Abstract

A unique all-fiber interferometric sensor was proposed and successfully demonstrated efficient low-refractive-index liquid sensing in the range from 1.33 to 1.37, which is compatible with those of bio-liquids. A special silica coreless optical fiber with an open V-groove was used as an optical sensing medium, which provided a high sensitivity for a minute liquid volume in the nanoliter scale. The V-groove fiber (VGF) was serially concatenated between two single-mode fibers (SMFs). The LP01 mode guided along the input SMF excited the higher-order modes in the VGF to generate multimode interference, whose spectrum was transmitted through the output SMF. A single liquid droplet with volume of 80 nanoliters wet the entire hydrophilic surface of the VGF, and the transmission spectra shifted corresponding to its refractive index in a very linear manner. The sensor also showed a negligible temperature cross-sensitivity in the range 25°C–75°C, which overlaps with the biological temperature window such that the sensitivity of 159.696 nm per refractive index unit (nm/RIU) remained independent of the temperature variation. Modal properties of VGF were thoroughly analyzed numerically, and detailed processes for the sensor fabrication and sensing experiments were reported.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid Fabry-Perot interferometer for simultaneous liquid refractive index and temperature measurement

Ben Xu, Yi Yang, Zhenbao Jia, and D. N. Wang
Opt. Express 25(13) 14483-14493 (2017)

Ultrasensitive temperature fiber sensor based on Fabry-Pérot interferometer assisted with iron V-groove

Xiaodong Wen, Tigang Ning, Yan Bai, Chao Li, Jing Li, and Chuanbiao Zhang
Opt. Express 23(9) 11526-11536 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
    [Crossref]
  2. F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6, 663–679 (2017).
    [Crossref]
  3. C. Park, S. Y. Lee, G. Kim, S. J. Lee, J. Lee, T. Heo, Y. Park, and Y. K. Park, “Three-dimensional refractive-index distributions of individual angiosperm pollen grains,” Curr. Opt. Photon. 2, 460–467 (2018).
    [Crossref]
  4. H.-T. Cho, G.-S. Seo, O.-R. Lim, W. Shin, H.-J. Jang, and T.-J. Ahn, “Ultraviolet light sensor based on an azobenzene-polymer-capped optical-fiber end,” Curr. Opt. Photon. 2, 303–307 (2018).
  5. A. Kumar, T. Subrahmanyam, A. Sharma, K. Thyagarajan, B. Pal, and I. Goyal, “Novel refractometer using a tapered optical fibre,” Electron. Lett. 20, 534–535 (1984).
    [Crossref]
  6. O. Frazão, T. Martynkien, J. Baptista, J. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34, 76–78 (2009).
    [Crossref]
  7. S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
    [Crossref]
  8. C.-L. Zhao, L. Qi, S. Zhang, Y. Jin, and S. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sens. Actuators B Chem. 178, 96–100 (2013).
    [Crossref]
  9. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
    [Crossref]
  10. T. Guo, H.-Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17, 5736–5742 (2009).
    [Crossref]
  11. T. Wang, K. Liu, J. Jiang, M. Xue, P. Chang, and T. Liu, “Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution,” Opt. Express 25, 14900–14909 (2017).
    [Crossref]
  12. I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107, 738–741 (2005).
    [Crossref]
  13. C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
    [Crossref]
  14. T. Geng, S. Zhang, F. Peng, W. Yang, C. Sun, X. Chen, Y. Zhou, Q. Hu, and L. Yuan, “A temperature-insensitive refractive index sensor based on no-core fiber embedded long period grating,” J. Lightwave Technol. 35, 5391–5396 (2017).
    [Crossref]
  15. T. Yadav, R. Narayanaswamy, M. A. Bakar, Y. M. Kamil, and M. Mahdi, “Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,” Opt. Express 22, 22802–22807 (2014).
    [Crossref]
  16. Y. Zhao, L. Cai, and X.-G. Li, “In-fiber Mach-Zehnder interferometer based on up-taper fiber structure with Er3+ doped fiber ring laser,” J. Lightwave Technol. 34, 3475–3481 (2016).
    [Crossref]
  17. D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett. 30, 3000–3002 (2005).
    [Crossref]
  18. R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry-Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94, 243905 (2009).
    [Crossref]
  19. D. Wu, T. Zhu, G.-Y. Wang, J.-Y. Fu, X.-G. Lin, and G.-L. Gou, “Intrinsic fiber-optic Fabry-Perot interferometer based on arc discharge and single-mode fiber,” Appl. Opt. 52, 2670–2675 (2013).
    [Crossref]
  20. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 37, 67–69 (2012).
    [Crossref]
  21. H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39, 4049–4052 (2014).
    [Crossref]
  22. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31, 317–319 (2006).
    [Crossref]
  23. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
    [Crossref]
  24. M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 21, 1027–1029 (2009).
    [Crossref]
  25. M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106, 363–368 (2005).
    [Crossref]
  26. N. Cennamo, D. Massarotti, L. Conte, and L. Zeni, “Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation,” Sensors 11, 11752–11760 (2011).
    [Crossref]
  27. B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013).
    [Crossref]
  28. E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
    [Crossref]
  29. J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
    [Crossref]
  30. Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).
    [Crossref]
  31. Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors 10, 3585–3596 (2010).
    [Crossref]
  32. H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).
    [Crossref]
  33. J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
    [Crossref]
  34. T. Nazari, B. Joo, J.-H. Hwang, B. Paulson, J. Park, Y. M. Jhon, and K. Oh, “Highly birefringent V-groove liquid core fiber,” Opt. Express 25, 24714–24726 (2017).
    [Crossref]
  35. K. Oh and U. C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2012).
  36. J. Zhang, W. Sun, L. Yuan, and G.-D. Peng, “Design of a single-multimode-single-mode filter demodulator for fiber Bragg grating sensors assisted by mode observation,” Appl. Opt. 48, 5642–5646 (2009).
    [Crossref]
  37. M. T. Tavassoly and A. Saber, “Optical refractometry based on Fresnel diffraction from a phase wedge,” Opt. Lett. 35, 3679–3681 (2010).
    [Crossref]

2018 (2)

2017 (5)

2016 (2)

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Y. Zhao, L. Cai, and X.-G. Li, “In-fiber Mach-Zehnder interferometer based on up-taper fiber structure with Er3+ doped fiber ring laser,” J. Lightwave Technol. 34, 3475–3481 (2016).
[Crossref]

2015 (2)

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
[Crossref]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

2014 (2)

2013 (5)

D. Wu, T. Zhu, G.-Y. Wang, J.-Y. Fu, X.-G. Lin, and G.-L. Gou, “Intrinsic fiber-optic Fabry-Perot interferometer based on arc discharge and single-mode fiber,” Appl. Opt. 52, 2670–2675 (2013).
[Crossref]

B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013).
[Crossref]

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).
[Crossref]

C.-L. Zhao, L. Qi, S. Zhang, Y. Jin, and S. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sens. Actuators B Chem. 178, 96–100 (2013).
[Crossref]

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

2012 (1)

2011 (1)

N. Cennamo, D. Massarotti, L. Conte, and L. Zeni, “Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation,” Sensors 11, 11752–11760 (2011).
[Crossref]

2010 (4)

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).
[Crossref]

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors 10, 3585–3596 (2010).
[Crossref]

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
[Crossref]

M. T. Tavassoly and A. Saber, “Optical refractometry based on Fresnel diffraction from a phase wedge,” Opt. Lett. 35, 3679–3681 (2010).
[Crossref]

2009 (5)

2006 (2)

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31, 317–319 (2006).
[Crossref]

2005 (3)

D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett. 30, 3000–3002 (2005).
[Crossref]

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106, 363–368 (2005).
[Crossref]

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107, 738–741 (2005).
[Crossref]

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[Crossref]

1984 (1)

A. Kumar, T. Subrahmanyam, A. Sharma, K. Thyagarajan, B. Pal, and I. Goyal, “Novel refractometer using a tapered optical fibre,” Electron. Lett. 20, 534–535 (1984).
[Crossref]

Ahn, T.-J.

Albert, J.

Ashwell, G. J.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107, 738–741 (2005).
[Crossref]

Bakar, M. A.

Baldini, F.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6, 663–679 (2017).
[Crossref]

Baptista, J.

Baxter, G.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).
[Crossref]

Cai, L.

Carotenuto, B.

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Cennamo, N.

N. Cennamo, D. Massarotti, L. Conte, and L. Zeni, “Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation,” Sensors 11, 11752–11760 (2011).
[Crossref]

Chang, P.

Chen, J.

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
[Crossref]

Chen, X.

Chiavaioli, F.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6, 663–679 (2017).
[Crossref]

Cho, H.-T.

Collins, S.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).
[Crossref]

Consales, M.

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Conte, L.

N. Cennamo, D. Massarotti, L. Conte, and L. Zeni, “Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation,” Sensors 11, 11752–11760 (2011).
[Crossref]

Crescitelli, A.

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Cui, Y.

Cusano, A.

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Davis, T.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).
[Crossref]

Ebendorff-Heidepriem, H.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

Esposito, E.

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Farrell, G.

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[Crossref]

François, A.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

Frazão, O.

Fu, J.-Y.

Geng, T.

Giannetti, A.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6, 663–679 (2017).
[Crossref]

Gou, G.-L.

Goyal, I.

A. Kumar, T. Subrahmanyam, A. Sharma, K. Thyagarajan, B. Pal, and I. Goyal, “Novel refractometer using a tapered optical fibre,” Electron. Lett. 20, 534–535 (1984).
[Crossref]

Guan, C.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Guo, J.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).
[Crossref]

Guo, T.

Ha, W.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 21, 1027–1029 (2009).
[Crossref]

He, Z.

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
[Crossref]

Heo, T.

Hernández-Romano, I.

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

Hoffmann, P.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

Hu, Q.

Huang, R.

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
[Crossref]

Hwang, J.-H.

Iga, M.

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106, 363–368 (2005).
[Crossref]

Ishaq, I. M.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107, 738–741 (2005).
[Crossref]

James, S. W.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107, 738–741 (2005).
[Crossref]

Jang, H.-J.

Jeong, M.-Y.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
[Crossref]

Jhon, Y. M.

Jiang, J.

Jiang, Y.-X.

Jin, S.

C.-L. Zhao, L. Qi, S. Zhang, Y. Jin, and S. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sens. Actuators B Chem. 178, 96–100 (2013).
[Crossref]

Jin, Y.

C.-L. Zhao, L. Qi, S. Zhang, Y. Jin, and S. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sens. Actuators B Chem. 178, 96–100 (2013).
[Crossref]

Joo, B.

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

Kamil, Y. M.

Kim, D. K.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 21, 1027–1029 (2009).
[Crossref]

Kim, D. W.

Kim, G.

Kim, S.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

Klantsataya, E.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

Krug, P. A.

Kumar, A.

A. Kumar, T. Subrahmanyam, A. Sharma, K. Thyagarajan, B. Pal, and I. Goyal, “Novel refractometer using a tapered optical fibre,” Electron. Lett. 20, 534–535 (1984).
[Crossref]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[Crossref]

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

Lee, J.

Lee, S.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 21, 1027–1029 (2009).
[Crossref]

Lee, S. J.

Lee, S. Y.

Lee, S.-M.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
[Crossref]

Li, S.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Li, X.-G.

Liang, R.

Lim, O.-R.

Lin, X.-G.

Lin, Y.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).
[Crossref]

Lindquist, R. G.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).
[Crossref]

Liu, B.-H.

Liu, D.

Liu, K.

Liu, T.

Lopez-Higuera, J. M.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107, 738–741 (2005).
[Crossref]

Luo, H.

Mahdi, M.

Martínez-Piñón, F.

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

Martynkien, T.

Massarotti, D.

N. Cennamo, D. Massarotti, L. Conte, and L. Zeni, “Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation,” Sensors 11, 11752–11760 (2011).
[Crossref]

Masson, J.

R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry-Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94, 243905 (2009).
[Crossref]

Mo, Y.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).
[Crossref]

Monro, T. M.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

Monzón-Hernández, D.

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

Moreno-Hernández, D.

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

Narayanaswamy, R.

Nazari, T.

Nguyen, H.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).
[Crossref]

Oh, K.

T. Nazari, B. Joo, J.-H. Hwang, B. Paulson, J. Park, Y. M. Jhon, and K. Oh, “Highly birefringent V-groove liquid core fiber,” Opt. Express 25, 24714–24726 (2017).
[Crossref]

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 21, 1027–1029 (2009).
[Crossref]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

K. Oh and U. C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2012).

Paek, U. C.

K. Oh and U. C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2012).

Pal, B.

A. Kumar, T. Subrahmanyam, A. Sharma, K. Thyagarajan, B. Pal, and I. Goyal, “Novel refractometer using a tapered optical fibre,” Electron. Lett. 20, 534–535 (1984).
[Crossref]

Park, C.

Park, J.

Park, M.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 21, 1027–1029 (2009).
[Crossref]

Park, Y.

Park, Y. K.

Paulson, B.

Peng, F.

Peng, G.-D.

Peter, Y.-A.

R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry-Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94, 243905 (2009).
[Crossref]

Pisco, M.

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Qi, L.

C.-L. Zhao, L. Qi, S. Zhang, Y. Jin, and S. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sens. Actuators B Chem. 178, 96–100 (2013).
[Crossref]

Qi, W.

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
[Crossref]

Quero, G.

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Quintela, A.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107, 738–741 (2005).
[Crossref]

Ricciardi, A.

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Roberts, A.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).
[Crossref]

Saber, A.

Saini, S. S.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
[Crossref]

Santos, J.

Seki, A.

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106, 363–368 (2005).
[Crossref]

Seo, G.-S.

Shao, Y.

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors 10, 3585–3596 (2010).
[Crossref]

Sharma, A.

A. Kumar, T. Subrahmanyam, A. Sharma, K. Thyagarajan, B. Pal, and I. Goyal, “Novel refractometer using a tapered optical fibre,” Electron. Lett. 20, 534–535 (1984).
[Crossref]

Shen, F.

Shi, J.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Shi, S.

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
[Crossref]

Shi, Y.-W.

Shin, W.

H.-T. Cho, G.-S. Seo, O.-R. Lim, W. Shin, H.-J. Jang, and T.-J. Ahn, “Ultraviolet light sensor based on an azobenzene-polymer-capped optical-fiber end,” Curr. Opt. Photon. 2, 303–307 (2018).

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 21, 1027–1029 (2009).
[Crossref]

Shum, P. P.

Sidiroglou, F.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).
[Crossref]

Sohn, I. B.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 21, 1027–1029 (2009).
[Crossref]

St-Gelais, R.

R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry-Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94, 243905 (2009).
[Crossref]

Su, R.

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
[Crossref]

Subrahmanyam, T.

A. Kumar, T. Subrahmanyam, A. Sharma, K. Thyagarajan, B. Pal, and I. Goyal, “Novel refractometer using a tapered optical fibre,” Electron. Lett. 20, 534–535 (1984).
[Crossref]

Sun, C.

Sun, Q.

Sun, W.

Tam, H.-Y.

Tang, X.-L.

Tatam, R. P.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107, 738–741 (2005).
[Crossref]

Tavassoly, M. T.

Thyagarajan, K.

A. Kumar, T. Subrahmanyam, A. Sharma, K. Thyagarajan, B. Pal, and I. Goyal, “Novel refractometer using a tapered optical fibre,” Electron. Lett. 20, 534–535 (1984).
[Crossref]

Tian, X.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Tombelli, S.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6, 663–679 (2017).
[Crossref]

Trono, C.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6, 663–679 (2017).
[Crossref]

Urbanczyk, W.

Vaiano, P.

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Velázquez-González, J. S.

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

Wang, A.

Wang, G.

Wang, G.-Y.

Wang, L.

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
[Crossref]

Wang, M.

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
[Crossref]

Wang, Q.

Wang, T.

Wang, Y.

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors 10, 3585–3596 (2010).
[Crossref]

Watanabe, K.

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106, 363–368 (2005).
[Crossref]

Wo, J.

Wojcik, J.

Wu, D.

Xu, S.

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors 10, 3585–3596 (2010).
[Crossref]

Xu, W.

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors 10, 3585–3596 (2010).
[Crossref]

Xu, Z.

Xue, M.

Yadav, T.

Yang, W.

Yuan, L.

Zeni, L.

N. Cennamo, D. Massarotti, L. Conte, and L. Zeni, “Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation,” Sensors 11, 11752–11760 (2011).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, S.

T. Geng, S. Zhang, F. Peng, W. Yang, C. Sun, X. Chen, Y. Zhou, Q. Hu, and L. Yuan, “A temperature-insensitive refractive index sensor based on no-core fiber embedded long period grating,” J. Lightwave Technol. 35, 5391–5396 (2017).
[Crossref]

C.-L. Zhao, L. Qi, S. Zhang, Y. Jin, and S. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sens. Actuators B Chem. 178, 96–100 (2013).
[Crossref]

Zhao, C.-L.

C.-L. Zhao, L. Qi, S. Zhang, Y. Jin, and S. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sens. Actuators B Chem. 178, 96–100 (2013).
[Crossref]

Zhao, Y.

Zheng, X.

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors 10, 3585–3596 (2010).
[Crossref]

Zhong, X.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Zhou, Y.

Zhu, T.

Zhu, X.-S.

Zou, Y.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry-Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94, 243905 (2009).
[Crossref]

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).
[Crossref]

Curr. Opt. Photon. (2)

Electron. Lett. (1)

A. Kumar, T. Subrahmanyam, A. Sharma, K. Thyagarajan, B. Pal, and I. Goyal, “Novel refractometer using a tapered optical fibre,” Electron. Lett. 20, 534–535 (1984).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
[Crossref]

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 21, 1027–1029 (2009).
[Crossref]

J. Lightwave Technol. (2)

Laser Photon. Rev. (1)

P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photon. Rev. 10, 922–961 (2016).
[Crossref]

Meas. Sci. Technol. (2)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[Crossref]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

Nanophotonics (1)

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6, 663–679 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Sens. Actuators B Chem. (5)

C.-L. Zhao, L. Qi, S. Zhang, Y. Jin, and S. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sens. Actuators B Chem. 178, 96–100 (2013).
[Crossref]

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107, 738–741 (2005).
[Crossref]

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106, 363–368 (2005).
[Crossref]

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

Sensors (5)

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).
[Crossref]

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors 10, 3585–3596 (2010).
[Crossref]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, and Z. He, “Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles,” Sensors 15, 12205–12217 (2015).
[Crossref]

N. Cennamo, D. Massarotti, L. Conte, and L. Zeni, “Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation,” Sensors 11, 11752–11760 (2011).
[Crossref]

Other (1)

K. Oh and U. C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Proposed refractive index sensor structure. The input single-mode fiber (SMF) was fusion spliced to V-groove fiber (VGF) where MMI occurred. The MMI spectrum is transmitted through the output SMF. The liquid droplet was dispensed over the VGF, and the spectral shift caused by the RI change in the surrounding medium was measured. (b) Cross-sectional microphotograph of the fabricated VGF used in the experiments; (c) schematic process to make the VGF.
Fig. 2.
Fig. 2. (a) Schematic cross-sectional view of the VGF in simulations; (b)–(h) guide modes along the V-groove fiber and their intensity distribution at λ=1550  nm. Here we assume the refractive index of liquid to be 1.35.
Fig. 3.
Fig. 3. (a) Impacts of nliq on the effective index of the fundamental mode neff. (b) Impact of the liquid outer boundary radius r on the effective index of the fundamental mode neff.
Fig. 4.
Fig. 4. Schematic view of the RI sensing based on an SVS structure. Here ASE is the amplified spontaneous emission light source; OSA is the optical spectrum analyzer. SVS stands for SMF-VGF-SMF structure.
Fig. 5.
Fig. 5. (a) Transmission spectra through the proposed sensor for various ethanol concentrations in the aqueous solution. (b) Shift of the spectral dip for various ethanol concentrations. (c) Spectral shift versus the RI of the solution.

Tables (1)

Tables Icon

Table 1. Effective RI and the Corresponding Coefficient of the Excited Modes in VGF

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ηi=|0Ei(r)E0(r)rdr|20|Ei(r)|2rdr0|E0(r)|2rdr,
S(λ)=i=1Nηi2S0(λ)+ij=1NηiηjS0(λ)cos(Δφij),
Δφij=(βiβj)Lv=2πλ(ninj)Lv,