Abstract

We designed a low-filling-factor and polarization-sensitive superconducting nanowire single photon detector (SNSPD), which can achieve a high absorption efficiency and counting rate simultaneously. Numerical simulations show that high absorption efficiency can be achieved by low-filling-factor SNSPDs with a silicon slot and silver reflector. The absorptance of the NbN nanowire for a transverse magnetic (TM) wave at the wavelength of 1550 nm can be 84.4% when the filling factor is only 16.5%, and the corresponding polarization extinction ratio (PER) is 562.9; the absorptance of the NbN nanowire for a transverse electric (TE) wave can be 67.0% when the filling factor is only 11.7%, and the PER is 7.4.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Low-filling-factor superconducting single photon detector with high system detection efficiency

Taro Yamashita, Shigehito Miki, Hirotaka Terai, and Zhen Wang
Opt. Express 21(22) 27177-27184 (2013)

Design of efficient superconducting nanowire single photon detectors with high polarization sensitivity for polarimetric imaging

Fan Zheng, Xudong Tao, Mengmeng Yang, Guanghao Zhu, Biaobing Jin, Lin Kang, Weiwei Xu, Jian Chen, and Peiheng Wu
J. Opt. Soc. Am. B 33(11) 2256-2264 (2016)

Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths

Lixing You, Junjie Wu, Yingxin Xu, Xintong Hou, Wei Fang, Hao Li, Weijun Zhang, Lu Zhang, Xiaoyu Liu, Limin Tong, Zhen Wang, and Xiaoming Xie
Opt. Express 25(25) 31221-31229 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Lenhard, J. Brito, S. Kucera, M. Bock, J. Eschner, and C. Becher, “Single telecom photon heralding by wavelength multiplexing in an optical fiber,” Appl. Phys. B 122, 20 (2016).
    [Crossref]
  2. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
    [Crossref]
  3. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19, 10387–10409 (2011).
    [Crossref]
  4. M. Grein, E. Dauler, A. Kerman, M. Willis, B. Romkey, B. Robinson, D. Murphy, and D. Boroson, “A superconducting photon-counting receiver for optical communication from the Moon,” SPIE Newsroom, 9July2015.
  5. Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
    [Crossref]
  6. N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21, 5005–5013 (2013).
    [Crossref]
  7. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  8. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781-Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
    [Crossref]
  9. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
    [Crossref]
  10. T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
    [Crossref]
  11. J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
    [Crossref]
  12. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
    [Crossref]
  13. R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
    [Crossref]
  14. X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19, 17–31 (2011).
    [Crossref]
  15. V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
    [Crossref]
  16. A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28, 114003 (2015).
    [Crossref]
  17. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
    [Crossref]
  18. T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
    [Crossref]
  19. Q. Guo, H. Li, L. X. You, W. J. Zhang, L. Zhang, Z. Wang, X. M. Xie, and M. Qi, “Single photon detector with high polarization sensitivity,” Sci. Rep. 5, 9616 (2015).
    [Crossref]
  20. S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
    [Crossref]
  21. F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
    [Crossref]
  22. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
    [Crossref]
  23. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
    [Crossref]
  24. R. Xu, F. Zheng, D. Qin, X. Yan, G. Zhu, L. Kang, L. Zhang, X. Jia, X. Tu, B. Jin, W. Xu, J. Chen, and P. Wu, “Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer,” J. Lightwave Technol. 35, 4707–4713 (2017).
    [Crossref]

2017 (2)

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

R. Xu, F. Zheng, D. Qin, X. Yan, G. Zhu, L. Kang, L. Zhang, X. Jia, X. Tu, B. Jin, W. Xu, J. Chen, and P. Wu, “Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer,” J. Lightwave Technol. 35, 4707–4713 (2017).
[Crossref]

2016 (2)

A. Lenhard, J. Brito, S. Kucera, M. Bock, J. Eschner, and C. Becher, “Single telecom photon heralding by wavelength multiplexing in an optical fiber,” Appl. Phys. B 122, 20 (2016).
[Crossref]

F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
[Crossref]

2015 (2)

Q. Guo, H. Li, L. X. You, W. J. Zhang, L. Zhang, Z. Wang, X. M. Xie, and M. Qi, “Single photon detector with high polarization sensitivity,” Sci. Rep. 5, 9616 (2015).
[Crossref]

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28, 114003 (2015).
[Crossref]

2014 (1)

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

2013 (3)

2012 (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

2011 (4)

2010 (1)

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref]

2009 (1)

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[Crossref]

2008 (2)

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[Crossref]

2006 (3)

2003 (1)

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

Akopian, N.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Allacher, A.

Anant, V.

Asai, T.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Barron, R. J.

Becher, C.

A. Lenhard, J. Brito, S. Kucera, M. Bock, J. Eschner, and C. Becher, “Single telecom photon heralding by wavelength multiplexing in an optical fiber,” Appl. Phys. B 122, 20 (2016).
[Crossref]

Bellei, F.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Berggren, K. K.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19, 17–31 (2011).
[Crossref]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781-Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Bock, M.

A. Lenhard, J. Brito, S. Kucera, M. Bock, J. Eschner, and C. Becher, “Single telecom photon heralding by wavelength multiplexing in an optical fiber,” Appl. Phys. B 122, 20 (2016).
[Crossref]

Boroson, D.

M. Grein, E. Dauler, A. Kerman, M. Willis, B. Romkey, B. Robinson, D. Murphy, and D. Boroson, “A superconducting photon-counting receiver for optical communication from the Moon,” SPIE Newsroom, 9July2015.

Brito, J.

A. Lenhard, J. Brito, S. Kucera, M. Bock, J. Eschner, and C. Becher, “Single telecom photon heralding by wavelength multiplexing in an optical fiber,” Appl. Phys. B 122, 20 (2016).
[Crossref]

Buller, G. S.

Bussières, F.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Calandri, N.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

Caplan, D. O.

Carney, J. J.

Chen, J.

R. Xu, F. Zheng, D. Qin, X. Yan, G. Zhu, L. Kang, L. Zhang, X. Jia, X. Tu, B. Jin, W. Xu, J. Chen, and P. Wu, “Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer,” J. Lightwave Technol. 35, 4707–4713 (2017).
[Crossref]

F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
[Crossref]

Chulkova, G.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

Csete, M.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Dane, A. E.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

Dauler, E.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

M. Grein, E. Dauler, A. Kerman, M. Willis, B. Romkey, B. Robinson, D. Murphy, and D. Boroson, “A superconducting photon-counting receiver for optical communication from the Moon,” SPIE Newsroom, 9July2015.

Dauler, E. A.

Dixon, A. R.

Domeki, T.

Dorenbos, S. D.

Dorenbos, S. N.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Dynes, J. F.

Engel, A.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28, 114003 (2015).
[Crossref]

Eschner, J.

A. Lenhard, J. Brito, S. Kucera, M. Bock, J. Eschner, and C. Becher, “Single telecom photon heralding by wavelength multiplexing in an optical fiber,” Appl. Phys. B 122, 20 (2016).
[Crossref]

Fujiwara, M.

Gemmell, N. R.

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Gol’tsman, G.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Gol’tsman, G. N.

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[Crossref]

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

Grein, M.

M. Grein, E. Dauler, A. Kerman, M. Willis, B. Romkey, B. Robinson, D. Murphy, and D. Boroson, “A superconducting photon-counting receiver for optical communication from the Moon,” SPIE Newsroom, 9July2015.

Guo, Q.

Q. Guo, H. Li, L. X. You, W. J. Zhang, L. Zhang, Z. Wang, X. M. Xie, and M. Qi, “Single photon detector with high polarization sensitivity,” Sci. Rep. 5, 9616 (2015).
[Crossref]

Hadfield, R. H.

Hamilton, S. A.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Hasegawa, T.

Heeres, R. W.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref]

Honjo, T.

Horansky, R. D.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Hu, X.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19, 17–31 (2011).
[Crossref]

Ishizuka, H.

Jia, X.

Jin, B.

R. Xu, F. Zheng, D. Qin, X. Yan, G. Zhu, L. Kang, L. Zhang, X. Jia, X. Tu, B. Jin, W. Xu, J. Chen, and P. Wu, “Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer,” J. Lightwave Technol. 35, 4707–4713 (2017).
[Crossref]

F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
[Crossref]

Kang, L.

R. Xu, F. Zheng, D. Qin, X. Yan, G. Zhu, L. Kang, L. Zhang, X. Jia, X. Tu, B. Jin, W. Xu, J. Chen, and P. Wu, “Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer,” J. Lightwave Technol. 35, 4707–4713 (2017).
[Crossref]

F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
[Crossref]

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Kerman, A.

M. Grein, E. Dauler, A. Kerman, M. Willis, B. Romkey, B. Robinson, D. Murphy, and D. Boroson, “A superconducting photon-counting receiver for optical communication from the Moon,” SPIE Newsroom, 9July2015.

Kerman, A. J.

Klapwijk, T. M.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Klaus, W.

Kobayashi, H.

Koene, B.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref]

Korneev, A.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

Korzh, B.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Kouwenhoven, L. P.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref]

Kucera, S.

A. Lenhard, J. Brito, S. Kucera, M. Bock, J. Eschner, and C. Becher, “Single telecom photon heralding by wavelength multiplexing in an optical fiber,” Appl. Phys. B 122, 20 (2016).
[Crossref]

Länger, T.

Legré, M.

Lenhard, A.

A. Lenhard, J. Brito, S. Kucera, M. Bock, J. Eschner, and C. Becher, “Single telecom photon heralding by wavelength multiplexing in an optical fiber,” Appl. Phys. B 122, 20 (2016).
[Crossref]

Li, H.

Q. Guo, H. Li, L. X. You, W. J. Zhang, L. Zhang, Z. Wang, X. M. Xie, and M. Qi, “Single photon detector with high polarization sensitivity,” Sci. Rep. 5, 9616 (2015).
[Crossref]

Lipatov, A.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

Lita, A. E.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Liu, B.

Lonsky, J.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28, 114003 (2015).
[Crossref]

Makise, K.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Marsili, F.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Matsui, M.

Maurhart, O.

McCarthy, A.

McCaughan, A. N.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

Miki, S.

Mirin, R. P.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Molnar, R. J.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19, 17–31 (2011).
[Crossref]

Monat, L.

Murphy, D.

M. Grein, E. Dauler, A. Kerman, M. Willis, B. Romkey, B. Robinson, D. Murphy, and D. Boroson, “A superconducting photon-counting receiver for optical communication from the Moon,” SPIE Newsroom, 9July2015.

Najafi, F.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Nam, S. W.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Nambu, Y.

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Okunev, O.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

Page, J.-B.

Patterson, M. S.

Peev, M.

Perinetti, U.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Poppe, A.

Qi, M.

Q. Guo, H. Li, L. X. You, W. J. Zhang, L. Zhang, Z. Wang, X. M. Xie, and M. Qi, “Single photon detector with high polarization sensitivity,” Sci. Rep. 5, 9616 (2015).
[Crossref]

Qin, D.

Qiu, W.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Reiger, E. M.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Ribordy, G.

Robinson, B.

M. Grein, E. Dauler, A. Kerman, M. Willis, B. Romkey, B. Robinson, D. Murphy, and D. Boroson, “A superconducting photon-counting receiver for optical communication from the Moon,” SPIE Newsroom, 9July2015.

Robinson, B. S.

Robyr, S.

Romkey, B.

M. Grein, E. Dauler, A. Kerman, M. Willis, B. Romkey, B. Robinson, D. Murphy, and D. Boroson, “A superconducting photon-counting receiver for optical communication from the Moon,” SPIE Newsroom, 9July2015.

Rosfjord, K. M.

Sakai, Y.

Santavicca, D. F.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

Sasaki, M.

Schechner, Y. Y.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[Crossref]

Schilling, A.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28, 114003 (2015).
[Crossref]

Sharpe, A. W.

Shaw, M. D.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Shields, A. J.

Shimizu, K.

Slysz, W.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

Sobolewski, R.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

Solomon, G. S.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Stevens, M. L.

Tajima, A.

Takahashi, S.

Takeoka, M.

Takesue, H.

Tamaki, K.

Tanaka, A.

Tanner, M. G.

Terai, H.

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[Crossref]

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Tokura, T.

Tokura, Y.

Tomita, A.

Treibitz, T.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[Crossref]

Trinkler, P.

Tsurumaru, T.

Tu, X.

Uchikoga, S.

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Verevkin, A.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

Verma, V. B.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[Crossref]

Wakui, K.

Wang, H.-Z.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

Wang, Z.

Willis, M.

M. Grein, E. Dauler, A. Kerman, M. Willis, B. Romkey, B. Robinson, D. Murphy, and D. Boroson, “A superconducting photon-counting receiver for optical communication from the Moon,” SPIE Newsroom, 9July2015.

Wilson, B. C.

Wu, P.

R. Xu, F. Zheng, D. Qin, X. Yan, G. Zhu, L. Kang, L. Zhang, X. Jia, X. Tu, B. Jin, W. Xu, J. Chen, and P. Wu, “Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer,” J. Lightwave Technol. 35, 4707–4713 (2017).
[Crossref]

F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
[Crossref]

Xie, X. M.

Q. Guo, H. Li, L. X. You, W. J. Zhang, L. Zhang, Z. Wang, X. M. Xie, and M. Qi, “Single photon detector with high polarization sensitivity,” Sci. Rep. 5, 9616 (2015).
[Crossref]

Xu, R.

R. Xu, F. Zheng, D. Qin, X. Yan, G. Zhu, L. Kang, L. Zhang, X. Jia, X. Tu, B. Jin, W. Xu, J. Chen, and P. Wu, “Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer,” J. Lightwave Technol. 35, 4707–4713 (2017).
[Crossref]

F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
[Crossref]

Xu, W.

R. Xu, F. Zheng, D. Qin, X. Yan, G. Zhu, L. Kang, L. Zhang, X. Jia, X. Tu, B. Jin, W. Xu, J. Chen, and P. Wu, “Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer,” J. Lightwave Technol. 35, 4707–4713 (2017).
[Crossref]

F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
[Crossref]

Yamashita, T.

Yan, X.

Yang, J. K.

Yang, J. K. W.

Yoshino, K.

You, L. X.

Q. Guo, H. Li, L. X. You, W. J. Zhang, L. Zhang, Z. Wang, X. M. Xie, and M. Qi, “Single photon detector with high polarization sensitivity,” Sci. Rep. 5, 9616 (2015).
[Crossref]

Yuan, Z. L.

Zbinden, H.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Zeilinger, A.

Zhang, J.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

Zhang, L.

Zhang, W. J.

Q. Guo, H. Li, L. X. You, W. J. Zhang, L. Zhang, Z. Wang, X. M. Xie, and M. Qi, “Single photon detector with high polarization sensitivity,” Sci. Rep. 5, 9616 (2015).
[Crossref]

Zhang, X.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28, 114003 (2015).
[Crossref]

Zhao, Q.-Y.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

Zheng, F.

R. Xu, F. Zheng, D. Qin, X. Yan, G. Zhu, L. Kang, L. Zhang, X. Jia, X. Tu, B. Jin, W. Xu, J. Chen, and P. Wu, “Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer,” J. Lightwave Technol. 35, 4707–4713 (2017).
[Crossref]

F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
[Crossref]

Zhu, D.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

Zhu, G.

R. Xu, F. Zheng, D. Qin, X. Yan, G. Zhu, L. Kang, L. Zhang, X. Jia, X. Tu, B. Jin, W. Xu, J. Chen, and P. Wu, “Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer,” J. Lightwave Technol. 35, 4707–4713 (2017).
[Crossref]

F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
[Crossref]

Zijlstra, T.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Zwiller, V.

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21, 5005–5013 (2013).
[Crossref]

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Appl. Phys. B (1)

A. Lenhard, J. Brito, S. Kucera, M. Bock, J. Eschner, and C. Becher, “Single telecom photon heralding by wavelength multiplexing in an optical fiber,” Appl. Phys. B 122, 20 (2016).
[Crossref]

Appl. Phys. Lett. (4)

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 180–183 (2003).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[Crossref]

J. Lightwave Technol. (1)

Nano Lett. (2)

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref]

Nat. Photonics (2)

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Opt. Express (6)

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21, 5005–5013 (2013).
[Crossref]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19, 10387–10409 (2011).
[Crossref]

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19, 17–31 (2011).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[Crossref]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[Crossref]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[Crossref]

Opt. Lett. (1)

Sci. Rep. (2)

Q. Guo, H. Li, L. X. You, W. J. Zhang, L. Zhang, Z. Wang, X. M. Xie, and M. Qi, “Single photon detector with high polarization sensitivity,” Sci. Rep. 5, 9616 (2015).
[Crossref]

F. Zheng, R. Xu, G. Zhu, B. Jin, L. Kang, W. Xu, J. Chen, and P. Wu, “Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency,” Sci. Rep. 6, 22710 (2016).
[Crossref]

Supercond. Sci. Technol. (2)

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28, 114003 (2015).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Other (1)

M. Grein, E. Dauler, A. Kerman, M. Willis, B. Romkey, B. Robinson, D. Murphy, and D. Boroson, “A superconducting photon-counting receiver for optical communication from the Moon,” SPIE Newsroom, 9July2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the stack structure of the SNSPD with a Si slot and Ag reflector. The region surrounded by the dashed line indicates the unit cell for the numerical simulation. The pitch of the unit cell, the length of the cavity, and the width of the nanowire are denoted by P, L, and W, respectively. The direction of the incident light is shown by the black arrow, and the polarization directions of TM and TE waves are marked.
Fig. 2.
Fig. 2. Distributions of the electric field intensity in the Si-HSQ-Si slot (picture above) and that in the Ag-HSQ-Ag slot (picture below). The incident light is TM polarized, the pitch is 486 nm, and the width of the nanowire is 80 nm.
Fig. 3.
Fig. 3. Distributions of the electric field intensity in the Si-HSQ-Si slot (picture above) and that in the Ag-HSQ-Ag slot (picture below). The incident light is TE polarized, the pitch is 682 nm, and the width of the nanowire is 80 nm.
Fig. 4.
Fig. 4. Simulated pitch dependence of the optical absorptance in the nanowire. The dashed blue, solid blue, dashed red, and solid red lines represent the Ag-HSQ-Ag slot with TM incident waves, Ag-HSQ-Ag slot with TE incident waves, Si-HSQ-Si slot with TM incident waves, and Si-HSQ-Si slot with TE incident waves.
Fig. 5.
Fig. 5. Simulated cavity length dependence of the optical absorptance in the nanowire. The dashed blue, solid blue, dashed red, and solid red lines represent the Ag-HSQ-Ag slot with TM incident waves, Ag-HSQ-Ag slot with TE incident waves, Si-HSQ-Si slot with TM incident waves, and Si-HSQ-Si slot with TE incident waves.
Fig. 6.
Fig. 6. Simulated pitch dependence of the optical absorptance in the nanowire when the cavity lengths are different, and the nanowire width is fixed to 80 nm. (a) The incident light is TM polarized. (b) The incident light is TE polarized.
Fig. 7.
Fig. 7. Simulated nanowire width dependence of the optical absorptance in the nanowire. The cavity length is fixed to 200 nm. For TM waves, the pitch is 486 nm. For TE waves, the pitch is 682 nm.
Fig. 8.
Fig. 8. Simulated polarization dependence of the absorption efficiency in the polar coordinate system. The angle is defined as the angle between the polarization direction and the direction perpendicular to the nanowire. The cavity length is 200 nm, and the nanowire width is 80 nm. (a) The pitch is 682 nm. (b) The pitch is 486 nm.
Fig. 9.
Fig. 9. Simulated PER dependence on the pitch when the nanowire widths are different, and the cavity length is fixed to 200 nm. (a) The incident light is TM polarized. (b) The incident light is TE polarized.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A=w/2w/20twIm[ε]|E|2dxdyp/2p/2(ε0μ0)1/2|E0|2dx,
Lk=μ0λ2l/S,
τ=LkRln[1/(1I90%Ib)],

Metrics