Abstract

Optical microcavities, which support whispering gallery modes, have attracted tremendous attention in both fundamental research and potential applications. The emerging of two-dimensional materials offers a feasible solution to improve the performance of traditional microcavity-based optical devices. Besides, the integration of two-dimensional materials with microcavities will benefit the research of heterogeneous materials on novel devices in photonics and optoelectronics, which is dominated by the strongly enhanced light–matter interaction. This review focuses on the research of heterogeneous two-dimensional-material whispering-gallery-mode microcavities, opening a myriad of lab-on-chip applications, such as optomechanics, quantum photonics, comb generation, and low-threshold microlasing.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Whispering-gallery mode hexagonal micro-/nanocavity lasers [Invited]

Yue-De Yang, Min Tang, Fu-Li Wang, Zhi-Xiong Xiao, Jin-Long Xiao, and Yong-Zhen Huang
Photon. Res. 7(5) 594-607 (2019)

Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities

Mingming Jiang, Jitao Li, Chunxiang Xu, Shuangpeng Wang, Chongxin Shan, Bin Xuan, Yongqiang Ning, and Dezhen Shen
Opt. Express 22(20) 23836-23850 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  2. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
    [Crossref]
  3. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  4. L. Ge, L. Feng, and H. G. L. Schwefel, “Optical microcavities: new understandings and developments,” Photon. Res. 5, M1–M3 (2017).
    [Crossref]
  5. Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
    [Crossref]
  6. X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
    [Crossref]
  7. W. Chen, J. Zhang, B. Peng, S. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor [invited],” Photon. Res. 6, A23–A30 (2018).
    [Crossref]
  8. X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
    [Crossref]
  9. Q. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China Phys. Mech. Astron. 62, 074231 (2019).
    [Crossref]
  10. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
    [Crossref]
  11. V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011–12016 (2007).
    [Crossref]
  12. M. G. Senthil, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19, 20773–20784 (2011).
    [Crossref]
  13. Y. Xiao, S. K. Ozdemir, V. Gaddam, C. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16, 21462–21475 (2008).
    [Crossref]
  14. Q. Song, W. Fang, B. Liu, S. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
    [Crossref]
  15. G. Huang and Y. Mei, “Electromagnetic wave propagation in a rolled-up tubular microcavity,” J. Mater. Chem. C 5, 2758–2770 (2017).
    [Crossref]
  16. J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
    [Crossref]
  17. J. Wang, T. Zhan, G. Huang, X. Cui, X. Hu, and Y. Mei, “Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes,” Opt. Express 20, 18555–18567 (2012).
    [Crossref]
  18. C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
    [Crossref]
  19. Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
    [Crossref]
  20. X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, and Y. Mei, “Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity,” Adv. Opt. Mater. 4, 936–942 (2016).
    [Crossref]
  21. Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
    [Crossref]
  22. Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
    [Crossref]
  23. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
    [Crossref]
  24. Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, and S. Xiao, “Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers,” Adv. Opt. Mater. 4, 472–479 (2016).
    [Crossref]
  25. A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
    [Crossref]
  26. M. Li, L. Zhang, L. Tong, and D. Dai, “Hybrid silicon nonlinear photonics [invited],” Photon. Res. 6, B13–B22 (2018).
    [Crossref]
  27. X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
    [Crossref]
  28. D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
    [Crossref]
  29. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
    [Crossref]
  30. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  31. A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
    [Crossref]
  32. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
    [Crossref]
  33. M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chem. Rev. 110, 132–145 (2010).
    [Crossref]
  34. J. Wang, S. Deng, Z. Liu, and Z. Liu, “The rare two-dimensional materials with Dirac cones,” Natl. Sci. Rev. 2, 22–39 (2015).
    [Crossref]
  35. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
    [Crossref]
  36. K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
    [Crossref]
  37. Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005).
    [Crossref]
  38. Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8, 4133–4156 (2014).
    [Crossref]
  39. C. Si, Z. Sun, and F. Liu, “Strain engineering of graphene: a review,” Nanoscale 8, 3207–3217 (2016).
    [Crossref]
  40. D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, and Z. Shen, “Engineering the electronic structure of graphene,” Adv. Mater. 24, 4055–4069 (2012).
    [Crossref]
  41. C. Stampfer, J. Guettinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
    [Crossref]
  42. X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
    [Crossref]
  43. P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25, 4918–4924 (2013).
    [Crossref]
  44. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
    [Crossref]
  45. O. V. Kotov and Y. E. Lozovik, “Cavity plasmon polaritons in monolayer graphene,” Phys. Lett. A 375, 2573–2576 (2011).
    [Crossref]
  46. L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
    [Crossref]
  47. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
    [Crossref]
  48. J. Zhao, W. Qiu, Y. Huang, J. Wang, Q. Kan, and J. Pan, “Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks,” Opt. Lett. 39, 5527–5530 (2014).
    [Crossref]
  49. F. Zangeneh-Nejad and R. Safian, “A graphene-based THz ring resonator for label-free sensing,” IEEE Sens. J. 16, 4338–4344 (2016).
    [Crossref]
  50. H. Fan, C. Xia, L. Fan, L. Wang, and M. Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
    [Crossref]
  51. X. Zhang, H. Fan, X. Jiang, and M. Xiao, “Controllable coupling of an ultra-high-Q microtoroid cavity with monolayer graphene,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JTu5A-79.
    [Crossref]
  52. Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors 18, 941 (2018).
    [Crossref]
  53. B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
    [Crossref]
  54. C. Melios, C. E. Giusca, V. Panchal, and O. Kazakova, “Water on graphene: review of recent progress,” 2D Mater. 5, 22001 (2018).
    [Crossref]
  55. B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiane, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22, 28154–28162 (2014).
    [Crossref]
  56. B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, and Q. Bao, “The roadmap of graphene-based optical biochemical sensors,” Adv. Funct. Mater. 27, 1603918 (2017).
    [Crossref]
  57. Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
    [Crossref]
  58. C. Yu, Y. Wu, X. Liu, B. Yao, F. Fu, Y. Gong, Y. Rao, and Y. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6, 727–733 (2016).
    [Crossref]
  59. B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
    [Crossref]
  60. A. Madani, S. M. Harazim, V. A. Bolanos Quinones, M. Kleinert, A. Finn, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing,” Opt. Lett. 42, 486–489 (2017).
    [Crossref]
  61. U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
    [Crossref]
  62. B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
    [Crossref]
  63. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
    [Crossref]
  64. M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. De Angelis, A. Locatelli, and A. Capobianco, “Graphene-assisted critically-coupled optical ring modulator,” Opt. Express 20, 23144–23155 (2012).
    [Crossref]
  65. C. T. Phare, Y. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9, 511–514 (2015).
    [Crossref]
  66. Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
    [Crossref]
  67. S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
    [Crossref]
  68. S. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
    [Crossref]
  69. K. Wu, Y. Wang, C. Qiu, and J. Chen, “Thermo-optic all-optical devices based on two-dimensional materials,” Photon. Res. 6, C22 (2018).
    [Crossref]
  70. C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
    [Crossref]
  71. M. Mohsin, D. Schall, M. Otto, B. Chmielak, S. Suckow, and D. Neumaier, “Towards the predicted high performance of waveguide integrated electro-refractive phase modulators based on graphene,” IEEE Photon. J. 9, 7800507 (2017).
    [Crossref]
  72. C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14, 6811–6815 (2014).
    [Crossref]
  73. Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15, 4393–4400 (2015).
    [Crossref]
  74. Y. Gao, W. Zhou, X. Sun, H. K. Tsang, and C. Shu, “Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si3N4 ring resonator,” Opt. Lett. 42, 1950–1953 (2017).
    [Crossref]
  75. Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, and S. Yan, “Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system,” Sci. Rep. 6, 38891 (2016).
    [Crossref]
  76. B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
    [Crossref]
  77. A. Villois and D. V. Skryabin, “Soliton and quasi-soliton frequency combs due to second harmonic generation in microresonators,” Opt. Express 27, 7098–7107 (2019).
    [Crossref]
  78. M. Jiang, J. Li, C. Xu, S. Wang, C. Shan, B. Xuan, Y. Ning, and D. Shen, “Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities,” Opt. Express 22, 23836–23850 (2014).
    [Crossref]
  79. J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, and Z. Shi, “Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity,” Sci. Rep. 5, 9263 (2015).
    [Crossref]
  80. J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
    [Crossref]
  81. J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9, 6794–6800 (2015).
    [Crossref]
  82. C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
    [Crossref]
  83. H. Baek, C. Lee, K. Chung, and G. Yi, “Epitaxial GaN microdisk lasers grown on graphene microdots,” Nano Lett. 13, 2782–2785 (2013).
    [Crossref]
  84. K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
    [Crossref]
  85. J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
    [Crossref]
  86. Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, and H. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3, 1123 (2012).
    [Crossref]
  87. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
    [Crossref]
  88. Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, and O. G. Schmidt, “Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10  nm gap,” Adv. Opt. Mater. 6, 1700984 (2018).
    [Crossref]
  89. G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
    [Crossref]
  90. A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
    [Crossref]
  91. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
    [Crossref]
  92. C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
    [Crossref]
  93. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
    [Crossref]
  94. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
    [Crossref]
  95. R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives [invited],” Photon. Res. 3, A30–A42 (2015).
    [Crossref]
  96. J. Liu, T. Wang, X. Li, and N. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115, 193511 (2014).
    [Crossref]
  97. S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
    [Crossref]
  98. L. Reeves, Y. Wang, and T. F. Krauss, “2D material microcavity light emitters: to lase or not to lase?” Adv. Opt. Mater. 6, 1800272 (2018).
    [Crossref]
  99. T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2017).
    [Crossref]
  100. J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, “Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter,” Nano Lett. 15, 1967–1971 (2015).
    [Crossref]
  101. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
    [Crossref]
  102. Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
    [Crossref]
  103. O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
    [Crossref]
  104. C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
    [Crossref]
  105. R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
    [Crossref]
  106. J. C. Reed, S. C. Malek, F. Yi, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Photothermal characterization of MoS2 emission coupled to a microdisk cavity,” Appl. Phys. Lett. 109, 193109 (2016).
    [Crossref]
  107. Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
    [Crossref]
  108. B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9, 262–267 (2014).
    [Crossref]
  109. D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
    [Crossref]
  110. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
    [Crossref]
  111. T. Ren, P. Song, J. Chen, and K. P. Loh, “Whisper gallery modes in monolayer tungsten disulfide-hexagonal boron nitride optical cavity,” ACS Photon. 5, 353–358 (2017).
    [Crossref]
  112. C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
    [Crossref]
  113. X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
    [Crossref]
  114. P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
    [Crossref]
  115. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
    [Crossref]
  116. Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
    [Crossref]
  117. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
    [Crossref]
  118. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
    [Crossref]
  119. S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
    [Crossref]
  120. Y. Yin, S. L. Li, S. Giudicatti, C. Y. Jiang, L. B. Ma, and O. G. Schmidt, “Strongly hybridized plasmon-photon modes in optoplasmonic microtubular cavities,” Phys. Rev. B 92, 241403 (2015).
    [Crossref]
  121. Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
    [Crossref]
  122. Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Hybridization of photon-plasmon modes in metal-coated microtubular cavities,” Phys. Rev. A 94, 013832 (2016).
    [Crossref]
  123. Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
    [Crossref]
  124. Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
    [Crossref]
  125. L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
    [Crossref]

2019 (7)

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Q. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China Phys. Mech. Astron. 62, 074231 (2019).
[Crossref]

A. Villois and D. V. Skryabin, “Soliton and quasi-soliton frequency combs due to second harmonic generation in microresonators,” Opt. Express 27, 7098–7107 (2019).
[Crossref]

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

2018 (15)

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

L. Reeves, Y. Wang, and T. F. Krauss, “2D material microcavity light emitters: to lase or not to lase?” Adv. Opt. Mater. 6, 1800272 (2018).
[Crossref]

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, and O. G. Schmidt, “Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10  nm gap,” Adv. Opt. Mater. 6, 1700984 (2018).
[Crossref]

W. Chen, J. Zhang, B. Peng, S. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor [invited],” Photon. Res. 6, A23–A30 (2018).
[Crossref]

Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
[Crossref]

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

M. Li, L. Zhang, L. Tong, and D. Dai, “Hybrid silicon nonlinear photonics [invited],” Photon. Res. 6, B13–B22 (2018).
[Crossref]

H. Fan, C. Xia, L. Fan, L. Wang, and M. Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors 18, 941 (2018).
[Crossref]

C. Melios, C. E. Giusca, V. Panchal, and O. Kazakova, “Water on graphene: review of recent progress,” 2D Mater. 5, 22001 (2018).
[Crossref]

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

K. Wu, Y. Wang, C. Qiu, and J. Chen, “Thermo-optic all-optical devices based on two-dimensional materials,” Photon. Res. 6, C22 (2018).
[Crossref]

2017 (17)

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

M. Mohsin, D. Schall, M. Otto, B. Chmielak, S. Suckow, and D. Neumaier, “Towards the predicted high performance of waveguide integrated electro-refractive phase modulators based on graphene,” IEEE Photon. J. 9, 7800507 (2017).
[Crossref]

Y. Gao, W. Zhou, X. Sun, H. K. Tsang, and C. Shu, “Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si3N4 ring resonator,” Opt. Lett. 42, 1950–1953 (2017).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

A. Madani, S. M. Harazim, V. A. Bolanos Quinones, M. Kleinert, A. Finn, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing,” Opt. Lett. 42, 486–489 (2017).
[Crossref]

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, and Q. Bao, “The roadmap of graphene-based optical biochemical sensors,” Adv. Funct. Mater. 27, 1603918 (2017).
[Crossref]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
[Crossref]

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

G. Huang and Y. Mei, “Electromagnetic wave propagation in a rolled-up tubular microcavity,” J. Mater. Chem. C 5, 2758–2770 (2017).
[Crossref]

L. Ge, L. Feng, and H. G. L. Schwefel, “Optical microcavities: new understandings and developments,” Photon. Res. 5, M1–M3 (2017).
[Crossref]

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2017).
[Crossref]

T. Ren, P. Song, J. Chen, and K. P. Loh, “Whisper gallery modes in monolayer tungsten disulfide-hexagonal boron nitride optical cavity,” ACS Photon. 5, 353–358 (2017).
[Crossref]

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
[Crossref]

2016 (15)

Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
[Crossref]

Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Hybridization of photon-plasmon modes in metal-coated microtubular cavities,” Phys. Rev. A 94, 013832 (2016).
[Crossref]

J. C. Reed, S. C. Malek, F. Yi, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Photothermal characterization of MoS2 emission coupled to a microdisk cavity,” Appl. Phys. Lett. 109, 193109 (2016).
[Crossref]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, and Y. Mei, “Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity,” Adv. Opt. Mater. 4, 936–942 (2016).
[Crossref]

Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
[Crossref]

Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, and S. Xiao, “Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers,” Adv. Opt. Mater. 4, 472–479 (2016).
[Crossref]

F. Zangeneh-Nejad and R. Safian, “A graphene-based THz ring resonator for label-free sensing,” IEEE Sens. J. 16, 4338–4344 (2016).
[Crossref]

C. Yu, Y. Wu, X. Liu, B. Yao, F. Fu, Y. Gong, Y. Rao, and Y. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6, 727–733 (2016).
[Crossref]

C. Si, Z. Sun, and F. Liu, “Strain engineering of graphene: a review,” Nanoscale 8, 3207–3217 (2016).
[Crossref]

Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, and S. Yan, “Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system,” Sci. Rep. 6, 38891 (2016).
[Crossref]

S. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
[Crossref]

2015 (17)

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15, 4393–4400 (2015).
[Crossref]

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

C. T. Phare, Y. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9, 511–514 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

J. Wang, S. Deng, Z. Liu, and Z. Liu, “The rare two-dimensional materials with Dirac cones,” Natl. Sci. Rev. 2, 22–39 (2015).
[Crossref]

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9, 6794–6800 (2015).
[Crossref]

J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, and Z. Shi, “Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity,” Sci. Rep. 5, 9263 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives [invited],” Photon. Res. 3, A30–A42 (2015).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, “Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter,” Nano Lett. 15, 1967–1971 (2015).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
[Crossref]

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Y. Yin, S. L. Li, S. Giudicatti, C. Y. Jiang, L. B. Ma, and O. G. Schmidt, “Strongly hybridized plasmon-photon modes in optoplasmonic microtubular cavities,” Phys. Rev. B 92, 241403 (2015).
[Crossref]

2014 (17)

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

J. Liu, T. Wang, X. Li, and N. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115, 193511 (2014).
[Crossref]

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9, 262–267 (2014).
[Crossref]

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

M. Jiang, J. Li, C. Xu, S. Wang, C. Shan, B. Xuan, Y. Ning, and D. Shen, “Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities,” Opt. Express 22, 23836–23850 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8, 4133–4156 (2014).
[Crossref]

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
[Crossref]

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14, 6811–6815 (2014).
[Crossref]

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

J. Zhao, W. Qiu, Y. Huang, J. Wang, Q. Kan, and J. Pan, “Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks,” Opt. Lett. 39, 5527–5530 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiane, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22, 28154–28162 (2014).
[Crossref]

2013 (4)

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25, 4918–4924 (2013).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

H. Baek, C. Lee, K. Chung, and G. Yi, “Epitaxial GaN microdisk lasers grown on graphene microdots,” Nano Lett. 13, 2782–2785 (2013).
[Crossref]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

2012 (9)

A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
[Crossref]

Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, and H. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3, 1123 (2012).
[Crossref]

D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, and Z. Shen, “Engineering the electronic structure of graphene,” Adv. Mater. 24, 4055–4069 (2012).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. De Angelis, A. Locatelli, and A. Capobianco, “Graphene-assisted critically-coupled optical ring modulator,” Opt. Express 20, 23144–23155 (2012).
[Crossref]

J. Wang, T. Zhan, G. Huang, X. Cui, X. Hu, and Y. Mei, “Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes,” Opt. Express 20, 18555–18567 (2012).
[Crossref]

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

2011 (5)

M. G. Senthil, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19, 20773–20784 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

O. V. Kotov and Y. E. Lozovik, “Cavity plasmon polaritons in monolayer graphene,” Phys. Lett. A 375, 2573–2576 (2011).
[Crossref]

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[Crossref]

2010 (2)

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chem. Rev. 110, 132–145 (2010).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

2009 (4)

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[Crossref]

C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
[Crossref]

Q. Song, W. Fang, B. Liu, S. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[Crossref]

2008 (5)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Y. Xiao, S. K. Ozdemir, V. Gaddam, C. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16, 21462–21475 (2008).
[Crossref]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref]

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

C. Stampfer, J. Guettinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
[Crossref]

2007 (2)

2005 (1)

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005).
[Crossref]

2003 (4)

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Agarwal, R.

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

Aharonovich, I.

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Ajayan, P. M.

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14, 6811–6815 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Allen, M. J.

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chem. Rev. 110, 132–145 (2010).
[Crossref]

Amand, T.

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

Amin, R.

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

An, Z.

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

Andres, M. V.

Andrews, A. M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Arefe, G.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Aslan, O. B.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Autere, A.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

Baek, H.

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

H. Baek, C. Lee, K. Chung, and G. Yi, “Epitaxial GaN microdisk lasers grown on graphene microdots,” Nano Lett. 13, 2782–2785 (2013).
[Crossref]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Balocchi, A.

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

Bao, Q.

B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, and Q. Bao, “The roadmap of graphene-based optical biochemical sensors,” Adv. Funct. Mater. 27, 1603918 (2017).
[Crossref]

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Barbone, M.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

Barclay, P. E.

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Bartels, L.

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

Baugher, B. W. H.

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9, 262–267 (2014).
[Crossref]

Behera, B.

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Belle, B. D.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Ber, S. K.

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
[Crossref]

Berkelbach, T. C.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Bo, F.

Boettner, S.

Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
[Crossref]

Bog, U.

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
[Crossref]

Bolanos Quinones, V. A.

Boscolo, S.

Bouet, L.

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

Brinkmann, F.

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
[Crossref]

Britnell, L.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Broell, M.

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

Buck, J. R.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[Crossref]

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Cao, H.

Q. Song, W. Fang, B. Liu, S. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[Crossref]

Cao, Q.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Capobianco, A.

Cardenas, J.

C. T. Phare, Y. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9, 511–514 (2015).
[Crossref]

Casiraghi, C.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Castro Neto, A. H.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Chang, H.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8, 4133–4156 (2014).
[Crossref]

Chen, B.

Chen, H.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

Chen, J.

K. Wu, Y. Wang, C. Qiu, and J. Chen, “Thermo-optic all-optical devices based on two-dimensional materials,” Photon. Res. 6, C22 (2018).
[Crossref]

T. Ren, P. Song, J. Chen, and K. P. Loh, “Whisper gallery modes in monolayer tungsten disulfide-hexagonal boron nitride optical cavity,” ACS Photon. 5, 353–358 (2017).
[Crossref]

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Chen, K.

Chen, S.

Chen, W.

W. Chen, J. Zhang, B. Peng, S. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor [invited],” Photon. Res. 6, A23–A30 (2018).
[Crossref]

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

Chen, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
[Crossref]

Chen, X. H.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Chen, Y.

Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

C. Yu, Y. Wu, X. Liu, B. Yao, F. Fu, Y. Gong, Y. Rao, and Y. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6, 727–733 (2016).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Chen, Y. F.

Chen, Z.

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

Cheng, C.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

Cheng, Y.

Chernikov, A.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Chiane, K. S.

Chmielak, B.

M. Mohsin, D. Schall, M. Otto, B. Chmielak, S. Suckow, and D. Neumaier, “Towards the predicted high performance of waveguide integrated electro-refractive phase modulators based on graphene,” IEEE Photon. J. 9, 7800507 (2017).
[Crossref]

Choi, C.

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Chu, P. K.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

Chung, K.

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

H. Baek, C. Lee, K. Chung, and G. Yi, “Epitaxial GaN microdisk lasers grown on graphene microdots,” Nano Lett. 13, 2782–2785 (2013).
[Crossref]

Churchill, H. O. H.

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9, 262–267 (2014).
[Crossref]

Clark, C.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Cubukcu, E.

J. C. Reed, S. C. Malek, F. Yi, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Photothermal characterization of MoS2 emission coupled to a microdisk cavity,” Appl. Phys. Lett. 109, 193109 (2016).
[Crossref]

J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, “Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter,” Nano Lett. 15, 1967–1971 (2015).
[Crossref]

Cui, Q.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

Cui, X.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

J. Wang, T. Zhan, G. Huang, X. Cui, X. Hu, and Y. Mei, “Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes,” Opt. Express 20, 18555–18567 (2012).
[Crossref]

Dai, D.

Dai, J.

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9, 6794–6800 (2015).
[Crossref]

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

Dai, Y.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

Dalir, H.

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

Daniel Lee, Y.

C. T. Phare, Y. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9, 511–514 (2015).
[Crossref]

Davydov, V. Y.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

De Angelis, C.

Del Pozo-Zamudio, O.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Deng, S.

J. Wang, S. Deng, Z. Liu, and Z. Liu, “The rare two-dimensional materials with Dirac cones,” Natl. Sci. Rev. 2, 22–39 (2015).
[Crossref]

Detz, H.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Di, Z.

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

Diez, A.

Ding, Y.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15, 4393–4400 (2015).
[Crossref]

Djavid, M.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Donegan, J. F.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Dong, C.

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

Y. Xiao, S. K. Ozdemir, V. Gaddam, C. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16, 21462–21475 (2008).
[Crossref]

Du, W.

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Duan, W.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Duan, X.

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Duesberg, G. S.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Dufferwiel, S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Eckmann, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Elías, A. L.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

Eliseyev, I. A.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Empante, T. A.

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

Engemaier, V.

Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
[Crossref]

Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Hybridization of photon-plasmon modes in metal-coated microtubular cavities,” Phys. Rev. A 94, 013832 (2016).
[Crossref]

Englund, D.

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Ensslin, K.

C. Stampfer, J. Guettinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
[Crossref]

Fal’Ko, V. I.

K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Fan, D.

Fan, H.

H. Fan, C. Xia, L. Fan, L. Wang, and M. Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

X. Zhang, H. Fan, X. Jiang, and M. Xiao, “Controllable coupling of an ultra-high-Q microtoroid cavity with monolayer graphene,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JTu5A-79.
[Crossref]

Fan, L.

H. Fan, C. Xia, L. Fan, L. Wang, and M. Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Fan, X.

W. Chen, J. Zhang, B. Peng, S. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor [invited],” Photon. Res. 6, A23–A30 (2018).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

Fang, W.

Q. Song, W. Fang, B. Liu, S. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[Crossref]

Fang, Y.

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
[Crossref]

X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, and Y. Mei, “Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity,” Adv. Opt. Mater. 4, 936–942 (2016).
[Crossref]

Fang, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Fathipour, S.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Feng, D.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Feng, L.

L. Ge, L. Feng, and H. G. L. Schwefel, “Optical microcavities: new understandings and developments,” Photon. Res. 5, M1–M3 (2017).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Feng, P. X. L.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

Feng, Z.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Ferrari, A. C.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

Finn, A.

Flores, J. F.

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

Frandsen, L. H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15, 4393–4400 (2015).
[Crossref]

Fröch, J. E.

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Fryett, T.

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2017).
[Crossref]

Fu, F.

Fuchs, H.

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
[Crossref]

Furchi, M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Gaddam, V.

Gan, Q.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

Gan, S.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

Gan, X.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Gao, F.

Gao, G.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

Gao, W.

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14, 6811–6815 (2014).
[Crossref]

Gao, Y.

Y. Gao, W. Zhou, X. Sun, H. K. Tsang, and C. Shu, “Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si3N4 ring resonator,” Opt. Lett. 42, 1950–1953 (2017).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

García De Abajo, F. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Ge, L.

L. Ge, L. Feng, and H. G. L. Schwefel, “Optical microcavities: new understandings and developments,” Photon. Res. 5, M1–M3 (2017).
[Crossref]

Ge, Q.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Geim, A. K.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Georgiou, T.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Gerber, I.

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Gil, B.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Gimeno, B.

Giudicatti, S.

Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Hybridization of photon-plasmon modes in metal-coated microtubular cavities,” Phys. Rev. A 94, 013832 (2016).
[Crossref]

Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
[Crossref]

Y. Yin, S. L. Li, S. Giudicatti, C. Y. Jiang, L. B. Ma, and O. G. Schmidt, “Strongly hybridized plasmon-photon modes in optoplasmonic microtubular cavities,” Phys. Rev. B 92, 241403 (2015).
[Crossref]

Giusca, C. E.

C. Melios, C. E. Giusca, V. Panchal, and O. Kazakova, “Water on graphene: review of recent progress,” 2D Mater. 5, 22001 (2018).
[Crossref]

Gong, Q.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

Gong, Y.

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

C. Yu, Y. Wu, X. Liu, B. Yao, F. Fu, Y. Gong, Y. Rao, and Y. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6, 727–733 (2016).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiane, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22, 28154–28162 (2014).
[Crossref]

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[Crossref]

Gorbachev, R. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Govindaraj, A.

C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
[Crossref]

Goykhman, I.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

Graf, D.

C. Stampfer, J. Guettinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
[Crossref]

Grigorenko, A. N.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Gu, B.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Gu, Z.

Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, and S. Xiao, “Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers,” Adv. Opt. Mater. 4, 472–479 (2016).
[Crossref]

Guettinger, J.

C. Stampfer, J. Guettinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
[Crossref]

Guo, J.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

Guo, Q.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Guo, X.

Guo, Z.

Halas, N. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Han, M.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

Hao, Q.

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, and O. G. Schmidt, “Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10  nm gap,” Adv. Opt. Mater. 6, 1700984 (2018).
[Crossref]

Hao, S.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Harazim, S. M.

Hasan, T.

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

He, L.

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

He, S.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Healey, C.

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Heinz, T. F.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Heitmann, D.

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref]

Hemnani, R. A.

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

Hersam, M. C.

D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
[Crossref]

Heyn, C.

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref]

Hill, H. M.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Hirtz, M.

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
[Crossref]

Ho, S.

Q. Song, W. Fang, B. Liu, S. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[Crossref]

Hoff, M.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Hone, J.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Hong, X.

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Howe, R. C. T.

Hu, G.

Hu, H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15, 4393–4400 (2015).
[Crossref]

Hu, N.

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

Hu, W.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Hu, X.

Huang, B.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Huang, G.

G. Huang and Y. Mei, “Electromagnetic wave propagation in a rolled-up tubular microcavity,” J. Mater. Chem. C 5, 2758–2770 (2017).
[Crossref]

X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, and Y. Mei, “Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity,” Adv. Opt. Mater. 4, 936–942 (2016).
[Crossref]

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

J. Wang, T. Zhan, G. Huang, X. Cui, X. Hu, and Y. Mei, “Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes,” Opt. Express 20, 18555–18567 (2012).
[Crossref]

Huang, S.

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

Huang, S. W.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Huang, Y.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

J. Zhao, W. Qiu, Y. Huang, J. Wang, Q. Kan, and J. Pan, “Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks,” Opt. Lett. 39, 5527–5530 (2014).
[Crossref]

Hwang, M.

Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, and H. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3, 1123 (2012).
[Crossref]

Hybertsen, M. S.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Hyun, J. K.

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

Ihn, T.

C. Stampfer, J. Guettinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
[Crossref]

Imoto, N.

Jalil, R.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Janisch, C.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

Jarillo-Herrero, P.

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9, 262–267 (2014).
[Crossref]

Jariwala, D.

D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
[Crossref]

Javerzac-Galy, C.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

Ji, D.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

Ji, Q.

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Jia, H.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

Jia, Y.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Jiang, C.

Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
[Crossref]

Jiang, C. Y.

Y. Yin, S. L. Li, S. Giudicatti, C. Y. Jiang, L. B. Ma, and O. G. Schmidt, “Strongly hybridized plasmon-photon modes in optoplasmonic microtubular cavities,” Phys. Rev. B 92, 241403 (2015).
[Crossref]

Jiang, G.

Jiang, M.

J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, and Z. Shi, “Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity,” Sci. Rep. 5, 9263 (2015).
[Crossref]

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

M. Jiang, J. Li, C. Xu, S. Wang, C. Shan, B. Xuan, Y. Ning, and D. Shen, “Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities,” Opt. Express 22, 23836–23850 (2014).
[Crossref]

Jiang, X.

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

X. Zhang, H. Fan, X. Jiang, and M. Xiao, “Controllable coupling of an ultra-high-Q microtoroid cavity with monolayer graphene,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JTu5A-79.
[Crossref]

Jin, C.

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Johnson, A. T. C.

J. C. Reed, S. C. Malek, F. Yi, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Photothermal characterization of MoS2 emission coupled to a microdisk cavity,” Appl. Phys. Lett. 109, 193109 (2016).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Jung, Y.

Jussila, H.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

Kalt, H.

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
[Crossref]

Kan, Q.

Kaner, R. B.

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chem. Rev. 110, 132–145 (2010).
[Crossref]

Kang, J.

Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, and H. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3, 1123 (2012).
[Crossref]

Karademir, E.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Kazakova, O.

C. Melios, C. E. Giusca, V. Panchal, and O. Kazakova, “Water on graphene: review of recent progress,” 2D Mater. 5, 22001 (2018).
[Crossref]

Kazanov, D. R.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Kelleher, E. J. R.

Khorasani, S.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

Khurgin, J. B.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

Kim, J.

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Kim, M.

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

Kim, P.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005).
[Crossref]

Kim, S.

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Kim, Y.

Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, and H. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3, 1123 (2012).
[Crossref]

Kim, Y.-J.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Kimble, H. J.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[Crossref]

Kipp, T.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref]

Kippenberg, T. J.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

Kiravittaya, S.

Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
[Crossref]

Kirilenko, D. A.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Klang, P.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Kleinert, M.

Kono, J.

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14, 6811–6815 (2014).
[Crossref]

Koos, C.

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
[Crossref]

Kotov, O. V.

O. V. Kotov and Y. E. Lozovik, “Cavity plasmon polaritons in monolayer graphene,” Phys. Lett. A 375, 2573–2576 (2011).
[Crossref]

Krauss, T. F.

L. Reeves, Y. Wang, and T. F. Krauss, “2D material microcavity light emitters: to lase or not to lase?” Adv. Opt. Mater. 6, 1800272 (2018).
[Crossref]

Krizhanovskii, D. N.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Krohn, A.

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

Kumar, A.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

Kwon, S.

Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, and H. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3, 1123 (2012).
[Crossref]

Kwong, D.

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

Kwong, D. L.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Lagarde, D.

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

Lai, L.

D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, and Z. Shen, “Engineering the electronic structure of graphene,” Adv. Mater. 24, 4055–4069 (2012).
[Crossref]

Lake, D. P.

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Lee, C.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

H. Baek, C. Lee, K. Chung, and G. Yi, “Epitaxial GaN microdisk lasers grown on graphene microdots,” Nano Lett. 13, 2782–2785 (2013).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Lee, G.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

Lee, J. M.

Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, and H. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3, 1123 (2012).
[Crossref]

Lee, K.

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

Li, B.

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

Li, C.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Li, F.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Li, J.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, and S. Xiao, “Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers,” Adv. Opt. Mater. 4, 472–479 (2016).
[Crossref]

J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, and Z. Shi, “Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity,” Sci. Rep. 5, 9263 (2015).
[Crossref]

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9, 6794–6800 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

M. Jiang, J. Li, C. Xu, S. Wang, C. Shan, B. Xuan, Y. Ning, and D. Shen, “Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities,” Opt. Express 22, 23836–23850 (2014).
[Crossref]

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

Li, L.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Li, M.

Li, S.

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
[Crossref]

B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, and Q. Bao, “The roadmap of graphene-based optical biochemical sensors,” Adv. Funct. Mater. 27, 1603918 (2017).
[Crossref]

Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
[Crossref]

Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
[Crossref]

Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Hybridization of photon-plasmon modes in metal-coated microtubular cavities,” Phys. Rev. A 94, 013832 (2016).
[Crossref]

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

Li, S. L.

Y. Yin, S. L. Li, S. Giudicatti, C. Y. Jiang, L. B. Ma, and O. G. Schmidt, “Strongly hybridized plasmon-photon modes in optoplasmonic microtubular cavities,” Phys. Rev. B 92, 241403 (2015).
[Crossref]

Li, W.

Li, X.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

J. Liu, T. Wang, X. Li, and N. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115, 193511 (2014).
[Crossref]

Li, Y.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
[Crossref]

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

Li, Z.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Liang, O.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25, 4918–4924 (2013).
[Crossref]

Lilley, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Lin, B.

B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, and Q. Bao, “The roadmap of graphene-based optical biochemical sensors,” Adv. Funct. Mater. 27, 1603918 (2017).
[Crossref]

Lin, S.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

Lin, X.

X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, and Y. Mei, “Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity,” Adv. Opt. Mater. 4, 936–942 (2016).
[Crossref]

Lin, Y.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9, 6794–6800 (2015).
[Crossref]

J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, and Z. Shi, “Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity,” Sci. Rep. 5, 9263 (2015).
[Crossref]

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

Lin, Z.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

Lipsanen, H.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

Lipson, M.

C. T. Phare, Y. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9, 511–514 (2015).
[Crossref]

Liu, B.

Q. Song, W. Fang, B. Liu, S. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[Crossref]

Liu, F.

C. Si, Z. Sun, and F. Liu, “Strain engineering of graphene: a review,” Nanoscale 8, 3207–3217 (2016).
[Crossref]

Liu, J.

J. Liu, T. Wang, X. Li, and N. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115, 193511 (2014).
[Crossref]

Liu, L.

D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, and Z. Shen, “Engineering the electronic structure of graphene,” Adv. Mater. 24, 4055–4069 (2012).
[Crossref]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Liu, N.

J. Liu, T. Wang, X. Li, and N. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115, 193511 (2014).
[Crossref]

Liu, S.

Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, and S. Xiao, “Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers,” Adv. Opt. Mater. 4, 472–479 (2016).
[Crossref]

Liu, W.

Liu, X.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

C. Yu, Y. Wu, X. Liu, B. Yao, F. Fu, Y. Gong, Y. Rao, and Y. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6, 727–733 (2016).
[Crossref]

Liu, Y.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, and Q. Bao, “The roadmap of graphene-based optical biochemical sensors,” Adv. Funct. Mater. 27, 1603918 (2017).
[Crossref]

Liu, Z.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

J. Wang, S. Deng, Z. Liu, and Z. Liu, “The rare two-dimensional materials with Dirac cones,” Natl. Sci. Rev. 2, 22–39 (2015).
[Crossref]

J. Wang, S. Deng, Z. Liu, and Z. Liu, “The rare two-dimensional materials with Dirac cones,” Natl. Sci. Rev. 2, 22–39 (2015).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Locatelli, A.

Loh, K. P.

T. Ren, P. Song, J. Chen, and K. P. Loh, “Whisper gallery modes in monolayer tungsten disulfide-hexagonal boron nitride optical cavity,” ACS Photon. 5, 353–358 (2017).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Lozovik, Y. E.

O. V. Kotov and Y. E. Lozovik, “Cavity plasmon polaritons in monolayer graphene,” Phys. Lett. A 375, 2573–2576 (2011).
[Crossref]

Lu, J.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9, 6794–6800 (2015).
[Crossref]

J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, and Z. Shi, “Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity,” Sci. Rep. 5, 9263 (2015).
[Crossref]

Lu, W.

Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
[Crossref]

Lu, X.

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
[Crossref]

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
[Crossref]

Ma, L.

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, and O. G. Schmidt, “Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10  nm gap,” Adv. Opt. Mater. 6, 1700984 (2018).
[Crossref]

Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
[Crossref]

A. Madani, S. M. Harazim, V. A. Bolanos Quinones, M. Kleinert, A. Finn, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing,” Opt. Lett. 42, 486–489 (2017).
[Crossref]

Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
[Crossref]

Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Hybridization of photon-plasmon modes in metal-coated microtubular cavities,” Phys. Rev. A 94, 013832 (2016).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Ma, L. B.

Y. Yin, S. L. Li, S. Giudicatti, C. Y. Jiang, L. B. Ma, and O. G. Schmidt, “Strongly hybridized plasmon-photon modes in optoplasmonic microtubular cavities,” Phys. Rev. B 92, 241403 (2015).
[Crossref]

Ma, Z.

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

Madani, A.

Maiti, R.

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

Majumdar, A.

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2017).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Malek, S. C.

J. C. Reed, S. C. Malek, F. Yi, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Photothermal characterization of MoS2 emission coupled to a microdisk cavity,” Appl. Phys. Lett. 109, 193109 (2016).
[Crossref]

Malpuech, G.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Manohari, A. G.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

Mappes, T.

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
[Crossref]

Marie, X.

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

Marks, T. J.

D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
[Crossref]

Mei, Y.

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
[Crossref]

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

G. Huang and Y. Mei, “Electromagnetic wave propagation in a rolled-up tubular microcavity,” J. Mater. Chem. C 5, 2758–2770 (2017).
[Crossref]

Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
[Crossref]

X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, and Y. Mei, “Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity,” Adv. Opt. Mater. 4, 936–942 (2016).
[Crossref]

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

J. Wang, T. Zhan, G. Huang, X. Cui, X. Hu, and Y. Mei, “Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes,” Opt. Express 20, 18555–18567 (2012).
[Crossref]

Melios, C.

C. Melios, C. E. Giusca, V. Panchal, and O. Kazakova, “Water on graphene: review of recent progress,” 2D Mater. 5, 22001 (2018).
[Crossref]

Mendach, S.

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

Mi, Y.

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Mi, Z.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Midrio, M.

Mintairov, A.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Mishchenko, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Mitchell, M.

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Mohsin, M.

M. Mohsin, D. Schall, M. Otto, B. Chmielak, S. Suckow, and D. Neumaier, “Towards the predicted high performance of waveguide integrated electro-refractive phase modulators based on graphene,” IEEE Photon. J. 9, 7800507 (2017).
[Crossref]

Molitor, F.

C. Stampfer, J. Guettinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
[Crossref]

Moresco, M.

Morozov, S. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Mortensen, N. A.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15, 4393–4400 (2015).
[Crossref]

Motta, C.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Mueller, T.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Nalitov, A.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Nan, H.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

Naylor, C. H.

J. C. Reed, S. C. Malek, F. Yi, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Photothermal characterization of MoS2 emission coupled to a microdisk cavity,” Appl. Phys. Lett. 109, 193109 (2016).
[Crossref]

Naz, E. S. G.

A. Madani, S. M. Harazim, V. A. Bolanos Quinones, M. Kleinert, A. Finn, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing,” Opt. Lett. 42, 486–489 (2017).
[Crossref]

Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
[Crossref]

Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
[Crossref]

Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Hybridization of photon-plasmon modes in metal-coated microtubular cavities,” Phys. Rev. A 94, 013832 (2016).
[Crossref]

Neumaier, D.

M. Mohsin, D. Schall, M. Otto, B. Chmielak, S. Suckow, and D. Neumaier, “Towards the predicted high performance of waveguide integrated electro-refractive phase modulators based on graphene,” IEEE Photon. J. 9, 7800507 (2017).
[Crossref]

Ni, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
[Crossref]

Ni, Z.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, and Z. Shen, “Engineering the electronic structure of graphene,” Adv. Mater. 24, 4055–4069 (2012).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Ning, Y.

Nordlander, P.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Novoselov, K. S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nuckolls, C.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

Oh, H.

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

Otto, M.

M. Mohsin, D. Schall, M. Otto, B. Chmielak, S. Suckow, and D. Neumaier, “Towards the predicted high performance of waveguide integrated electro-refractive phase modulators based on graphene,” IEEE Photon. J. 9, 7800507 (2017).
[Crossref]

Ou, X.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Ozdemir, S. K.

Özdemir, S. K.

Pan, J.

Panchal, V.

C. Melios, C. E. Giusca, V. Panchal, and O. Kazakova, “Water on graphene: review of recent progress,” 2D Mater. 5, 22001 (2018).
[Crossref]

Pang, J.

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, and O. G. Schmidt, “Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10  nm gap,” Adv. Opt. Mater. 6, 1700984 (2018).
[Crossref]

Park, H.

Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, and H. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3, 1123 (2012).
[Crossref]

Park, W. I.

Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, and H. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3, 1123 (2012).
[Crossref]

Peng, B.

Petrovich, M. N.

Phare, C. T.

C. T. Phare, Y. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9, 511–514 (2015).
[Crossref]

Piro, N.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

Poshakinskiy, A. V.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Pospischil, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Qin, F.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

Qiu, C.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

K. Wu, Y. Wang, C. Qiu, and J. Chen, “Thermo-optic all-optical devices based on two-dimensional materials,” Photon. Res. 6, C22 (2018).
[Crossref]

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14, 6811–6815 (2014).
[Crossref]

Qiu, J.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Qiu, W.

Qiu, X.

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
[Crossref]

Rao, C. N. R.

C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
[Crossref]

Rao, Y.

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors 18, 941 (2018).
[Crossref]

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

C. Yu, Y. Wu, X. Liu, B. Yao, F. Fu, Y. Gong, Y. Rao, and Y. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6, 727–733 (2016).
[Crossref]

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[Crossref]

Rao, Y. J.

Reed, J. C.

J. C. Reed, S. C. Malek, F. Yi, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Photothermal characterization of MoS2 emission coupled to a microdisk cavity,” Appl. Phys. Lett. 109, 193109 (2016).
[Crossref]

J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, “Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter,” Nano Lett. 15, 1967–1971 (2015).
[Crossref]

Reeves, L.

L. Reeves, Y. Wang, and T. F. Krauss, “2D material microcavity light emitters: to lase or not to lase?” Adv. Opt. Mater. 6, 1800272 (2018).
[Crossref]

Rehberg, H.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref]

Reichman, D. R.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Remškar, M.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Ren, T.

T. Ren, P. Song, J. Chen, and K. P. Loh, “Whisper gallery modes in monolayer tungsten disulfide-hexagonal boron nitride optical cavity,” ACS Photon. 5, 353–358 (2017).
[Crossref]

Ribeiro, R. M.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Rigosi, A.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Romagnoli, M.

Saei Ghareh Naz, E.

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

Safian, R.

F. Zangeneh-Nejad and R. Safian, “A graphene-based THz ring resonator for label-free sensing,” IEEE Sens. J. 16, 4338–4344 (2016).
[Crossref]

Salehzadeh, O.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Sanvito, S.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Schaibley, J. R.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Schall, D.

M. Mohsin, D. Schall, M. Otto, B. Chmielak, S. Suckow, and D. Neumaier, “Towards the predicted high performance of waveguide integrated electro-refractive phase modulators based on graphene,” IEEE Photon. J. 9, 7800507 (2017).
[Crossref]

Schilling, R. D.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Schmidt, O. G.

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, and O. G. Schmidt, “Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10  nm gap,” Adv. Opt. Mater. 6, 1700984 (2018).
[Crossref]

Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
[Crossref]

A. Madani, S. M. Harazim, V. A. Bolanos Quinones, M. Kleinert, A. Finn, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing,” Opt. Lett. 42, 486–489 (2017).
[Crossref]

Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Hybridization of photon-plasmon modes in metal-coated microtubular cavities,” Phys. Rev. A 94, 013832 (2016).
[Crossref]

Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
[Crossref]

Y. Yin, S. L. Li, S. Giudicatti, C. Y. Jiang, L. B. Ma, and O. G. Schmidt, “Strongly hybridized plasmon-photon modes in optoplasmonic microtubular cavities,” Phys. Rev. B 92, 241403 (2015).
[Crossref]

Schrenk, W.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Schroeder, T.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25, 4918–4924 (2013).
[Crossref]

Schultz, C. M.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Schwaiger, S.

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

Schwarz, S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Schwefel, H. G. L.

L. Ge, L. Feng, and H. G. L. Schwefel, “Optical microcavities: new understandings and developments,” Photon. Res. 5, M1–M3 (2017).
[Crossref]

Seabaugh, A.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Senthil, M. G.

Shan, C.

Shan, J.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Shandilya, P. K.

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Shao, Z.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Shen, D.

Shen, M.

H. Fan, C. Xia, L. Fan, L. Wang, and M. Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Shen, Y. R.

Shen, Z.

D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, and Z. Shen, “Engineering the electronic structure of graphene,” Adv. Mater. 24, 4055–4069 (2012).
[Crossref]

Shi, J.

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Shi, S.

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Shi, Z.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9, 6794–6800 (2015).
[Crossref]

J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, and Z. Shi, “Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity,” Sci. Rep. 5, 9263 (2015).
[Crossref]

Shih, I.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Shivananju, B. N.

B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, and Q. Bao, “The roadmap of graphene-based optical biochemical sensors,” Adv. Funct. Mater. 27, 1603918 (2017).
[Crossref]

Shu, C.

Shubina, T. V.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Si, C.

C. Si, Z. Sun, and F. Liu, “Strain engineering of graphene: a review,” Nanoscale 8, 3207–3217 (2016).
[Crossref]

Sich, M.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Skolnick, M. S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Skryabin, D. V.

Smirnov, A. N.

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Smith, J. M.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Solnyshkov, D. D.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Solomon, G. S.

Q. Song, W. Fang, B. Liu, S. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[Crossref]

Song, H.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

Song, P.

T. Ren, P. Song, J. Chen, and K. P. Loh, “Whisper gallery modes in monolayer tungsten disulfide-hexagonal boron nitride optical cavity,” ACS Photon. 5, 353–358 (2017).
[Crossref]

Song, Q.

Q. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China Phys. Mech. Astron. 62, 074231 (2019).
[Crossref]

Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, and S. Xiao, “Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers,” Adv. Opt. Mater. 4, 472–479 (2016).
[Crossref]

Q. Song, W. Fang, B. Liu, S. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[Crossref]

Sood, A. K.

C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
[Crossref]

Sorger, V. J.

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Stampfer, C.

C. Stampfer, J. Guettinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
[Crossref]

Stark, Y.

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

Stemmann, A.

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

Stickler, D.

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

Stormer, H. L.

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005).
[Crossref]

Strasser, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Strelow, C.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref]

Subrahmanyam, K. S.

C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
[Crossref]

Suckow, S.

M. Mohsin, D. Schall, M. Otto, B. Chmielak, S. Suckow, and D. Neumaier, “Towards the predicted high performance of waveguide integrated electro-refractive phase modulators based on graphene,” IEEE Photon. J. 9, 7800507 (2017).
[Crossref]

Sun, F.

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

Sun, W.

Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, and S. Xiao, “Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers,” Adv. Opt. Mater. 4, 472–479 (2016).
[Crossref]

Sun, X.

Sun, Y.

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Sun, Z.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

C. Si, Z. Sun, and F. Liu, “Strain engineering of graphene: a review,” Nanoscale 8, 3207–3217 (2016).
[Crossref]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8, 4133–4156 (2014).
[Crossref]

Tahersima, M. H.

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

Tan, Y.

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005).
[Crossref]

Tang, D.

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Tang, S.

Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
[Crossref]

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
[Crossref]

Tartakovskii, A. I.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Tchoe, Y.

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

Terrones, M.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Tian, Z.

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
[Crossref]

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

Tong, L.

Tongay, S.

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Torrisi, F.

Toth, M.

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Tran, N. H.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Trichet, A. A. P.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Tsang, H. K.

Tung, V. C.

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chem. Rev. 110, 132–145 (2010).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Unterrainer, K.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Urbaszek, B.

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

Urich, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Vajtai, R.

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14, 6811–6815 (2014).
[Crossref]

van der Zande, A. M.

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

Varrla, E.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Vidal, M.

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

Villois, A.

Vinod, A. K.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Wan, S.

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Wang, F.

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Wang, G.

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Wang, J.

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, and O. G. Schmidt, “Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10  nm gap,” Adv. Opt. Mater. 6, 1700984 (2018).
[Crossref]

X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, and Y. Mei, “Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity,” Adv. Opt. Mater. 4, 936–942 (2016).
[Crossref]

Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
[Crossref]

J. Wang, S. Deng, Z. Liu, and Z. Liu, “The rare two-dimensional materials with Dirac cones,” Natl. Sci. Rev. 2, 22–39 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

J. Zhao, W. Qiu, Y. Huang, J. Wang, Q. Kan, and J. Pan, “Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks,” Opt. Lett. 39, 5527–5530 (2014).
[Crossref]

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

J. Wang, T. Zhan, G. Huang, X. Cui, X. Hu, and Y. Mei, “Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes,” Opt. Express 20, 18555–18567 (2012).
[Crossref]

Wang, J. J.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Wang, K.

Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, and S. Xiao, “Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers,” Adv. Opt. Mater. 4, 472–479 (2016).
[Crossref]

Wang, L.

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

H. Fan, C. Xia, L. Fan, L. Wang, and M. Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
[Crossref]

Wang, P.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25, 4918–4924 (2013).
[Crossref]

Wang, R.

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Wang, S.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

M. Jiang, J. Li, C. Xu, S. Wang, C. Shan, B. Xuan, Y. Ning, and D. Shen, “Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities,” Opt. Express 22, 23836–23850 (2014).
[Crossref]

Wang, T.

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

J. Liu, T. Wang, X. Li, and N. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115, 193511 (2014).
[Crossref]

Wang, Y.

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

K. Wu, Y. Wang, C. Qiu, and J. Chen, “Thermo-optic all-optical devices based on two-dimensional materials,” Photon. Res. 6, C22 (2018).
[Crossref]

L. Reeves, Y. Wang, and T. F. Krauss, “2D material microcavity light emitters: to lase or not to lase?” Adv. Opt. Mater. 6, 1800272 (2018).
[Crossref]

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, and S. Yan, “Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system,” Sci. Rep. 6, 38891 (2016).
[Crossref]

J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, and Z. Shi, “Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity,” Sci. Rep. 5, 9263 (2015).
[Crossref]

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9, 6794–6800 (2015).
[Crossref]

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Wang, Z.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

Wang, Z. G.

Welsch, H.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref]

Wen, S.

Wen, Y.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Wilkinson, J. S.

Winters, S.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Withers, F.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Wong, C. W.

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

Wong, Z. J.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
[Crossref]

Woodward, R. I.

Wu, H.

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Wu, J.

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Wu, K.

K. Wu, Y. Wang, C. Qiu, and J. Chen, “Thermo-optic all-optical devices based on two-dimensional materials,” Photon. Res. 6, C22 (2018).
[Crossref]

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Wu, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Wu, X.

Wu, Y.

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors 18, 941 (2018).
[Crossref]

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

C. Yu, Y. Wu, X. Liu, B. Yao, F. Fu, Y. Gong, Y. Rao, and Y. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6, 727–733 (2016).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiane, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22, 28154–28162 (2014).
[Crossref]

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[Crossref]

Wu, Z.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Xia, C.

H. Fan, C. Xia, L. Fan, L. Wang, and M. Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xiao, M.

X. Zhang, H. Fan, X. Jiang, and M. Xiao, “Controllable coupling of an ultra-high-Q microtoroid cavity with monolayer graphene,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JTu5A-79.
[Crossref]

Xiao, S.

Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, and S. Xiao, “Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers,” Adv. Opt. Mater. 4, 472–479 (2016).
[Crossref]

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15, 4393–4400 (2015).
[Crossref]

Xiao, Y.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

Y. Xiao, S. K. Ozdemir, V. Gaddam, C. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16, 21462–21475 (2008).
[Crossref]

Xie, Y.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25, 4918–4924 (2013).
[Crossref]

Xie, Z.

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

Xu, B.

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
[Crossref]

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

Xu, C.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, and Z. Shi, “Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity,” Sci. Rep. 5, 9263 (2015).
[Crossref]

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9, 6794–6800 (2015).
[Crossref]

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

M. Jiang, J. Li, C. Xu, S. Wang, C. Shan, B. Xuan, Y. Ning, and D. Shen, “Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities,” Opt. Express 22, 23836–23850 (2014).
[Crossref]

Xu, H.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Xu, J.

Xu, P.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Xu, Q.

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14, 6811–6815 (2014).
[Crossref]

Xu, X.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Xu, Y.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Xuan, B.

Xue, C.

Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, and S. Yan, “Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system,” Sci. Rep. 6, 38891 (2016).
[Crossref]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, and Z. Shen, “Engineering the electronic structure of graphene,” Adv. Mater. 24, 4055–4069 (2012).
[Crossref]

Yan, S.

Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, and S. Yan, “Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system,” Sci. Rep. 6, 38891 (2016).
[Crossref]

Yang, L.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

W. Chen, J. Zhang, B. Peng, S. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor [invited],” Photon. Res. 6, A23–A30 (2018).
[Crossref]

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

Y. Xiao, S. K. Ozdemir, V. Gaddam, C. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16, 21462–21475 (2008).
[Crossref]

Yang, R.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

Yang, Y.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9, 262–267 (2014).
[Crossref]

Yao, B.

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors 18, 941 (2018).
[Crossref]

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

C. Yu, Y. Wu, X. Liu, B. Yao, F. Fu, Y. Gong, Y. Rao, and Y. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6, 727–733 (2016).
[Crossref]

Yao, B. C.

Yao, W.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Ye, G. J.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Ye, Y.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
[Crossref]

Yi, F.

J. C. Reed, S. C. Malek, F. Yi, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Photothermal characterization of MoS2 emission coupled to a microdisk cavity,” Appl. Phys. Lett. 109, 193109 (2016).
[Crossref]

J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, “Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter,” Nano Lett. 15, 1967–1971 (2015).
[Crossref]

Yi, G.

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

H. Baek, C. Lee, K. Chung, and G. Yi, “Epitaxial GaN microdisk lasers grown on graphene microdots,” Nano Lett. 13, 2782–2785 (2013).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Yin, Y.

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
[Crossref]

Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Hybridization of photon-plasmon modes in metal-coated microtubular cavities,” Phys. Rev. A 94, 013832 (2016).
[Crossref]

Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
[Crossref]

Y. Yin, S. L. Li, S. Giudicatti, C. Y. Jiang, L. B. Ma, and O. G. Schmidt, “Strongly hybridized plasmon-photon modes in optoplasmonic microtubular cavities,” Phys. Rev. B 92, 241403 (2015).
[Crossref]

Yoo, H.

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

You, Y.

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Yu, C.

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors 18, 941 (2018).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

C. Yu, Y. Wu, X. Liu, B. Yao, F. Fu, Y. Gong, Y. Rao, and Y. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6, 727–733 (2016).
[Crossref]

Yu, L.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Yu, M.

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Yu, S.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

S. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
[Crossref]

Yu, W.

B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, and Q. Bao, “The roadmap of graphene-based optical biochemical sensors,” Adv. Funct. Mater. 27, 1603918 (2017).
[Crossref]

Yu, X.

Yu, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Yuan, F.

Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
[Crossref]

Yvind, K.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15, 4393–4400 (2015).
[Crossref]

Zamora, V.

Zangeneh-Nejad, F.

F. Zangeneh-Nejad and R. Safian, “A graphene-based THz ring resonator for label-free sensing,” IEEE Sens. J. 16, 4338–4344 (2016).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zervas, M. N.

Zhan, A.

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2017).
[Crossref]

Zhan, D.

D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, and Z. Shen, “Engineering the electronic structure of graphene,” Adv. Mater. 24, 4055–4069 (2012).
[Crossref]

Zhan, T.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

J. Wang, T. Zhan, G. Huang, X. Cui, X. Hu, and Y. Mei, “Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes,” Opt. Express 20, 18555–18567 (2012).
[Crossref]

Zhan, Y.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

Zhang, A. Q.

Zhang, B.

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

Zhang, G.

Zhang, H.

Zhang, J.

W. Chen, J. Zhang, B. Peng, S. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor [invited],” Photon. Res. 6, A23–A30 (2018).
[Crossref]

X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, and Y. Mei, “Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity,” Adv. Opt. Mater. 4, 936–942 (2016).
[Crossref]

Zhang, L.

M. Li, L. Zhang, L. Tong, and D. Dai, “Hybrid silicon nonlinear photonics [invited],” Photon. Res. 6, B13–B22 (2018).
[Crossref]

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

Zhang, M.

Zhang, Q.

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Zhang, S.

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Zhang, T.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[Crossref]

Zhang, W.

Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, and S. Yan, “Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system,” Sci. Rep. 6, 38891 (2016).
[Crossref]

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25, 4918–4924 (2013).
[Crossref]

Zhang, W. L.

Zhang, X.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

X. Zhang, H. Fan, X. Jiang, and M. Xiao, “Controllable coupling of an ultra-high-Q microtoroid cavity with monolayer graphene,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JTu5A-79.
[Crossref]

Zhang, Y.

Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, and O. G. Schmidt, “Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10  nm gap,” Adv. Opt. Mater. 6, 1700984 (2018).
[Crossref]

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, and Q. Bao, “The roadmap of graphene-based optical biochemical sensors,” Adv. Funct. Mater. 27, 1603918 (2017).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005).
[Crossref]

Zhang, Z.

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, and S. Yan, “Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system,” Sci. Rep. 6, 38891 (2016).
[Crossref]

Zhao, C.

Zhao, J.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

J. Zhao, W. Qiu, Y. Huang, J. Wang, Q. Kan, and J. Pan, “Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks,” Opt. Lett. 39, 5527–5530 (2014).
[Crossref]

Zhao, L.

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Zhen, H.

Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
[Crossref]

Zheng, H.

Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, and S. Yan, “Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system,” Sci. Rep. 6, 38891 (2016).
[Crossref]

Zheng, J.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Zheng, L.

Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
[Crossref]

Zheng, X.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

Zhi, Y.

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Zhou, C.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

Zhou, G.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Zhou, W.

Zhou, X.

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

Zhu, A. Y.

J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, “Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter,” Nano Lett. 15, 1967–1971 (2015).
[Crossref]

Zhu, G.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

Zhu, H.

J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, “Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter,” Nano Lett. 15, 1967–1971 (2015).
[Crossref]

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
[Crossref]

Zhu, L.

X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, and Y. Mei, “Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity,” Adv. Opt. Mater. 4, 936–942 (2016).
[Crossref]

Zhu, Q.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

Zhu, W.

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

Zhu, X.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15, 4393–4400 (2015).
[Crossref]

Zou, C.

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

2D Mater. (2)

C. Melios, C. E. Giusca, V. Panchal, and O. Kazakova, “Water on graphene: review of recent progress,” 2D Mater. 5, 22001 (2018).
[Crossref]

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (2)

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref]

Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, and O. G. Schmidt, “Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection,” ACS Appl. Mater. Interfaces 11, 15891–15897 (2019).
[Crossref]

ACS Nano (4)

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9, 6794–6800 (2015).
[Crossref]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8, 4133–4156 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

ACS Photon. (2)

Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, and O. G. Schmidt, “Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities,” ACS Photon. 4, 736–740 (2017).
[Crossref]

T. Ren, P. Song, J. Chen, and K. P. Loh, “Whisper gallery modes in monolayer tungsten disulfide-hexagonal boron nitride optical cavity,” ACS Photon. 5, 353–358 (2017).
[Crossref]

Adv. Funct. Mater. (1)

B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, and Q. Bao, “The roadmap of graphene-based optical biochemical sensors,” Adv. Funct. Mater. 27, 1603918 (2017).
[Crossref]

Adv. Mater. (8)

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25, 4918–4924 (2013).
[Crossref]

D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, and Z. Shen, “Engineering the electronic structure of graphene,” Adv. Mater. 24, 4055–4069 (2012).
[Crossref]

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, P260–P264 (2012).
[Crossref]

Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, and Y. Mei, “Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture,” Adv. Mater. 29, 1604572 (2017).
[Crossref]

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, and G. Yi, “Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots,” Adv. Mater. 28, 7688–7694 (2016).
[Crossref]

Adv. Opt. Mater. (4)

Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, and O. G. Schmidt, “Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10  nm gap,” Adv. Opt. Mater. 6, 1700984 (2018).
[Crossref]

L. Reeves, Y. Wang, and T. F. Krauss, “2D material microcavity light emitters: to lase or not to lase?” Adv. Opt. Mater. 6, 1800272 (2018).
[Crossref]

Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, and S. Xiao, “Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers,” Adv. Opt. Mater. 4, 472–479 (2016).
[Crossref]

X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, and Y. Mei, “Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity,” Adv. Opt. Mater. 4, 936–942 (2016).
[Crossref]

Angew. Chem. Int. Ed. (1)

C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
[Crossref]

Appl. Phys. Lett. (4)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

C. Stampfer, J. Guettinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
[Crossref]

J. C. Reed, S. C. Malek, F. Yi, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Photothermal characterization of MoS2 emission coupled to a microdisk cavity,” Appl. Phys. Lett. 109, 193109 (2016).
[Crossref]

D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, and T. V. Shubina, “Multiwall MoS2 tubes as optical resonators,” Appl. Phys. Lett. 113, 101106 (2018).
[Crossref]

Chem. Rev. (1)

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chem. Rev. 110, 132–145 (2010).
[Crossref]

IEEE Photon. J. (1)

M. Mohsin, D. Schall, M. Otto, B. Chmielak, S. Suckow, and D. Neumaier, “Towards the predicted high performance of waveguide integrated electro-refractive phase modulators based on graphene,” IEEE Photon. J. 9, 7800507 (2017).
[Crossref]

IEEE Sens. J. (1)

F. Zangeneh-Nejad and R. Safian, “A graphene-based THz ring resonator for label-free sensing,” IEEE Sens. J. 16, 4338–4344 (2016).
[Crossref]

J. Appl. Phys. (1)

J. Liu, T. Wang, X. Li, and N. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115, 193511 (2014).
[Crossref]

J. Mater. Chem. C (1)

G. Huang and Y. Mei, “Electromagnetic wave propagation in a rolled-up tubular microcavity,” J. Mater. Chem. C 5, 2758–2770 (2017).
[Crossref]

J. Opt. (1)

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

J. Phys. Chem. C (1)

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Lab Chip (1)

Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, and Y. Mei, “Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization,” Lab Chip 16, 4406–4414 (2016).
[Crossref]

Laser Photon. Rev. (1)

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

Nano Lett. (13)

Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, and Y. Mei, “Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity,” Nano Lett. 18, 8035–8040 (2018).
[Crossref]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Lett. 17, 4996–5002 (2017).
[Crossref]

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14, 6811–6815 (2014).
[Crossref]

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15, 4393–4400 (2015).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, “Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter,” Nano Lett. 15, 1967–1971 (2015).
[Crossref]

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and T. J. Kippenberg, “Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators,” Nano Lett. 18, 3138–3146 (2018).
[Crossref]

H. Baek, C. Lee, K. Chung, and G. Yi, “Epitaxial GaN microdisk lasers grown on graphene microdots,” Nano Lett. 13, 2782–2785 (2013).
[Crossref]

J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, and J. F. Donegan, “Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities,” Nano Lett. 16, 4754–4762 (2016).
[Crossref]

P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, and P. E. Barclay, “Hexagonal boron nitride cavity optomechanics,” Nano Lett. 19, 1343–1350 (2019).
[Crossref]

Nano Res. (1)

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

Nanophotonics (2)

R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, and V. J. Sorger, “A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm,” Nanophotonics 8, 435–441 (2019).
[Crossref]

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2017).
[Crossref]

Nanoscale (3)

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7, 877–884 (2015).
[Crossref]

C. Si, Z. Sun, and F. Liu, “Strain engineering of graphene: a review,” Nanoscale 8, 3207–3217 (2016).
[Crossref]

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7, 2249–2255 (2015).
[Crossref]

Nat. Commun. (3)

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, and H. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3, 1123 (2012).
[Crossref]

Nat. Mater. (2)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
[Crossref]

Nat. Nanotechnol. (4)

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9, 262–267 (2014).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref]

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Nat. Photonics (7)

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9, 733–737 (2015).
[Crossref]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nat. Photonics 12, 22–28 (2018).
[Crossref]

C. T. Phare, Y. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9, 511–514 (2015).
[Crossref]

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Natl. Sci. Rev. (1)

J. Wang, S. Deng, Z. Liu, and Z. Liu, “The rare two-dimensional materials with Dirac cones,” Natl. Sci. Rev. 2, 22–39 (2015).
[Crossref]

Nature (7)

K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Opt. Commun. (1)

H. Fan, C. Xia, L. Fan, L. Wang, and M. Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Opt. Express (10)

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiane, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22, 28154–28162 (2014).
[Crossref]

A. Villois and D. V. Skryabin, “Soliton and quasi-soliton frequency combs due to second harmonic generation in microresonators,” Opt. Express 27, 7098–7107 (2019).
[Crossref]

M. Jiang, J. Li, C. Xu, S. Wang, C. Shan, B. Xuan, Y. Ning, and D. Shen, “Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities,” Opt. Express 22, 23836–23850 (2014).
[Crossref]

J. Wang, T. Zhan, G. Huang, X. Cui, X. Hu, and Y. Mei, “Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes,” Opt. Express 20, 18555–18567 (2012).
[Crossref]

V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011–12016 (2007).
[Crossref]

M. G. Senthil, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19, 20773–20784 (2011).
[Crossref]

Y. Xiao, S. K. Ozdemir, V. Gaddam, C. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16, 21462–21475 (2008).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. De Angelis, A. Locatelli, and A. Capobianco, “Graphene-assisted critically-coupled optical ring modulator,” Opt. Express 20, 23144–23155 (2012).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Photon. Res. (5)

Phys. Lett. A (1)

O. V. Kotov and Y. E. Lozovik, “Cavity plasmon polaritons in monolayer graphene,” Phys. Lett. A 375, 2573–2576 (2011).
[Crossref]

Phys. Rev. A (3)

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[Crossref]

Q. Song, W. Fang, B. Liu, S. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[Crossref]

Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Hybridization of photon-plasmon modes in metal-coated microtubular cavities,” Phys. Rev. A 94, 013832 (2016).
[Crossref]

Phys. Rev. B (2)

Y. Yin, S. L. Li, S. Giudicatti, C. Y. Jiang, L. B. Ma, and O. G. Schmidt, “Strongly hybridized plasmon-photon modes in optoplasmonic microtubular cavities,” Phys. Rev. B 92, 241403 (2015).
[Crossref]

A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
[Crossref]

Phys. Rev. Lett. (6)

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, “Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,” Phys. Rev. Lett. 114, 097403 (2015).
[Crossref]

Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, and O. G. Schmidt, “Localized surface plasmons selectively coupled to resonant light in tubular microcavities,” Phys. Rev. Lett. 116, 253904 (2016).
[Crossref]

S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[Crossref]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

Q. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China Phys. Mech. Astron. 62, 074231 (2019).
[Crossref]

Sci. Rep. (3)

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, and S. Yan, “Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system,” Sci. Rep. 6, 38891 (2016).
[Crossref]

J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, and Z. Shi, “Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity,” Sci. Rep. 5, 9263 (2015).
[Crossref]

Science (2)

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[Crossref]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Sens. Actuators B (1)

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[Crossref]

Sensors (1)

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors 18, 941 (2018).
[Crossref]

Small (3)

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. K. Ber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10, 3863–3868 (2014).
[Crossref]

Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, “Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method,” Small 13, 1701694 (2017).
[Crossref]

L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, and Y. Mei, “On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene,” Small 15, 1805477 (2019).
[Crossref]

Other (1)

X. Zhang, H. Fan, X. Jiang, and M. Xiao, “Controllable coupling of an ultra-high-Q microtoroid cavity with monolayer graphene,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JTu5A-79.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of the graphene (dark grey) coated nanodisk (light blue) and the corresponding Comsol finite element computational window (light gray). Inset is the horizontal view of the electric field distribution [48]. (b) Q factor and azimuthal mode number as functions of the chemical potential corresponding to 63.2 and 89.4 THz [48]. (c) Schematic of graphene-integrated microdisk cavity [50]. (d) Sensitivity as a function of the chemical potential [50].
Fig. 2.
Fig. 2. (a) Schematic of the graphene-oxide-coated microring resonator [58]. (b) Transmission spectra under different concentrations of NH3 gas [58]. (c) Conceptual design of a graphene-oxide-layer-incorporated silica capillary resonator [59]. (d) Colored map of the beat note spectra under different concentrations of NH3 gas [59].
Fig. 3.
Fig. 3. (a) Schematic of the modulator based on a graphene/graphene capacitor integrated with a microring cavity [65]. (b) Transmission spectra and theoretical results as a function of dc voltages [65]. (c) Schematic of the modulator based on a graphene-integrated microring cavity [67]. (d) Transmission spectra under different drive voltages [67]. (e) Schematic of the integration of a graphene/ion-gel heterostructure on a microring cavity [76]. (f) Primary comb lines at different gate voltages [76].
Fig. 4.
Fig. 4. PL spectra of (a) the ZnO rod and (b) the graphene-covered ZnO rod. Insets are the dark-field optical images and schematics of an individual ZnO rod before and after the cover of graphene under laser excitation. The scale bars correspond to 50 μm [81].
Fig. 5.
Fig. 5. (a) Schematic of a monolayer WS2 microdisk cavity with a sandwiched structure of Si3N4/WS2/HSQ [102]. (b) PL emission spectra under increasing pump intensity [102]. (c) Monolayer WS2 PL background and cavity emissions as functions of pump intensity [102]. (d) Schematic of the coupled microsphere/microdisk cavity with the integration of MoS2 [103]. (e) PL spectrum after subtracting the background emission (top panel) and the calculated WGM positions (bottom panel) [103]. (f) The integrated intensity and FWHM as functions of excitation power [103].
Fig. 6.
Fig. 6. (a) Emission spectra at different laser powers of 0.47, 12.3, and 22.8 mW and the corresponding background emission spectra [106]. (b) Normalized background emissions extracted from (a) [106]. (c) SEM image of the as-grown monolayer MoS2 on SiO2 microspheres [107]. (d) PL spectra of the main modes as a function of ethanol concentration [107].
Fig. 7.
Fig. 7. (a) Axial modes measured before (top panel) and after (bottom panel) gold layer coating on rolled-up tubular microcavities with different lobe positions. Insets are morphologies of microcavities before and after gold layer coating [121]. (b) PL spectra and corresponding morphologies of the bottle-like tube (top panel) and the single-mode tube with periodic hole arrays (bottom panel) [19]. (c) SEM image of the hole array in a rolled-up diamond microcavity. Inset is the schematic of the nanomembrane cross section with patterned holes (right panel) [19]. (d) PL mapping for the rolled-up diamond microcavity. Inset is the magnified PL mapping of the confinement-enhanced mode [19].
Fig. 8.
Fig. 8. (a) Schematic of the heterogeneous 2D material microcavities based on the rolled-up technology. (b) Scanning transmission microscopy (STEM) image of the cross section of monolayer graphene on the Ge wafer [125]. (c) SEM image of the rolled-up graphene/oxide microtube [125]. (d) and (e) are the electromagnetic field distributions for the enlarged cross section of graphene/oxide layers with s- and p-polarized incident lights [125].

Metrics