Abstract

Raman lasers based on integrated silica whispering gallery mode resonant cavities have enabled numerous applications from telecommunications to biodetection. To overcome the intrinsically low Raman gain value of silica, these devices leverage their ultrahigh quality factors (Q), allowing submilliwatt stimulated Raman scattering (SRS) lasing thresholds to be achieved. A closely related nonlinear behavior to SRS is stimulated anti-Stokes Raman scattering (SARS). This nonlinear optical process combines the pump photon with the SRS photon to generate an upconverted photon. Therefore, in order to achieve SARS, the efficiency of the SRS process must be high. As a result, achieving SARS in on-chip resonant cavities has been challenging due to the low lasing efficiencies of these devices. In the present work, metal-doped ultrahigh Q (Q>107) silica microcavity arrays are fabricated on-chip. The metal-dopant plays multiple roles in improving the device performance. It increases the Raman gain of the cavity material, and it decreases the optical mode area, thus increasing the circulating intensity. As a result, these devices have SRS lasing efficiencies that are over 10× larger than conventional silica microcavities while maintaining low lasing thresholds. This combination enables SARS to be generated with submilliwatt input powers and significantly improved anti-Stokes Raman lasing efficiency.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow-threshold microcavity Raman laser on a microelectronic chip

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala
Opt. Lett. 29(11) 1224-1226 (2004)

Anti-Stokes Raman conversion in silicon waveguides

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali
Opt. Express 11(22) 2862-2872 (2003)

Coupled photonic crystal micro-cavities with ultra-low threshold power for stimulated Raman scattering

Qiang Liu, Zhengbiao Ouyang, and Sacharia Albin
Opt. Express 19(5) 4795-4804 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu, and A. H. Zewail, “Femtosecond laser control of a chemical reaction,” Nature 355, 66–68 (1992).
    [Crossref]
  2. M. Motzkus, S. Pedersen, and A. Zewail, “Femtosecond real-time probing of reactions. 19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions,” J. Phys. Chem. 100, 5620–5633 (1996).
    [Crossref]
  3. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
    [Crossref]
  4. M. Shim, B. Wilson, E. Marple, and M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619–627 (1999).
    [Crossref]
  5. E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
    [Crossref]
  6. K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics from in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
    [Crossref]
  7. M. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
    [Crossref]
  8. M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, M. Hernanz, and P. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
    [Crossref]
  9. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
    [Crossref]
  10. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
    [Crossref]
  11. P. Latawiec, V. Venkataraman, M. J. Burek, B. J. M. Hausmann, I. Bulu, and M. Loncar, “On-chip diamond Raman laser,” Optica 2, 924–928 (2015).
    [Crossref]
  12. X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4, 893–896 (2017).
    [Crossref]
  13. G. Wang, M. Zhao, Y. Qin, Z. Yin, X. Jiang, and M. Xiao, “Demonstration of an ultra-low-threshold phonon laser with coupled microtoroid resonators in vacuum,” Photon. Res. 5, 73–76 (2017).
    [Crossref]
  14. S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
    [Crossref]
  15. C. Raman and K. Krishnan, “A new type of secondary radiation,” Nature 121, 501–502 (1928).
    [Crossref]
  16. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref]
  17. K. Georgiou, R. Jayaprakash, A. Askitopoulos, D. M. Coles, P. G. Lagoudakis, and D. G. Lidzey, “Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity,” ACS Photon. 5, 4343–4351 (2018).
    [Crossref]
  18. G. Eckhardt, D. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and alpha-sulfur single crystals,” Appl. Phys. Lett. 3, 137–138 (1963).
    [Crossref]
  19. D. Leach, R. Chang, and W. Acker, “Stimulated anti-Stokes Raman scattering in microdroplets,” Opt. Lett. 17, 387–389 (1992).
    [Crossref]
  20. D. Farnesi, F. Cosi, C. Trono, G. C. Righini, G. N. Conti, and S. Soria, “Stimulated anti-Stokes Raman scattering resonantly enhanced in silica microspheres,” Opt. Lett. 39, 5993–5996 (2014).
    [Crossref]
  21. I. Itzkan and D. A. Leonard, “Observation of coherent anti-Stokes Raman scattering from liquid water,” Appl. Phys. Lett. 26, 106–108 (1975).
    [Crossref]
  22. B. Hudson, W. Hetherington, S. Cramer, I. Chabay, and G. K. Klauminzer, “Resonance enhanced coherent anti-Stokes Raman scattering,” Proc. Natl. Acad. Sci. USA 73, 3798–3802 (1976).
    [Crossref]
  23. J. J. Barrett and R. F. Begley, “Low-power cw generation of coherent anti-Stokes Raman radiation in CH4 gas,” Appl. Phys. Lett. 27, 129–131 (1975).
    [Crossref]
  24. K. Rittner, A. Hope, T. Muller-Wirts, and B. Wellegehausen, “Continuous anti-Stokes Raman lasers in a He-Ne laser discharge,” IEEE J. Quantum Electron. 28, 342–347 (1992).
    [Crossref]
  25. Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
    [Crossref]
  26. N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39, 1354–1357 (2014).
    [Crossref]
  27. H. Choi and A. M. Armani, “High efficiency Raman lasers based on Zr-doped silica hybrid microcavities,” ACS Photon. 3, 2383–2388 (2016).
    [Crossref]
  28. T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
    [Crossref]
  29. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).
    [Crossref]
  30. H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett. 36, 2152–2154 (2011).
    [Crossref]
  31. A. J. Maker, B. A. Rose, and A. M. Armani, “Tailoring the behavior of optical microcavities with high refractive index sol-gel coatings,” Opt. Lett. 37, 2844–2846 (2012).
    [Crossref]
  32. Ph. Colomban and A. Slodczyk, “Raman intensity: an important tool in the study of nanomaterials and nanostructures,” ACTA Phys. Pol. A 116, 7–12 (2009).
    [Crossref]
  33. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  34. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref]
  35. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [Crossref]
  36. C. Evans, E. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
    [Crossref]
  37. X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728–735 (2006).
    [Crossref]
  38. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076–12087 (2007).
    [Crossref]
  39. R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
    [Crossref]
  40. T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
    [Crossref]

2019 (2)

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

2018 (3)

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

K. Georgiou, R. Jayaprakash, A. Askitopoulos, D. M. Coles, P. G. Lagoudakis, and D. G. Lidzey, “Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity,” ACS Photon. 5, 4343–4351 (2018).
[Crossref]

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

2017 (2)

2016 (1)

H. Choi and A. M. Armani, “High efficiency Raman lasers based on Zr-doped silica hybrid microcavities,” ACS Photon. 3, 2383–2388 (2016).
[Crossref]

2015 (2)

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics from in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref]

P. Latawiec, V. Venkataraman, M. J. Burek, B. J. M. Hausmann, I. Bulu, and M. Loncar, “On-chip diamond Raman laser,” Optica 2, 924–928 (2015).
[Crossref]

2014 (2)

2012 (1)

2011 (1)

2009 (1)

Ph. Colomban and A. Slodczyk, “Raman intensity: an important tool in the study of nanomaterials and nanostructures,” ACTA Phys. Pol. A 116, 7–12 (2009).
[Crossref]

2007 (2)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).
[Crossref]

C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076–12087 (2007).
[Crossref]

2006 (1)

X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728–735 (2006).
[Crossref]

2005 (2)

C. Evans, E. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[Crossref]

2004 (2)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

2003 (2)

M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, M. Hernanz, and P. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

2002 (3)

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
[Crossref]

M. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

2000 (1)

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

1999 (1)

1998 (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

1996 (2)

M. Motzkus, S. Pedersen, and A. Zewail, “Femtosecond real-time probing of reactions. 19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions,” J. Phys. Chem. 100, 5620–5633 (1996).
[Crossref]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref]

1992 (3)

K. Rittner, A. Hope, T. Muller-Wirts, and B. Wellegehausen, “Continuous anti-Stokes Raman lasers in a He-Ne laser discharge,” IEEE J. Quantum Electron. 28, 342–347 (1992).
[Crossref]

D. Leach, R. Chang, and W. Acker, “Stimulated anti-Stokes Raman scattering in microdroplets,” Opt. Lett. 17, 387–389 (1992).
[Crossref]

E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu, and A. H. Zewail, “Femtosecond laser control of a chemical reaction,” Nature 355, 66–68 (1992).
[Crossref]

1976 (1)

B. Hudson, W. Hetherington, S. Cramer, I. Chabay, and G. K. Klauminzer, “Resonance enhanced coherent anti-Stokes Raman scattering,” Proc. Natl. Acad. Sci. USA 73, 3798–3802 (1976).
[Crossref]

1975 (2)

J. J. Barrett and R. F. Begley, “Low-power cw generation of coherent anti-Stokes Raman radiation in CH4 gas,” Appl. Phys. Lett. 27, 129–131 (1975).
[Crossref]

I. Itzkan and D. A. Leonard, “Observation of coherent anti-Stokes Raman scattering from liquid water,” Appl. Phys. Lett. 26, 106–108 (1975).
[Crossref]

1963 (1)

G. Eckhardt, D. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and alpha-sulfur single crystals,” Appl. Phys. Lett. 3, 137–138 (1963).
[Crossref]

1928 (1)

C. Raman and K. Krishnan, “A new type of secondary radiation,” Nature 121, 501–502 (1928).
[Crossref]

Acker, W.

Aharonovich, I.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Armani, A. M.

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Armani, D. K.

Askitopoulos, A.

K. Georgiou, R. Jayaprakash, A. Askitopoulos, D. M. Coles, P. G. Lagoudakis, and D. G. Lidzey, “Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity,” ACS Photon. 5, 4343–4351 (2018).
[Crossref]

Aspelmeyer, M.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Barrett, J. J.

J. J. Barrett and R. F. Begley, “Low-power cw generation of coherent anti-Stokes Raman radiation in CH4 gas,” Appl. Phys. Lett. 27, 129–131 (1975).
[Crossref]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Begley, R. F.

J. J. Barrett and R. F. Begley, “Low-power cw generation of coherent anti-Stokes Raman radiation in CH4 gas,” Appl. Phys. Lett. 27, 129–131 (1975).
[Crossref]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Bortfeld, D.

G. Eckhardt, D. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and alpha-sulfur single crystals,” Appl. Phys. Lett. 3, 137–138 (1963).
[Crossref]

Bradac, C.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Bulu, I.

Burek, M. J.

Cai, Y.-Y.

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

Cantrell, C. D.

Chabay, I.

B. Hudson, W. Hetherington, S. Cramer, I. Chabay, and G. K. Klauminzer, “Resonance enhanced coherent anti-Stokes Raman scattering,” Proc. Natl. Acad. Sci. USA 73, 3798–3802 (1976).
[Crossref]

Chang, R.

Chang, W.-S.

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

Choi, H.

H. Choi and A. M. Armani, “High efficiency Raman lasers based on Zr-doped silica hybrid microcavities,” ACS Photon. 3, 2383–2388 (2016).
[Crossref]

Choi, H. S.

Cocking, A.

Coles, D. M.

K. Georgiou, R. Jayaprakash, A. Askitopoulos, D. M. Coles, P. G. Lagoudakis, and D. G. Lidzey, “Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity,” ACS Photon. 5, 4343–4351 (2018).
[Crossref]

Colomban, Ph.

Ph. Colomban and A. Slodczyk, “Raman intensity: an important tool in the study of nanomaterials and nanostructures,” ACTA Phys. Pol. A 116, 7–12 (2009).
[Crossref]

Conti, G. N.

Corredera, P.

M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, M. Hernanz, and P. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[Crossref]

Cosi, F.

Cote, D.

C. Evans, E. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Cramer, S.

B. Hudson, W. Hetherington, S. Cramer, I. Chabay, and G. K. Klauminzer, “Resonance enhanced coherent anti-Stokes Raman scattering,” Proc. Natl. Acad. Sci. USA 73, 3798–3802 (1976).
[Crossref]

Dasari, R.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Deka, N.

Eckhardt, G.

G. Eckhardt, D. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and alpha-sulfur single crystals,” Appl. Phys. Lett. 3, 137–138 (1963).
[Crossref]

Ekimov, E. A.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Evans, C.

C. Evans, E. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Evans, C. L.

Farnesi, D.

Feld, M.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Fitzmaurice, M.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Gaeta, A.

Gao, W.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Geller, M.

G. Eckhardt, D. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and alpha-sulfur single crystals,” Appl. Phys. Lett. 3, 137–138 (1963).
[Crossref]

Georgiou, K.

K. Georgiou, R. Jayaprakash, A. Askitopoulos, D. M. Coles, P. G. Lagoudakis, and D. G. Lidzey, “Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity,” ACS Photon. 5, 4343–4351 (2018).
[Crossref]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Gonzalez-Herraez, M.

M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, M. Hernanz, and P. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[Crossref]

Gorodetsky, M. L.

Gröblacher, S.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

Han, Y.

Hanlon, E.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Hao, Z.

Hausmann, B. J. M.

Herek, J. L.

E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu, and A. H. Zewail, “Femtosecond laser control of a chemical reaction,” Nature 355, 66–68 (1992).
[Crossref]

Hernanz, M.

M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, M. Hernanz, and P. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[Crossref]

Hetherington, W.

B. Hudson, W. Hetherington, S. Cramer, I. Chabay, and G. K. Klauminzer, “Resonance enhanced coherent anti-Stokes Raman scattering,” Proc. Natl. Acad. Sci. USA 73, 3798–3802 (1976).
[Crossref]

Hollenbeck, D.

Hong, S.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

Hope, A.

K. Rittner, A. Hope, T. Muller-Wirts, and B. Wellegehausen, “Continuous anti-Stokes Raman lasers in a He-Ne laser discharge,” IEEE J. Quantum Electron. 28, 342–347 (1992).
[Crossref]

Horche, P.

M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, M. Hernanz, and P. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[Crossref]

Huang, S. H.

Hudson, B.

B. Hudson, W. Hetherington, S. Cramer, I. Chabay, and G. K. Klauminzer, “Resonance enhanced coherent anti-Stokes Raman scattering,” Proc. Natl. Acad. Sci. USA 73, 3798–3802 (1976).
[Crossref]

Ilchenko, V. S.

Islam, M.

M. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[Crossref]

Ismail, S.

Itzkan, I.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

I. Itzkan and D. A. Leonard, “Observation of coherent anti-Stokes Raman scattering from liquid water,” Appl. Phys. Lett. 26, 106–108 (1975).
[Crossref]

Janisch, C.

Jayaprakash, R.

K. Georgiou, R. Jayaprakash, A. Askitopoulos, D. M. Coles, P. G. Lagoudakis, and D. G. Lidzey, “Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity,” ACS Photon. 5, 4343–4351 (2018).
[Crossref]

Jiang, X.

Kendall, C.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics from in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref]

Kesari, S.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Kippenberg, T.

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Klauminzer, G. K.

B. Hudson, W. Hetherington, S. Cramer, I. Chabay, and G. K. Klauminzer, “Resonance enhanced coherent anti-Stokes Raman scattering,” Proc. Natl. Acad. Sci. USA 73, 3798–3802 (1976).
[Crossref]

Kong, K.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics from in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref]

Koo, T.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Kramer, J.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Krishnan, K.

C. Raman and K. Krishnan, “A new type of secondary radiation,” Nature 121, 501–502 (1928).
[Crossref]

Lagoudakis, P. G.

K. Georgiou, R. Jayaprakash, A. Askitopoulos, D. M. Coles, P. G. Lagoudakis, and D. G. Lidzey, “Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity,” ACS Photon. 5, 4343–4351 (2018).
[Crossref]

Latawiec, P.

Leach, D.

Leonard, D. A.

I. Itzkan and D. A. Leonard, “Observation of coherent anti-Stokes Raman scattering from liquid water,” Appl. Phys. Lett. 26, 106–108 (1975).
[Crossref]

Li, H.

Lidzey, D. G.

K. Georgiou, R. Jayaprakash, A. Askitopoulos, D. M. Coles, P. G. Lagoudakis, and D. G. Lidzey, “Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity,” ACS Photon. 5, 4343–4351 (2018).
[Crossref]

Lin, C.

C. Evans, E. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Link, S.

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

Liu, J. G.

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

Liu, Q.

E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu, and A. H. Zewail, “Femtosecond laser control of a chemical reaction,” Nature 355, 66–68 (1992).
[Crossref]

Liu, X.

Liu, Z.

Loncar, M.

Löschnauer, C.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

Luo, Y.

Maker, A. J.

Manoharan, R.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Marinkovic, I.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

Marple, E.

Martin-Lopez, S.

M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, M. Hernanz, and P. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[Crossref]

Min, B.

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

Motz, J.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Motzkus, M.

M. Motzkus, S. Pedersen, and A. Zewail, “Femtosecond real-time probing of reactions. 19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions,” J. Phys. Chem. 100, 5620–5633 (1996).
[Crossref]

Mu, Z.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Muller-Wirts, T.

K. Rittner, A. Hope, T. Muller-Wirts, and B. Wellegehausen, “Continuous anti-Stokes Raman lasers in a He-Ne laser discharge,” IEEE J. Quantum Electron. 28, 342–347 (1992).
[Crossref]

Nan, X.

X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728–735 (2006).
[Crossref]

Narang, P.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Nordlander, P.

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

Notingher, I.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics from in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref]

Okawachi, Y.

Ostovar, B.

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).
[Crossref]

Özdemir, S. K.

Pedersen, S.

M. Motzkus, S. Pedersen, and A. Zewail, “Femtosecond real-time probing of reactions. 19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions,” J. Phys. Chem. 100, 5620–5633 (1996).
[Crossref]

E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu, and A. H. Zewail, “Femtosecond laser control of a chemical reaction,” Nature 355, 66–68 (1992).
[Crossref]

Peng, B.

Potma, E.

C. Evans, E. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Potma, E. O.

X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728–735 (2006).
[Crossref]

Potter, E. D.

E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu, and A. H. Zewail, “Femtosecond laser control of a chemical reaction,” Nature 355, 66–68 (1992).
[Crossref]

Puoris’haag, M.

C. Evans, E. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Qin, Y.

Raman, C.

C. Raman and K. Krishnan, “A new type of secondary radiation,” Nature 121, 501–502 (1928).
[Crossref]

Regan, B.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Riedinger, R.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

Righini, G. C.

Rittner, K.

K. Rittner, A. Hope, T. Muller-Wirts, and B. Wellegehausen, “Continuous anti-Stokes Raman lasers in a He-Ne laser discharge,” IEEE J. Quantum Electron. 28, 342–347 (1992).
[Crossref]

Rose, B. A.

Savchenkov, A. A.

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Shafer, K.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Sharping, J.

Shim, M.

Slodczyk, A.

Ph. Colomban and A. Slodczyk, “Raman intensity: an important tool in the study of nanomaterials and nanostructures,” ACTA Phys. Pol. A 116, 7–12 (2009).
[Crossref]

Solntsev, A. S.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Soria, S.

Spillane, S.

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Stone, N.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics from in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Sun, C.

Sung, E.

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

Tauzin, L. J.

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

Toth, M.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Tran, T. T.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Trono, C.

Vahala, K.

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Venkataraman, V.

Wach, M.

Wallucks, A.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

Wang, G.

Wang, J.

Wang, L.

Wei, T.

Wellegehausen, B.

K. Rittner, A. Hope, T. Muller-Wirts, and B. Wellegehausen, “Continuous anti-Stokes Raman lasers in a He-Ne laser discharge,” IEEE J. Quantum Electron. 28, 342–347 (1992).
[Crossref]

Wilson, B.

Wong, S. T. C.

Xiao, M.

Xie, X.

C. Evans, E. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Xie, X. S.

C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076–12087 (2007).
[Crossref]

X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728–735 (2006).
[Crossref]

Xiong, B.

Xu, X.

Yan, J.

Yang, L.

Yin, Z.

Young, G. S.

Zewail, A.

M. Motzkus, S. Pedersen, and A. Zewail, “Femtosecond real-time probing of reactions. 19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions,” J. Phys. Chem. 100, 5620–5633 (1996).
[Crossref]

Zewail, A. H.

E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu, and A. H. Zewail, “Femtosecond laser control of a chemical reaction,” Nature 355, 66–68 (1992).
[Crossref]

Zhang, R.

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

Zhang, Y.

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4, 893–896 (2017).
[Crossref]

Zhao, M.

Zhou, Y.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

ACS Photon. (2)

K. Georgiou, R. Jayaprakash, A. Askitopoulos, D. M. Coles, P. G. Lagoudakis, and D. G. Lidzey, “Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity,” ACS Photon. 5, 4343–4351 (2018).
[Crossref]

H. Choi and A. M. Armani, “High efficiency Raman lasers based on Zr-doped silica hybrid microcavities,” ACS Photon. 3, 2383–2388 (2016).
[Crossref]

ACTA Phys. Pol. A (1)

Ph. Colomban and A. Slodczyk, “Raman intensity: an important tool in the study of nanomaterials and nanostructures,” ACTA Phys. Pol. A 116, 7–12 (2009).
[Crossref]

Adv. Drug Deliv. Rev. (1)

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics from in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref]

Appl. Phys. Lett. (3)

J. J. Barrett and R. F. Begley, “Low-power cw generation of coherent anti-Stokes Raman radiation in CH4 gas,” Appl. Phys. Lett. 27, 129–131 (1975).
[Crossref]

G. Eckhardt, D. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and alpha-sulfur single crystals,” Appl. Phys. Lett. 3, 137–138 (1963).
[Crossref]

I. Itzkan and D. A. Leonard, “Observation of coherent anti-Stokes Raman scattering from liquid water,” Appl. Phys. Lett. 26, 106–108 (1975).
[Crossref]

Appl. Spectrosc. (1)

Biophys. J. (1)

X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728–735 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Rittner, A. Hope, T. Muller-Wirts, and B. Wellegehausen, “Continuous anti-Stokes Raman lasers in a He-Ne laser discharge,” IEEE J. Quantum Electron. 28, 342–347 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

M. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

M. Motzkus, S. Pedersen, and A. Zewail, “Femtosecond real-time probing of reactions. 19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions,” J. Phys. Chem. 100, 5620–5633 (1996).
[Crossref]

Nano Lett. (1)

Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, and S. Link, “Anti-Stokes emission from hot carriers in gold nanorods,” Nano Lett. 19, 1067–1073 (2019).
[Crossref]

Nature (5)

E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu, and A. H. Zewail, “Femtosecond laser control of a chemical reaction,” Nature 355, 66–68 (1992).
[Crossref]

C. Raman and K. Krishnan, “A new type of secondary radiation,” Nature 121, 501–502 (1928).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Opt. Commun. (1)

M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, M. Hernanz, and P. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

Optica (2)

Photon. Res. (2)

Phys. Med. Biol. (1)

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

B. Hudson, W. Hetherington, S. Cramer, I. Chabay, and G. K. Klauminzer, “Resonance enhanced coherent anti-Stokes Raman scattering,” Proc. Natl. Acad. Sci. USA 73, 3798–3802 (1976).
[Crossref]

C. Evans, E. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Sci. Adv. (1)

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Science (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Energy level diagram of redshifted SRS and blueshifted SARS with the vibrational state of the gain medium. νPump, νSRS, νSARS, and νVibration correspond to the frequencies of pump, SRS, SARS, and vibrational optical phonon, respectively. (b) Schematic image of generated SRS (red) and SARS (blue) with pump (purple) in on-chip metal-doped silica hybrid toroid resonator with tapered optical fiber waveguide.
Fig. 2.
Fig. 2. COMSOL Multiphysics FEM simulation results. (a) Optical field distribution in the coated toroidal microcavity. The major and minor diameters of the silica toroid are 55 and 6 μm, respectively. The refractive indices of coatings are 1.454 for undoped and 1.520 for metal-doped layer (either Zr or Ti) with thickness of 400 nm. (b) Fundamental mode area as a function of the refractive index of coating (ncoating) and the minor diameter. The coating thickness is fixed to 400 nm, and the wavelength is 1550 nm.
Fig. 3.
Fig. 3. (a) SEM image of a solgel-coated device indicating major (D) and minor (d) diameters; (b) schematic image of testing setup with a laser, a tapered optical fiber, a photodetector (PD) connected to an O-scope, an OSA, and on-chip silica microcavity. EDS spectra from (c) Zr- and (d) Ti-doped silica hybrid devices. The silicon (purple) has peaks at 1.740 and 3.49 keV. The oxygen (green) has a peak at 0.523 keV. The Zr (red) and Ti (blue) have peaks at 2.042 and 4.510 keV, respectively. Each peak is fitted to a Gaussian.
Fig. 4.
Fig. 4. Intrinsic Q of a series of undoped, Zr-doped, and Ti-doped silica hybrid devices.
Fig. 5.
Fig. 5. Emission spectra of (a) undoped, (b) Zr-, and (c) Ti-doped devices with similar coupled power (1.5  mW) into the devices obtained via OSA. Zoom-in spectra below show generated SARS.
Fig. 6.
Fig. 6. Generated SRS (hollow symbol) and SARS (solid symbol) shift from various devices. As expected, the Stokes and anti-Stokes shifts are identical, providing evidence that the upconverted photons are the result of the anti-Stokes process.
Fig. 7.
Fig. 7. (a) SRS and (b) SARS power as a function of the coupled power into the devices; (c) ratio of SARS versus SRS power from various devices.
Fig. 8.
Fig. 8. (a) Threshold and (b) efficiency values of SRS, and (c) threshold and (d) efficiency values of SARS from various devices.

Tables (1)

Tables Icon

Table 1. Summary of All Results

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

AA=2γΔωAPAPAR*(eiΔωt1),
ISARS=(4ωPn2tεc)2[sin(Δωt/2)Δωt/2]2IPump2ISRSAeff2.

Metrics