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, and H. Chen, “Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs,” J. Mater. Chem. C 7, 4057–4065 (2019).
[Crossref]

J. Mod. Opt. (1)

C. Li and J. Dong, “Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr:YAG passively Q-switched microchip laser,” J. Mod. Opt. 63, 1323–1330 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Russ. Laser Res. (2)

Z. Peng, Y. Ma, R. Yan, X. Li, H. Ying, Y. Xin, T. Yao, G. Lin, and L. Jiang, “Doubly Q-switched Nd:YAG ceramic laser,” J. Russ. Laser Res. 39, 187–191 (2018).
[Crossref]

Y. Ma, H. Dang, F. Liu, X. Liu, F. Peng, S. Ding, and Q. Zhang, “Diode-pumped acousto-optically Q-switched laser using a novel Nd:GdYTaO4 mixed crystal,” J. Russ. Laser Res. 40, 76–79 (2019).
[Crossref]

Laser Phys. (1)

S. Men, Z. Liu, Z. Cong, H. Rao, S. Zhang, Y. Liu, P. G. Zverev, V. A. Konyushkin, and X. Zhang, “High-repetition-rate widely tunable Li:F2 color center lasers,” Laser Phys. 26, 025806 (2016).
[Crossref]

Light Sci. Appl. (1)

Z. Fan, J. Qiu, Z. Kang, Y. Chen, W. Ge, and X. Tang, “High beam quality 5 J, 200  Hz Nd:YAG laser system,” Light Sci. Appl. 6, e17004 (2017).
[Crossref]

Nat. Commun. (2)

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, and R. Pratap, “Reversible defect engineering in graphene grain boundaries,” Nat. Commun. 10, 1090 (2019).
[Crossref]

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nat. Commun. 10, 1345 (2019).
[Crossref]

Nat. Protoc. (1)

M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik, B. R. Ilic, K. Liu, J. Feng, Y. Astier, and A. Radenovic, “Fabrication and practical applications of molybdenum disulfide nanopores,” Nat. Protoc. 14, 1130–1168 (2019).
[Crossref]

NPJ Comput. Mater. (1)

K. Vikrant and R. E. García, “Charged grain boundary transitions in ionic ceramics for energy applications,” NPJ Comput. Mater. 5, 24 (2019).
[Crossref]

Opt. Laser Technol. (1)

Q. Qian, D. Kong, S. Zhao, G. Li, X. Cheng, N. Wang, T. Li, D. Li, K. Yang, and J. Zang, “Promotion impact of thermal oxidation etching to saturable absorption performance of g-C3N4,” Opt. Laser Technol. 111, 597–603 (2019).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

T. Zhou, L. Zhang, J. Zhang, H. Yang, P. Liu, Y. Chen, X. Qiao, and D. Tang, “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimization the particle sizes of sintering aids,” Opt. Mater. 50, 11–14 (2015).
[Crossref]

Photon. Res. (5)

Photonics (1)

K. Shortiss, M. Shayesteh, W. Cotter, A. H. Perrott, M. Dernaika, and F. H. Peters, “Mode suppression in injection locked multi-mode and single-mode lasers for optical demultiplexing,” Photonics 6, 27 (2019).
[Crossref]

Proc. SPIE (1)

J. M. Serres, P. Loiko, X. Mateos, J. Liu, H. Zhang, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers,” Proc. SPIE 10082, 100820T (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of the laser experiment.
Fig. 2.
Fig. 2. SEM microstructures of facture surfaces of (a) 0.05 at.% and (b) 0.1 at.%, and the mirror-polished surfaces of (c) 0.05 at.% and (d) 0.1 at.% Cr4+:YAG ceramics.
Fig. 3.
Fig. 3. In-line transmission spectra of the uncoated Cr:YAG transparent ceramics with different Cr doping concentrations.
Fig. 4.
Fig. 4. Laser output power as a function of the pump power for Cr:YAG materials.
Fig. 5.
Fig. 5. Passively Q-switched laser property comparisons between transparent ceramics and single crystal: (a) pulse energy versus pump power; (b) peak power versus pump power; (c) pulse width versus pump power; (d) repetition frequency versus pump power.
Fig. 6.
Fig. 6. Schematic diagram of the grain boundary effect in divalent-additives-doped Cr:YAG transparent ceramics.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

CB×Ah=n,
2MgO+2AlAlX+OOX=2MgAl+VÖ+Al2O3,
2CaO+2YYX+OOX=2CaY+VÖ+Y2O3,
4CrAlX+O2+2VÖ=2OOX+4CrA˙l.

Metrics