Abstract

We propose and experimentally demonstrate the operation of an electrically tunable, broadband coherent perfect absorption (CPA) at microwave frequencies by harnessing the CPA features of a graphene–electrolyte–graphene sandwich structure (GSS). Using both a simplified lumped circuit model and full-wave numerical simulation, it is found that the microwave coherent absorptivity of the GSS can be tuned dynamically from nearly 50% to 100% by changing the Fermi level of the graphene. Strikingly, our simplified lumped circuit model agrees very well with the full-wave numerical model, offering valuable insight into the CPA operation of the device. The angle dependency of coherent absorption in the GSS is further investigated, making suggestions for achieving CPA at wide angles up to 80°. To show the validity and accuracy of our theory and numerical simulations, a GSS prototype is fabricated and measured in a C-band waveguide system. The reasonably good agreement between the experimental and the simulated results confirms that the tunable coherent absorption in GSS can be electrically controlled by changing the Fermi level of the graphene.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable polarization-independent coherent perfect absorber based on a metal-graphene nanostructure

Yaying Ning, Zhewei Dong, Jiangnan Si, and Xiaoxu Deng
Opt. Express 25(26) 32467-32474 (2017)

Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure

Yijun Cai and Kai-Da Xu
Opt. Express 26(24) 31693-31705 (2018)

Tunable polarization-independent dual-band coherent perfect absorber based on metal-graphene nanoring structure

Jiangnan Si, Zhewei Dong, Xuanyi Yu, and Xiaoxu Deng
Opt. Express 26(17) 21768-21777 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber THz spatial light modulator,” Adv. Opt. Mater. 1, 905–909 (2013).
    [Crossref]
  2. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).
    [Crossref]
  3. F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9, 1397–1400 (2014).
    [Crossref]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  5. S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3, 2083 (2013).
    [Crossref]
  6. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
    [Crossref]
  7. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20, 28017–28024 (2012).
    [Crossref]
  8. X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25, 3994–4000 (2013).
    [Crossref]
  9. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
    [Crossref]
  10. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
    [Crossref]
  11. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref]
  12. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
    [Crossref]
  13. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
    [Crossref]
  14. W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
    [Crossref]
  15. R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21, 27652–27661 (2013).
    [Crossref]
  16. M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105, 131103 (2014).
    [Crossref]
  17. X. Fang, M. Lun Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
    [Crossref]
  18. Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
    [Crossref]
  19. Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
    [Crossref]
  20. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
    [Crossref]
  21. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  22. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
    [Crossref]
  23. Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
    [Crossref]
  24. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7, 4810–4817 (2013).
    [Crossref]
  25. S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39, 5345–5347 (2014).
    [Crossref]
  26. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
    [Crossref]
  27. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
    [Crossref]
  28. V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
    [Crossref]
  29. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
    [Crossref]
  30. S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
    [Crossref]
  31. F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater. 1, 031001 (2014).
    [Crossref]
  32. N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photon. 3, 1531–1535 (2016).
    [Crossref]
  33. W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
    [Crossref]
  34. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
    [Crossref]
  35. J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of graphene,” Nat. Nanotechnol. 4, 505–509 (2009).
    [Crossref]
  36. L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
    [Crossref]
  37. S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for graphene transport,” Proc. Natl. Acad. Sci. USA 104, 18392–18397 (2007).
    [Crossref]
  38. E. O. Polat and C. Kocabas, “Broadband optical modulators based on graphene supercapacitors,” Nano Lett. 13, 5851–5857 (2013).
    [Crossref]
  39. N. Marcuvitz, Waveguide Handbook (IET, 1951).
  40. Y. R. Padooru, A. B. Yakovlev, C. S. R. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B 84, 035108 (2011).
    [Crossref]
  41. T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25, 215301 (2013).
    [Crossref]
  42. A. Zhang, Z. Liu, W. Lu, and H. Chen, “Dynamically tunable attenuator on a graphene-based microstrip line,” IEEE Trans. Microw. Theory Tech. 67, 746–753 (2019).
    [Crossref]
  43. D. Kundu, R. K. Gayen, A. Mohan, and A. Chakrabarty, “Moment method analysis of periodic array of thin conducting strips using waveguide simulator,” J. Electromagn. Waves Appl. 32, 363–370 (2018).
    [Crossref]

2019 (3)

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

A. Zhang, Z. Liu, W. Lu, and H. Chen, “Dynamically tunable attenuator on a graphene-based microstrip line,” IEEE Trans. Microw. Theory Tech. 67, 746–753 (2019).
[Crossref]

2018 (3)

D. Kundu, R. K. Gayen, A. Mohan, and A. Chakrabarty, “Moment method analysis of periodic array of thin conducting strips using waveguide simulator,” J. Electromagn. Waves Appl. 32, 363–370 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

2016 (3)

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photon. 3, 1531–1535 (2016).
[Crossref]

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
[Crossref]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

2015 (3)

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
[Crossref]

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

2014 (8)

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater. 1, 031001 (2014).
[Crossref]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39, 5345–5347 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref]

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105, 131103 (2014).
[Crossref]

X. Fang, M. Lun Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).
[Crossref]

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9, 1397–1400 (2014).
[Crossref]

2013 (7)

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3, 2083 (2013).
[Crossref]

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25, 3994–4000 (2013).
[Crossref]

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21, 27652–27661 (2013).
[Crossref]

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber THz spatial light modulator,” Adv. Opt. Mater. 1, 905–909 (2013).
[Crossref]

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7, 4810–4817 (2013).
[Crossref]

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25, 215301 (2013).
[Crossref]

E. O. Polat and C. Kocabas, “Broadband optical modulators based on graphene supercapacitors,” Nano Lett. 13, 5851–5857 (2013).
[Crossref]

2012 (1)

2011 (4)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[Crossref]

Y. R. Padooru, A. B. Yakovlev, C. S. R. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B 84, 035108 (2011).
[Crossref]

2010 (3)

L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

2009 (3)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of graphene,” Nat. Nanotechnol. 4, 505–509 (2009).
[Crossref]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[Crossref]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

2007 (2)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for graphene transport,” Proc. Natl. Acad. Sci. USA 104, 18392–18397 (2007).
[Crossref]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Adam, S.

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater. 1, 031001 (2014).
[Crossref]

S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for graphene transport,” Proc. Natl. Acad. Sci. USA 104, 18392–18397 (2007).
[Crossref]

Alaee, R.

Altan, H.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photon. 3, 1531–1535 (2016).
[Crossref]

Anwar, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Balci, O.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photon. 3, 1531–1535 (2016).
[Crossref]

Blake, P.

L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
[Crossref]

Brongersma, M. L.

V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
[Crossref]

Bruck, R.

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Cao, R.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Chakrabarty, A.

D. Kundu, R. K. Gayen, A. Mohan, and A. Chakrabarty, “Moment method analysis of periodic array of thin conducting strips using waveguide simulator,” J. Electromagn. Waves Appl. 32, 363–370 (2018).
[Crossref]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Chang, H.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9, 1397–1400 (2014).
[Crossref]

Chen, F.

J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of graphene,” Nat. Nanotechnol. 4, 505–509 (2009).
[Crossref]

Chen, H.

A. Zhang, Z. Liu, W. Lu, and H. Chen, “Dynamically tunable attenuator on a graphene-based microstrip line,” IEEE Trans. Microw. Theory Tech. 67, 746–753 (2019).
[Crossref]

Chen, S.

Chen, X.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Chen, Y.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Chong, Y. D.

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105, 131103 (2014).
[Crossref]

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater. 1, 031001 (2014).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Cui, Y.

V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
[Crossref]

Dai, Y.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25, 215301 (2013).
[Crossref]

Das Sarma, S.

S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for graphene transport,” Proc. Natl. Acad. Sci. USA 104, 18392–18397 (2007).
[Crossref]

Duan, Q.

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Faccio, D.

Fan, S.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

Fan, Y.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref]

Fang, X.

X. Fang, M. Lun Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Farhat, M.

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Fu, Q.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

Galitski, V. M.

S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for graphene transport,” Proc. Natl. Acad. Sci. USA 104, 18392–18397 (2007).
[Crossref]

Gayen, R. K.

D. Kundu, R. K. Gayen, A. Mohan, and A. Chakrabarty, “Moment method analysis of periodic array of thin conducting strips using waveguide simulator,” J. Electromagn. Waves Appl. 32, 363–370 (2018).
[Crossref]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Ge, Y.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Geim, A. K.

L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
[Crossref]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Geng, J.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
[Crossref]

Gómez Rivas, J.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7, 4810–4817 (2013).
[Crossref]

Gorbachev, R. V.

L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
[Crossref]

Gu, B.

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Guo, J.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Hang, Z. H.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

Hao, Q.

He, S.

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3, 2083 (2013).
[Crossref]

He, Z.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Heitz, J. J. F.

Hou, B.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

Hu, X.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9, 1397–1400 (2014).
[Crossref]

Hu, Y.-H.

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25, 3994–4000 (2013).
[Crossref]

Huang, T. J.

Huang, W.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Hwang, E. H.

S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for graphene transport,” Proc. Natl. Acad. Sci. USA 104, 18392–18397 (2007).
[Crossref]

Hwang, H. Y.

V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
[Crossref]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Jiang, S.-C.

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25, 3994–4000 (2013).
[Crossref]

Jiang, X.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Jin, R.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
[Crossref]

Kaipa, C. S. R.

Y. R. Padooru, A. B. Yakovlev, C. S. R. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B 84, 035108 (2011).
[Crossref]

Kakenov, N.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photon. 3, 1531–1535 (2016).
[Crossref]

Kang, J.-H.

V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
[Crossref]

Kang, M.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
[Crossref]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105, 131103 (2014).
[Crossref]

Katsnelson, M. I.

L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
[Crossref]

Khoo, I.-C.

Kik, P. G.

V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
[Crossref]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Kiraly, B.

Kocabas, C.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photon. 3, 1531–1535 (2016).
[Crossref]

E. O. Polat and C. Kocabas, “Broadband optical modulators based on graphene supercapacitors,” Nano Lett. 13, 5851–5857 (2013).
[Crossref]

Koschny, T.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[Crossref]

Krishna, S.

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber THz spatial light modulator,” Adv. Opt. Mater. 1, 905–909 (2013).
[Crossref]

Kundu, D.

D. Kundu, R. K. Gayen, A. Mohan, and A. Chakrabarty, “Moment method analysis of periodic array of thin conducting strips using waveguide simulator,” J. Electromagn. Waves Appl. 32, 363–370 (2018).
[Crossref]

Lai, Y.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lederer, F.

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Li, H.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref]

Li, J.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of graphene,” Nat. Nanotechnol. 4, 505–509 (2009).
[Crossref]

Li, L.

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

Li, S.

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

Liang, W.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Liang, X.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
[Crossref]

Liang, Z.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Liu, F.

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater. 1, 031001 (2014).
[Crossref]

Liu, J.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Liu, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Liu, X.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25, 215301 (2013).
[Crossref]

Liu, Z.

A. Zhang, Z. Liu, W. Lu, and H. Chen, “Dynamically tunable attenuator on a graphene-based microstrip line,” IEEE Trans. Microw. Theory Tech. 67, 746–753 (2019).
[Crossref]

Lozano, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7, 4810–4817 (2013).
[Crossref]

Lu, W.

A. Zhang, Z. Liu, W. Lu, and H. Chen, “Dynamically tunable attenuator on a graphene-based microstrip line,” IEEE Trans. Microw. Theory Tech. 67, 746–753 (2019).
[Crossref]

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

Lun Tseng, M.

X. Fang, M. Lun Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Luo, J.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

Luo, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

MacDonald, K. F.

X. Fang, M. Lun Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook (IET, 1951).

Martín Moreno, L.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7, 4810–4817 (2013).
[Crossref]

Mayorov, A. S.

L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
[Crossref]

Medina, F.

Y. R. Padooru, A. B. Yakovlev, C. S. R. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B 84, 035108 (2011).
[Crossref]

Mesa, F.

Y. R. Padooru, A. B. Yakovlev, C. S. R. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B 84, 035108 (2011).
[Crossref]

Milaninia, K. M.

V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Mohan, A.

D. Kundu, R. K. Gayen, A. Mohan, and A. Chakrabarty, “Moment method analysis of periodic array of thin conducting strips using waveguide simulator,” J. Electromagn. Waves Appl. 32, 363–370 (2018).
[Crossref]

Montoya, J.

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber THz spatial light modulator,” Adv. Opt. Mater. 1, 905–909 (2013).
[Crossref]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Muskens, O. L.

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Novoselov, K. S.

L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
[Crossref]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Ou, J.-Y.

X. Fang, M. Lun Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Ozkan, V. A.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photon. 3, 1531–1535 (2016).
[Crossref]

Padilla, W. J.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).
[Crossref]

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber THz spatial light modulator,” Adv. Opt. Mater. 1, 905–909 (2013).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Padooru, Y. R.

Y. R. Padooru, A. B. Yakovlev, C. S. R. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B 84, 035108 (2011).
[Crossref]

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Peng, R.-W.

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25, 3994–4000 (2013).
[Crossref]

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

Pirruccio, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7, 4810–4817 (2013).
[Crossref]

Polat, E. O.

E. O. Polat and C. Kocabas, “Broadband optical modulators based on graphene supercapacitors,” Nano Lett. 13, 5851–5857 (2013).
[Crossref]

Polini, M.

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater. 1, 031001 (2014).
[Crossref]

Ponomarenko, L. A.

L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
[Crossref]

Premaratne, M.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
[Crossref]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105, 131103 (2014).
[Crossref]

Rao, S. M.

Rockstuhl, C.

Roger, T.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Savo, S.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).
[Crossref]

Shen, M.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

Shen, N.-H.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

Shi, X.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25, 215301 (2013).
[Crossref]

Shrekenhamer, D.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).
[Crossref]

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber THz spatial light modulator,” Adv. Opt. Mater. 1, 905–909 (2013).
[Crossref]

Sikdar, D.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Song, Y.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Soukoulis, C. M.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[Crossref]

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Takan, T.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photon. 3, 1531–1535 (2016).
[Crossref]

Tang, X.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Tao, N.

J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of graphene,” Nat. Nanotechnol. 4, 505–509 (2009).
[Crossref]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Thareja, V.

V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
[Crossref]

Tsai, D. P.

X. Fang, M. Lun Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Wang, B.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[Crossref]

Wang, C.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

Wang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Wang, H.-T.

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105, 131103 (2014).
[Crossref]

Wang, M.

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25, 3994–4000 (2013).
[Crossref]

Wang, Y.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Wei, Z.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref]

Wen, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Wen, W.

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

Westerberg, N.

Wu, H.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

Wu, L.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Xia, J.

J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of graphene,” Nat. Nanotechnol. 4, 505–509 (2009).
[Crossref]

Xiao, F.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
[Crossref]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

Xiong, X.

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25, 3994–4000 (2013).
[Crossref]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Yakovlev, A. B.

Y. R. Padooru, A. B. Yakovlev, C. S. R. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B 84, 035108 (2011).
[Crossref]

Yang, R.

L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
[Crossref]

Yin, Q.

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

Yuan, H.

V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
[Crossref]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Zhan, T.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25, 215301 (2013).
[Crossref]

Zhang, A.

A. Zhang, Z. Liu, W. Lu, and H. Chen, “Dynamically tunable attenuator on a graphene-based microstrip line,” IEEE Trans. Microw. Theory Tech. 67, 746–753 (2019).
[Crossref]

Zhang, B.

Zhang, C.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9, 1397–1400 (2014).
[Crossref]

Zhang, F.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref]

Zhao, F.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9, 1397–1400 (2014).
[Crossref]

Zhao, Q.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref]

Zhao, Y.

Zheludev, N. I.

X. Fang, M. Lun Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Zhong, S.

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3, 2083 (2013).
[Crossref]

Zhu, W.

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
[Crossref]

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105, 131103 (2014).
[Crossref]

Zi, J.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25, 215301 (2013).
[Crossref]

2D Mater. (1)

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater. 1, 031001 (2014).
[Crossref]

ACS Nano (1)

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7, 4810–4817 (2013).
[Crossref]

ACS Photon. (2)

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photon. 3, 1531–1535 (2016).
[Crossref]

Adv. Mater. (2)

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25, 3994–4000 (2013).
[Crossref]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Adv. Opt. Mater. (3)

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber THz spatial light modulator,” Adv. Opt. Mater. 1, 905–909 (2013).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: a platform for 2D optics,” Adv. Opt. Mater. 7, 1800537 (2019).
[Crossref]

Appl. Phys. Lett. (4)

S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107, 181112 (2015).
[Crossref]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105, 131103 (2014).
[Crossref]

X. Fang, M. Lun Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

IEEE Photon. J. (1)

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. Zhang, Z. Liu, W. Lu, and H. Chen, “Dynamically tunable attenuator on a graphene-based microstrip line,” IEEE Trans. Microw. Theory Tech. 67, 746–753 (2019).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

J. Electromagn. Waves Appl. (1)

D. Kundu, R. K. Gayen, A. Mohan, and A. Chakrabarty, “Moment method analysis of periodic array of thin conducting strips using waveguide simulator,” J. Electromagn. Waves Appl. 32, 363–370 (2018).
[Crossref]

J. Phys. Condens. Matter (1)

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25, 215301 (2013).
[Crossref]

Laser Photon. Rev. (3)

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, and J. Li, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, and Q. Wen, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Nano Lett. (2)

E. O. Polat and C. Kocabas, “Broadband optical modulators based on graphene supercapacitors,” Nano Lett. 13, 5851–5857 (2013).
[Crossref]

V. Thareja, J.-H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15, 1570–1576 (2015).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nat. Nanotechnol. (2)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of graphene,” Nat. Nanotechnol. 4, 505–509 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (3)

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation,” Phys. Rev. B 91, 220301 (2015).
[Crossref]

Y. R. Padooru, A. B. Yakovlev, C. S. R. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B 84, 035108 (2011).
[Crossref]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[Crossref]

Phys. Rev. Lett. (3)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Density of states and zero landau level probed through capacitance of graphene,” Phys. Rev. Lett. 105, 136801 (2010).
[Crossref]

Plasmonics (1)

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9, 1397–1400 (2014).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for graphene transport,” Proc. Natl. Acad. Sci. USA 104, 18392–18397 (2007).
[Crossref]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Sci. Rep. (1)

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3, 2083 (2013).
[Crossref]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Other (1)

N. Marcuvitz, Waveguide Handbook (IET, 1951).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic view of a GSS illustrated by two counter-propagating and coherently modulated input beams (I+ and I), with O+ and O being the output beams. (b) Equivalent circuit model of the GSS.
Fig. 2.
Fig. 2. Coherent absorption of GSS for plane wave versus frequency under different Fermi levels. The solid line represents the 3D full wave simulation results and dotted line means the equivalent circuit calculated results.
Fig. 3.
Fig. 3. Two-dimensional false-color plot of the calculated coherent absorption as a function of Fermi level and phase modulation. (a) Equivalent circuit calculated results and (b) simulated results.
Fig. 4.
Fig. 4. (a) and (b) Calculated coherent absorption under TE/TM incident illumination, where the dashed lines denote the condition of EF=0.22  eV. (c) CPA Fermi-level dispersion at an oblique incidence for TE polarization (red solid curve) and TM polarization (blue solid curve).
Fig. 5.
Fig. 5. Coherent absorption of N-layers stacked GSS versus Fermi energy. Insert graph is the schematic of stacked GSS illuminated by two counter-propagating input beams. Solid curves represent the equivalent circuit calculated results and triangles refer to the full-wave simulation results.
Fig. 6.
Fig. 6. (a) Optical image of graphene on a PVC substrate. (b) Raman spectrum of monolayer graphene. (c) Fabricated GSS device. (d) Configuration of the waveguide measurement setup. (e) Relation between the Fermi level of graphene and bias voltage.
Fig. 7.
Fig. 7. (a) Measured (circles) and calculated (solid lines) coherent absorptivities of GSS in the waveguide system under different bias voltages. (b) A 2D false-color plot of the coherent absorptivity as a function of frequency and phase modulation (U=3V). (c) Coherent absorption of single- or multilayered GSS versus bias voltage (f=4.27  GHz).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

[O+O]=[rt+tr+][Ieiφ+Ieiφ].
Ac=1|Q+|2+|Q|2|I+|2+|I|2=1|r+t|2.
A=1|teiΔφ+r|2+|t+reiΔφ|22.
RG=1σg=π2(ωjτ1)j2e2kBTlog1[2cosh(EF2kBT)],
CG=2e2D=n/π(4e2/vF),
βp,e=ωccosθεp,esin2θ,
Z0TE=η0cosθ,
Z0TM=η0cosθ,
Zp,eTE=η0εp,esin2θ,
Zp,eTM=η0εp,esin2θεp,e,
t=A+B/Z0CZ0DA+B/Z0+CZ0+D,
r=2(ADBC)A+B/Z0+CZ0+D,
[ABCD]=MpMR[1CE01]Me[1CG01]MRMp.
Mp,e=[cos(βp,ehp,e)jZp,esin(βp,ehp,e)jsin(βp,ehp,e)/Zp,ecos(βp,ehp,e)],
MR=[101/RG1].
[ANBNCNDN]=[ABCD][ABCD]=[ABCD]N,

Metrics