Abstract

A wavelength-tunable and dual-wavelength mode-locking operation is achieved in an Er-doped fiber laser using a hybrid no-core fiber graded index multimode fiber as the saturable absorber. In the tuning operation, continuously wavelength-tunable pulses with a tuning range of 46.7 nm, stable 3-dB bandwidth of around 5 nm, and pulse duration of 850  fs are obtained by increasing the intracavity loss of a variable optical attenuator. In the dual-wavelength operation, the two solitons at different wavelengths demonstrate the characteristics of mutual coherence. By increasing the intracavity loss, the spectral spacing can be tuned from 11 to 33.01 nm while maintaining the coherence of the solitons. Such coherent solitons have high potential for applications in dual-comb frequency and multicolor pulses in nonlinear microscopy.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
23 MHz widely wavelength-tunable L-band dissipative soliton from an all-fiber Er-doped laser

Qianqian Huang, Chuanhang Zou, Chengbo Mou, Xi Guo, Zhijun Yan, Kaiming Zhou, and Lin Zhang
Opt. Express 27(14) 20028-20036 (2019)

Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning

Xin Zhao, Zheng Zheng, Lei Liu, Ya Liu, Yaxing Jiang, Xin Yang, and Jinsong Zhu
Opt. Express 19(2) 1168-1173 (2011)

L-band wavelength-tunable dissipative soliton fiber laser

Dan Yan, Xingliang Li, Shumin Zhang, Mengmeng Han, Huiyun Han, and Zhenjun Yang
Opt. Express 24(2) 739-748 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
    [Crossref]
  2. S. Diaz, A. B. Socorro, R. M. Manuel, R. Fernandez, and I. Monasterio, “Stable multi-wavelength fiber lasers for temperature measurements using an optical loop mirror,” Appl. Opt. 55, 8385–8389 (2016).
    [Crossref]
  3. M.-T. Tsai, D.-R. Li, and M.-C. Chan, “Non-invasive image-guided laser microsurgery by a dual-wavelength fiber laser and an integrated fiber-optic multi-modal system,” Opt. Lett. 41, 4847–4850 (2016).
    [Crossref]
  4. I. A. Litago, D. Leandro, M. Á. Quintela, R. A. Pérez-Herrera, M. López-Amo, and J. M. López-Higuera, “Tunable SESAM-based mode-locked soliton fiber laser in linear cavity by axial-strain applied to an FBG,” J. Lightwave Technol. 35, 5003–5009 (2017).
    [Crossref]
  5. H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-based mode-locked spectrum-tunable fiber laser using Mach-Zehnder filter,” IEEE Photon. J. 5, 1501709 (2013).
    [Crossref]
  6. B. Sun, J. Luo, Z. Yan, K. Liu, J. Ji, Y. Zhang, Q. Wang, and X. Yu, “1867–2010  nm tunable femtosecond thulium doped all-fiber laser,” Opt. Express 25, 8997–9002 (2017).
    [Crossref]
  7. X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
    [Crossref]
  8. T. Noronen, O. Okhotnikov, and R. Gumenyuk, “Electronically tunable thulium-holmium mode-locked fiber laser for the 1700–1800  nm wavelength band,” Opt. Express 24, 14703–14708 (2016).
    [Crossref]
  9. J. Kang, C. Kong, P. Feng, X. Wei, Z. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6  μm,” IEEE Photon. Technol. Lett. 30, 311–314 (2018).
    [Crossref]
  10. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
    [Crossref]
  11. Y. Meng, M. Salhi, A. Niang, K. Guesmi, G. Semaan, and F. Sanchez, “Mode-locked Er:Yb-doped double-clad fiber laser with 75-nm tuning range,” Opt. Lett. 40, 1153–1156 (2015).
    [Crossref]
  12. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube mode locker and intracavity loss tuning,” Opt. Express 19, 1168–1173 (2011).
    [Crossref]
  13. P. Franco, M. Midrio, A. Tozzato, M. Romagnoli, and F. Fontana, “Characterization and optimization criteria for filterless erbium-doped fiber lasers,” J. Opt. Soc. Am. B 11, 1090–1097 (1994).
    [Crossref]
  14. M. Durán-Sánchez, R. I. Álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, “Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM,” IEEE Photon. Technol. Lett. 29, 1820–1823 (2017).
    [Crossref]
  15. S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
    [Crossref]
  16. D. S. Kharenko, A. E. Bednyakova, E. V. Podivilov, M. P. Fedoruk, A. Apolonski, and S. A. Babin, “Cascaded generation of coherent Raman dissipative solitons,” Opt. Lett. 41, 175–178 (2016).
    [Crossref]
  17. Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
    [Crossref]
  18. D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
    [Crossref]
  19. K. Guesmi, Y. Meng, A. Niang, P. Mouchel, M. Salhi, F. Bahloul, R. Attia, and F. Sanchez, “1.6  μm emission based on linear loss control in an Er:Yb doped double-clad fiber laser,” Opt. Lett. 39, 6383–6386 (2014).
    [Crossref]
  20. M. Wang, Y. J. Huang, J. W. Yang, Y. Zhang, and S. C. Ruan, “Multi-wavelength mode-locked thulium-doped fiber laser based on a fiber-optic Fabry-Perot interferometer and a nonlinear optical loop mirror,” Laser Phys. Lett. 15, 085110 (2018).
    [Crossref]
  21. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17, 12692–12697 (2009).
    [Crossref]
  22. Y. Chen, S. Chen, J. Liu, Y. Gao, and W. Zhang, “Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus,” Opt. Express 24, 13316–13324 (2016).
    [Crossref]
  23. X. Li, J. Qian, R. Zhao, F. Wang, and Z. Wang, “Dual-wavelength mode-locked fiber laser based on tungsten disulfide saturable absorber,” Laser Phys. 27, 125802 (2017).
    [Crossref]
  24. Z. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Er-doped mode-locked fiber laser with a hybrid structure of a step-index-graded-index multimode fiber as the saturable absorber,” J. Lightwave Technol. 35, 5280–5285 (2017).
    [Crossref]
  25. Z. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43, 2078–2081 (2018).
    [Crossref]
  26. F. Yang, D. N. Wang, Z. Wang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Saturable absorber based on a single mode fiber–graded index fiber–single mode fiber structure with inner micro-cavity,” Opt. Express 26, 927–934 (2017).
    [Crossref]
  27. T. Chen, Q. Zhang, Y. Zhang, X. Li, H. Zhang, and W. Xia, “All-fiber passively mode-locked laser using nonlinear multimode interference of step-index multimode fiber,” Photon. Res. 6, 1033–1039 (2018).
    [Crossref]
  28. T. Zhu, Z. Wang, D. N. Wang, F. Yang, and L. Li, “Observation of controllable tightly and loosely bound solitons with an all-fiber saturable absorber,” Photon. Res. 7, 61–68 (2019).
    [Crossref]
  29. F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
    [Crossref]
  30. T. Ugur and O. Bulend, “All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber,” Opt. Lett. 43, 1611–1614 (2018).
    [Crossref]
  31. J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6  μm Er3+-doped silica fibre amplifier,” Electron. Lett. 26, 1645–1646 (1990).
    [Crossref]

2019 (2)

X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
[Crossref]

T. Zhu, Z. Wang, D. N. Wang, F. Yang, and L. Li, “Observation of controllable tightly and loosely bound solitons with an all-fiber saturable absorber,” Photon. Res. 7, 61–68 (2019).
[Crossref]

2018 (7)

F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
[Crossref]

T. Ugur and O. Bulend, “All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber,” Opt. Lett. 43, 1611–1614 (2018).
[Crossref]

T. Chen, Q. Zhang, Y. Zhang, X. Li, H. Zhang, and W. Xia, “All-fiber passively mode-locked laser using nonlinear multimode interference of step-index multimode fiber,” Photon. Res. 6, 1033–1039 (2018).
[Crossref]

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

M. Wang, Y. J. Huang, J. W. Yang, Y. Zhang, and S. C. Ruan, “Multi-wavelength mode-locked thulium-doped fiber laser based on a fiber-optic Fabry-Perot interferometer and a nonlinear optical loop mirror,” Laser Phys. Lett. 15, 085110 (2018).
[Crossref]

Z. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43, 2078–2081 (2018).
[Crossref]

J. Kang, C. Kong, P. Feng, X. Wei, Z. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6  μm,” IEEE Photon. Technol. Lett. 30, 311–314 (2018).
[Crossref]

2017 (7)

M. Durán-Sánchez, R. I. Álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, “Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM,” IEEE Photon. Technol. Lett. 29, 1820–1823 (2017).
[Crossref]

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

B. Sun, J. Luo, Z. Yan, K. Liu, J. Ji, Y. Zhang, Q. Wang, and X. Yu, “1867–2010  nm tunable femtosecond thulium doped all-fiber laser,” Opt. Express 25, 8997–9002 (2017).
[Crossref]

I. A. Litago, D. Leandro, M. Á. Quintela, R. A. Pérez-Herrera, M. López-Amo, and J. M. López-Higuera, “Tunable SESAM-based mode-locked soliton fiber laser in linear cavity by axial-strain applied to an FBG,” J. Lightwave Technol. 35, 5003–5009 (2017).
[Crossref]

F. Yang, D. N. Wang, Z. Wang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Saturable absorber based on a single mode fiber–graded index fiber–single mode fiber structure with inner micro-cavity,” Opt. Express 26, 927–934 (2017).
[Crossref]

X. Li, J. Qian, R. Zhao, F. Wang, and Z. Wang, “Dual-wavelength mode-locked fiber laser based on tungsten disulfide saturable absorber,” Laser Phys. 27, 125802 (2017).
[Crossref]

Z. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Er-doped mode-locked fiber laser with a hybrid structure of a step-index-graded-index multimode fiber as the saturable absorber,” J. Lightwave Technol. 35, 5280–5285 (2017).
[Crossref]

2016 (5)

2015 (1)

2014 (2)

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref]

K. Guesmi, Y. Meng, A. Niang, P. Mouchel, M. Salhi, F. Bahloul, R. Attia, and F. Sanchez, “1.6  μm emission based on linear loss control in an Er:Yb doped double-clad fiber laser,” Opt. Lett. 39, 6383–6386 (2014).
[Crossref]

2013 (1)

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-based mode-locked spectrum-tunable fiber laser using Mach-Zehnder filter,” IEEE Photon. J. 5, 1501709 (2013).
[Crossref]

2011 (2)

2010 (1)

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

2009 (1)

1994 (1)

1990 (1)

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6  μm Er3+-doped silica fibre amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[Crossref]

Ahmad, H.

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-based mode-locked spectrum-tunable fiber laser using Mach-Zehnder filter,” IEEE Photon. J. 5, 1501709 (2013).
[Crossref]

Ainslie, B. J.

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6  μm Er3+-doped silica fibre amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[Crossref]

Albrow-Owen, T.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Álvarez-Tamayo, R. I.

M. Durán-Sánchez, R. I. Álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, “Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM,” IEEE Photon. Technol. Lett. 29, 1820–1823 (2017).
[Crossref]

Andrés, M. V.

M. Durán-Sánchez, R. I. Álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, “Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM,” IEEE Photon. Technol. Lett. 29, 1820–1823 (2017).
[Crossref]

Apolonski, A.

D. S. Kharenko, A. E. Bednyakova, E. V. Podivilov, M. P. Fedoruk, A. Apolonski, and S. A. Babin, “Cascaded generation of coherent Raman dissipative solitons,” Opt. Lett. 41, 175–178 (2016).
[Crossref]

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref]

Armitage, J. R.

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6  μm Er3+-doped silica fibre amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[Crossref]

Attia, R.

Babin, S. A.

D. S. Kharenko, A. E. Bednyakova, E. V. Podivilov, M. P. Fedoruk, A. Apolonski, and S. A. Babin, “Cascaded generation of coherent Raman dissipative solitons,” Opt. Lett. 41, 175–178 (2016).
[Crossref]

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref]

Bahloul, F.

Bai, J.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Bao, Q. L.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Bednyakova, A. E.

D. S. Kharenko, A. E. Bednyakova, E. V. Podivilov, M. P. Fedoruk, A. Apolonski, and S. A. Babin, “Cascaded generation of coherent Raman dissipative solitons,” Opt. Lett. 41, 175–178 (2016).
[Crossref]

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref]

Bulend, O.

Cao, J.

X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
[Crossref]

Cao, S.

Chan, M.-C.

Chen, S.

Chen, T.

Chen, Y.

Craig-Ryan, S. P.

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6  μm Er3+-doped silica fibre amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[Crossref]

Cruz, J. L.

M. Durán-Sánchez, R. I. Álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, “Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM,” IEEE Photon. Technol. Lett. 29, 1820–1823 (2017).
[Crossref]

Diaz, S.

Duan, L.

Durán-Sánchez, M.

M. Durán-Sánchez, R. I. Álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, “Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM,” IEEE Photon. Technol. Lett. 29, 1820–1823 (2017).
[Crossref]

Fang, Z.

Fedoruk, M. P.

D. S. Kharenko, A. E. Bednyakova, E. V. Podivilov, M. P. Fedoruk, A. Apolonski, and S. A. Babin, “Cascaded generation of coherent Raman dissipative solitons,” Opt. Lett. 41, 175–178 (2016).
[Crossref]

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref]

Feng, P.

J. Kang, C. Kong, P. Feng, X. Wei, Z. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6  μm,” IEEE Photon. Technol. Lett. 30, 311–314 (2018).
[Crossref]

Fernandez, R.

Fontana, F.

Franco, P.

Gao, Y.

Geng, J.

X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
[Crossref]

Guesmi, K.

Gumenyuk, R.

Harun, S. W.

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-based mode-locked spectrum-tunable fiber laser using Mach-Zehnder filter,” IEEE Photon. J. 5, 1501709 (2013).
[Crossref]

Hasan, T.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Howe, R. C. T.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Hu, G.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Hu, X.

F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
[Crossref]

Huang, Y. J.

M. Wang, Y. J. Huang, J. W. Yang, Y. Zhang, and S. C. Ruan, “Multi-wavelength mode-locked thulium-doped fiber laser based on a fiber-optic Fabry-Perot interferometer and a nonlinear optical loop mirror,” Laser Phys. Lett. 15, 085110 (2018).
[Crossref]

Ibarra-Escamilla, B.

M. Durán-Sánchez, R. I. Álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, “Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM,” IEEE Photon. Technol. Lett. 29, 1820–1823 (2017).
[Crossref]

Ji, J.

Ji, Y.

X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
[Crossref]

Jiang, Y.

Jin, L.

X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
[Crossref]

Jin, S.

Jussila, H.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Kalashnikov, V. L.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref]

Kang, J.

J. Kang, C. Kong, P. Feng, X. Wei, Z. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6  μm,” IEEE Photon. Technol. Lett. 30, 311–314 (2018).
[Crossref]

Kharenko, D. S.

D. S. Kharenko, A. E. Bednyakova, E. V. Podivilov, M. P. Fedoruk, A. Apolonski, and S. A. Babin, “Cascaded generation of coherent Raman dissipative solitons,” Opt. Lett. 41, 175–178 (2016).
[Crossref]

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref]

Kong, C.

J. Kang, C. Kong, P. Feng, X. Wei, Z. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6  μm,” IEEE Photon. Technol. Lett. 30, 311–314 (2018).
[Crossref]

Kuzin, E. A.

M. Durán-Sánchez, R. I. Álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, “Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM,” IEEE Photon. Technol. Lett. 29, 1820–1823 (2017).
[Crossref]

Lam, E. Y.

J. Kang, C. Kong, P. Feng, X. Wei, Z. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6  μm,” IEEE Photon. Technol. Lett. 30, 311–314 (2018).
[Crossref]

Leandro, D.

Li, D.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Li, D.-R.

Li, L.

Li, X.

T. Chen, Q. Zhang, Y. Zhang, X. Li, H. Zhang, and W. Xia, “All-fiber passively mode-locked laser using nonlinear multimode interference of step-index multimode fiber,” Photon. Res. 6, 1033–1039 (2018).
[Crossref]

X. Li, J. Qian, R. Zhao, F. Wang, and Z. Wang, “Dual-wavelength mode-locked fiber laser based on tungsten disulfide saturable absorber,” Laser Phys. 27, 125802 (2017).
[Crossref]

Li, Y.

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

Lin, B.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Litago, I. A.

Liu, J.

Liu, K.

Liu, L.

Liu, X.

Liu, Y.

Loh, K. P.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

López-Amo, M.

López-Higuera, J. M.

Lu, H.

Luo, J.

Luo, Z.

J. Kang, C. Kong, P. Feng, X. Wei, Z. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6  μm,” IEEE Photon. Technol. Lett. 30, 311–314 (2018).
[Crossref]

Manuel, R. M.

Mao, D.

Massicott, J. F.

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6  μm Er3+-doped silica fibre amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[Crossref]

Meng, Y.

Midrio, M.

Monasterio, I.

Mouchel, P.

Muhammad, F. D.

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-based mode-locked spectrum-tunable fiber laser using Mach-Zehnder filter,” IEEE Photon. J. 5, 1501709 (2013).
[Crossref]

Niang, A.

Noronen, T.

Okhotnikov, O.

Pérez-Herrera, R. A.

Podivilov, E. V.

D. S. Kharenko, A. E. Bednyakova, E. V. Podivilov, M. P. Fedoruk, A. Apolonski, and S. A. Babin, “Cascaded generation of coherent Raman dissipative solitons,” Opt. Lett. 41, 175–178 (2016).
[Crossref]

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref]

Posada-Ramírez, B.

M. Durán-Sánchez, R. I. Álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, “Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM,” IEEE Photon. Technol. Lett. 29, 1820–1823 (2017).
[Crossref]

Qian, J.

X. Li, J. Qian, R. Zhao, F. Wang, and Z. Wang, “Dual-wavelength mode-locked fiber laser based on tungsten disulfide saturable absorber,” Laser Phys. 27, 125802 (2017).
[Crossref]

Quintela, M. Á.

Ren, Z.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Romagnoli, M.

Ruan, S. C.

M. Wang, Y. J. Huang, J. W. Yang, Y. Zhang, and S. C. Ruan, “Multi-wavelength mode-locked thulium-doped fiber laser based on a fiber-optic Fabry-Perot interferometer and a nonlinear optical loop mirror,” Laser Phys. Lett. 15, 085110 (2018).
[Crossref]

Salhi, M.

Sanchez, F.

Semaan, G.

Socorro, A. B.

Sun, B.

Sun, Z.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Tang, D. Y.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17, 12692–12697 (2009).
[Crossref]

Tjin, S. C.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Tozzato, A.

Tsai, M.-T.

Ugur, T.

Wang, D. N.

Wang, F.

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

X. Li, J. Qian, R. Zhao, F. Wang, and Z. Wang, “Dual-wavelength mode-locked fiber laser based on tungsten disulfide saturable absorber,” Laser Phys. 27, 125802 (2017).
[Crossref]

Wang, G.

Wang, H.

F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
[Crossref]

Wang, M.

M. Wang, Y. J. Huang, J. W. Yang, Y. Zhang, and S. C. Ruan, “Multi-wavelength mode-locked thulium-doped fiber laser based on a fiber-optic Fabry-Perot interferometer and a nonlinear optical loop mirror,” Laser Phys. Lett. 15, 085110 (2018).
[Crossref]

Wang, Q.

Wang, Y.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
[Crossref]

Wang, Z.

Wei, X.

J. Kang, C. Kong, P. Feng, X. Wei, Z. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6  μm,” IEEE Photon. Technol. Lett. 30, 311–314 (2018).
[Crossref]

Wong, K. K. Y.

J. Kang, C. Kong, P. Feng, X. Wei, Z. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6  μm,” IEEE Photon. Technol. Lett. 30, 311–314 (2018).
[Crossref]

Wu, X.

Wyatt, R.

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6  μm Er3+-doped silica fibre amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[Crossref]

Xia, W.

Xu, B.

Xu, C.

X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
[Crossref]

Xu, Y.

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

Yan, Z.

F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
[Crossref]

B. Sun, J. Luo, Z. Yan, K. Liu, J. Ji, Y. Zhang, Q. Wang, and X. Yu, “1867–2010  nm tunable femtosecond thulium doped all-fiber laser,” Opt. Express 25, 8997–9002 (2017).
[Crossref]

Yang, F.

Yang, J. W.

M. Wang, Y. J. Huang, J. W. Yang, Y. Zhang, and S. C. Ruan, “Multi-wavelength mode-locked thulium-doped fiber laser based on a fiber-optic Fabry-Perot interferometer and a nonlinear optical loop mirror,” Laser Phys. Lett. 15, 085110 (2018).
[Crossref]

Yang, X.

Yu, X.

Zhang, G.

X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
[Crossref]

Zhang, H.

Zhang, Q.

Zhang, T.

F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
[Crossref]

Zhang, W.

F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
[Crossref]

Y. Chen, S. Chen, J. Liu, Y. Gao, and W. Zhang, “Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus,” Opt. Express 24, 13316–13324 (2016).
[Crossref]

Zhang, Y.

Zhao, C.

Zhao, F.

F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
[Crossref]

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17, 12692–12697 (2009).
[Crossref]

Zhao, R.

X. Li, J. Qian, R. Zhao, F. Wang, and Z. Wang, “Dual-wavelength mode-locked fiber laser based on tungsten disulfide saturable absorber,” Laser Phys. 27, 125802 (2017).
[Crossref]

Zhao, X.

Zheng, Z.

Zhou, K.

F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
[Crossref]

Zhu, J.

Zhu, T.

Zhu, X.

X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
[Crossref]

Zou, L.

X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
[Crossref]

Zulkifli, M. Z.

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-based mode-locked spectrum-tunable fiber laser using Mach-Zehnder filter,” IEEE Photon. J. 5, 1501709 (2013).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6  μm Er3+-doped silica fibre amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[Crossref]

IEEE Photon. J. (1)

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-based mode-locked spectrum-tunable fiber laser using Mach-Zehnder filter,” IEEE Photon. J. 5, 1501709 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. Kang, C. Kong, P. Feng, X. Wei, Z. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6  μm,” IEEE Photon. Technol. Lett. 30, 311–314 (2018).
[Crossref]

M. Durán-Sánchez, R. I. Álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, “Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM,” IEEE Photon. Technol. Lett. 29, 1820–1823 (2017).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

X. Li, J. Qian, R. Zhao, F. Wang, and Z. Wang, “Dual-wavelength mode-locked fiber laser based on tungsten disulfide saturable absorber,” Laser Phys. 27, 125802 (2017).
[Crossref]

Laser Phys. Lett. (2)

M. Wang, Y. J. Huang, J. W. Yang, Y. Zhang, and S. C. Ruan, “Multi-wavelength mode-locked thulium-doped fiber laser based on a fiber-optic Fabry-Perot interferometer and a nonlinear optical loop mirror,” Laser Phys. Lett. 15, 085110 (2018).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Nat. Commun. (1)

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref]

Opt. Express (7)

T. Noronen, O. Okhotnikov, and R. Gumenyuk, “Electronically tunable thulium-holmium mode-locked fiber laser for the 1700–1800  nm wavelength band,” Opt. Express 24, 14703–14708 (2016).
[Crossref]

X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube mode locker and intracavity loss tuning,” Opt. Express 19, 1168–1173 (2011).
[Crossref]

B. Sun, J. Luo, Z. Yan, K. Liu, J. Ji, Y. Zhang, Q. Wang, and X. Yu, “1867–2010  nm tunable femtosecond thulium doped all-fiber laser,” Opt. Express 25, 8997–9002 (2017).
[Crossref]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17, 12692–12697 (2009).
[Crossref]

Y. Chen, S. Chen, J. Liu, Y. Gao, and W. Zhang, “Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus,” Opt. Express 24, 13316–13324 (2016).
[Crossref]

F. Yang, D. N. Wang, Z. Wang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Saturable absorber based on a single mode fiber–graded index fiber–single mode fiber structure with inner micro-cavity,” Opt. Express 26, 927–934 (2017).
[Crossref]

Opt. Lett. (6)

Optik (1)

X. Zhu, J. Geng, L. Jin, J. Cao, Y. Ji, L. Zou, C. Xu, and G. Zhang, “Widely tunable multi-wavelength passively mode-locked Yb-doped fiber laser operation in an all-normal-dispersion regime,” Optik 176, 496–501 (2019).
[Crossref]

Photon. Res. (2)

Sci. Rep. (3)

F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber based saturable absorber,” Sci. Rep. 8, 16369 (2018).
[Crossref]

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) ASE transmission spectrum of the EDF; (b) varied intensity differences of the ASE transmission spectrum (VOA device) with the increase of the additional intracavity loss (labeled); inset, the original spectrum of the BBS.
Fig. 2.
Fig. 2. (a) Schematic diagram of SMF-NCF-GIMF-SMF structure; (b) nonlinear saturable absorption curve of the NCF-GIMF device; inset, the transmission spectrum of the NCF-GIMF device.
Fig. 3.
Fig. 3. Schematic diagram of the experimental setup. The red arrow represents the laser direction.
Fig. 4.
Fig. 4. Conventional mode-locked single soliton outputs. (a) Optical spectrum; (b) autocorrelation trace; (c) pulse train; (d) RF spectrum.
Fig. 5.
Fig. 5. Output power of the fiber laser versus pump power.
Fig. 6.
Fig. 6. (a)–(k) Tunable spectra of the mode-locking operation in the C + L band at different additional insertion losses.
Fig. 7.
Fig. 7. Evolution of relevant parameters during tuning process. (a) Corresponding central wavelengths at different intracavity losses; (b) pulse energy and average power after subtracting the CW light as functions of the tuning wavelength; (c) pulse width and 3-dB bandwidth as functions of the tuning wavelength.
Fig. 8.
Fig. 8. (a)–(e) Different spectra of dual wavelength; (a1)–(e1) corresponding autocorrelation traces; insets: wide-range autocorrelation trace diagram.
Fig. 9.
Fig. 9. (a) Pulse train of the dual-wavelength; (b) corresponding RF spectrum.
Fig. 10.
Fig. 10. Controllable pulse energies of the dual wavelength. (a), (b) The spectra; (c), (d) corresponding autocorrelation traces; insets: wide-range autocorrelation trace diagram.

Tables (1)

Tables Icon

Table 1. Detailed Characteristics of the Coherent Dual-Wavelength Solitons Corresponding to Fig. 8a

Metrics