Abstract

Mid-infrared (mid-IR) imaging and spectroscopic techniques have been rapidly evolving in recent years, primarily due to a multitude of applications within diverse fields such as biomedical imaging, chemical sensing, and food quality inspection. Mid-IR upconversion detection is a promising tool for exploiting some of these applications. In this paper, various characteristics of mid-IR upconversion imaging in the femtosecond regime are investigated using a 4f imaging setup. A fraction of the 100 fs, 80 MHz output from a Ti:sapphire laser is used to synchronously pump an optical parametric oscillator, generating 200 fs mid-IR pulses tunable across the 2.7–4.0 μm wavelength range. The signal-carrying mid-IR pulses are detected by upconversion with the remaining fraction of the original pump beam inside a bulk LiNbO3 crystal, generating an upconverted field in the visible/near-IR range, enabling silicon-based CCD detection. Using the same pump source for generation and detection ensures temporal overlap of pulses inside the nonlinear crystal used for upconversion, thus resulting in high conversion efficiency even in a single-pass configuration. A theory is developed to calculate relevant acceptance parameters, considering the large spectral bandwidths and the reduced interaction length due to group velocity mismatch, both associated with ultrashort pulses. Furthermore, the resolution of this ultrashort-pulsed upconversion imaging system is described. It is demonstrated that the increase in acceptance bandwidth leads to increased blurring in the upconverted images. The presented theory is consistent with experimental observations.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Video-rate, mid-infrared hyperspectral upconversion imaging

S. Junaid, S. Chaitanya Kumar, M. Mathez, M. Hermes, N. Stone, N. Shepherd, M. Ebrahim-Zadeh, P. Tidemand-Lichtenberg, and C. Pedersen
Optica 6(6) 702-708 (2019)

Self-gated mid-infrared short pulse upconversion detection for gas sensing

Sebastian Wolf, Tobias Trendle, Jens Kiessling, Johannes Herbst, Karsten Buse, and Frank Kühnemann
Opt. Express 25(20) 24459-24468 (2017)

Non-collinear upconversion of infrared light

Christian Pedersen, Qi Hu, Lasse Høgstedt, Peter Tidemand-Lichtenberg, and Jeppe Seidelin Dam
Opt. Express 22(23) 28027-28036 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2002).
  2. M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
    [Crossref]
  3. D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photon. Rev. 3, 343–354 (2009).
    [Crossref]
  4. S. Kumar, C. Desmedt, D. Larsimont, C. Sotiriou, and E. Goormaghtigh, “Change in the microenvironment of breast cancer studied by FTIR imaging,” Analyst 138, 4058–4065 (2013).
    [Crossref]
  5. G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
    [Crossref]
  6. R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389, 1155–1169 (2007).
    [Crossref]
  7. C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
    [Crossref]
  8. A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2010).
  9. J. E. Midwinter and J. Warner, “Up-conversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
    [Crossref]
  10. J. Warner, “Parametric up-conversion from the infrared,” J. Opto-Electron. 3, 37–48 (1971).
    [Crossref]
  11. M. El-Sayed, M. Mohamed, C. Burda, and S. Link, “The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: assignment of the transient features by carrier quenching,” J. Phys. Chem. B 105, 12286–12292 (2001).
    [Crossref]
  12. C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study,” Phys. Chem. Chem. Phys. 12, 9256–9266 (2010).
    [Crossref]
  13. H. K. Nienhuys, R. A. Van Santen, and H. J. Bakker, “Orientational relaxation of liquid water molecules as an activated process,” J. Chem. Phys. 112, 8487–8494 (2000).
    [Crossref]
  14. J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
    [Crossref]
  15. N. Huang, H. Liu, Z. Wang, J. Han, and S. Zhang, “Femtowatt incoherent image conversion from mid-infrared light to near-infrared light,” Laser Phys. 27, 035401 (2017).
    [Crossref]
  16. A. J. Torregrosa, H. Maestre, and J. Capmany, “Intra-cavity upconversion to 631  nm of images illuminated by an eye-safe ASE source at 1550  nm,” Opt. Lett. 40, 5315–5318 (2015).
    [Crossref]
  17. M. Mathez, P. J. Rodrigo, P. Tidemand-Lichtenberg, and C. Pedersen, “Upconversion imaging using short-wave infrared picosecond pulses,” Opt. Lett. 42, 579–582 (2017).
    [Crossref]
  18. S. Wolf, T. Trendle, J. Kiessling, J. Herbst, K. Buse, and F. Kühnemann, “Self-gated mid-infrared short pulse upconversion detection for gas sensing,” Opt. Express 25, 24459–24468 (2017).
    [Crossref]
  19. L. Pattelli, R. Savo, M. Burresi, and D. S. Wiersma, “Spatio-temporal visualization of light transport in complex photonic structures,” Light Sci. Appl. 5, e16090 (2016).
    [Crossref]
  20. H. Maestre, A. J. Torregrosa, and J. Capmany, “IR image upconversion using band-limited ASE illumination fiber sources,” Opt. Express 24, 8581–8593 (2016).
    [Crossref]
  21. P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33, D28–D35 (2016).
    [Crossref]
  22. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  23. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).
  24. J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “Theory for upconversion of incoherent images,” Opt. Express 20, 1475–1482 (2012).
    [Crossref]
  25. C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22, 28027–28036 (2014).
    [Crossref]
  26. C. Pedersen, E. Karamehmedović, J. S. Dam, and P. Tidemand-Lichtenberg, “Enhanced 2D-image upconversion using solid-state lasers,” Opt. Express 17, 20885–20890 (2009).
    [Crossref]

2017 (3)

2016 (3)

2015 (1)

2014 (1)

2013 (1)

S. Kumar, C. Desmedt, D. Larsimont, C. Sotiriou, and E. Goormaghtigh, “Change in the microenvironment of breast cancer studied by FTIR imaging,” Analyst 138, 4058–4065 (2013).
[Crossref]

2012 (2)

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
[Crossref]

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “Theory for upconversion of incoherent images,” Opt. Express 20, 1475–1482 (2012).
[Crossref]

2010 (2)

C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study,” Phys. Chem. Chem. Phys. 12, 9256–9266 (2010).
[Crossref]

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
[Crossref]

2009 (2)

D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photon. Rev. 3, 343–354 (2009).
[Crossref]

C. Pedersen, E. Karamehmedović, J. S. Dam, and P. Tidemand-Lichtenberg, “Enhanced 2D-image upconversion using solid-state lasers,” Opt. Express 17, 20885–20890 (2009).
[Crossref]

2008 (1)

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

2007 (1)

R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389, 1155–1169 (2007).
[Crossref]

2006 (1)

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

2001 (1)

M. El-Sayed, M. Mohamed, C. Burda, and S. Link, “The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: assignment of the transient features by carrier quenching,” J. Phys. Chem. B 105, 12286–12292 (2001).
[Crossref]

2000 (1)

H. K. Nienhuys, R. A. Van Santen, and H. J. Bakker, “Orientational relaxation of liquid water molecules as an activated process,” J. Chem. Phys. 112, 8487–8494 (2000).
[Crossref]

1971 (1)

J. Warner, “Parametric up-conversion from the infrared,” J. Opto-Electron. 3, 37–48 (1971).
[Crossref]

1967 (1)

J. E. Midwinter and J. Warner, “Up-conversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[Crossref]

Alexandre, M. T. A.

C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study,” Phys. Chem. Chem. Phys. 12, 9256–9266 (2010).
[Crossref]

Andersen, H. V.

Bakker, H. J.

H. K. Nienhuys, R. A. Van Santen, and H. J. Bakker, “Orientational relaxation of liquid water molecules as an activated process,” J. Chem. Phys. 112, 8487–8494 (2000).
[Crossref]

Barr, H.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

Bauer, C.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Bhargava, R.

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
[Crossref]

R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389, 1155–1169 (2007).
[Crossref]

Blaser, S.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Bonetti, C.

C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study,” Phys. Chem. Chem. Phys. 12, 9256–9266 (2010).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Brandt, A. U.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
[Crossref]

Braunschweig, B.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Burda, C.

M. El-Sayed, M. Mohamed, C. Burda, and S. Link, “The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: assignment of the transient features by carrier quenching,” J. Phys. Chem. B 105, 12286–12292 (2001).
[Crossref]

Burgmeier, J.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Burresi, M.

L. Pattelli, R. Savo, M. Burresi, and D. S. Wiersma, “Spatio-temporal visualization of light transport in complex photonic structures,” Light Sci. Appl. 5, e16090 (2016).
[Crossref]

Buse, K.

Capmany, J.

Chalmers, J. M.

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2002).

Dam, J. S.

Desmedt, C.

S. Kumar, C. Desmedt, D. Larsimont, C. Sotiriou, and E. Goormaghtigh, “Change in the microenvironment of breast cancer studied by FTIR imaging,” Analyst 138, 4058–4065 (2013).
[Crossref]

El-Sayed, M.

M. El-Sayed, M. Mohamed, C. Burda, and S. Link, “The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: assignment of the transient features by carrier quenching,” J. Phys. Chem. B 105, 12286–12292 (2001).
[Crossref]

Fried, A.

D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photon. Rev. 3, 343–354 (2009).
[Crossref]

Goormaghtigh, E.

S. Kumar, C. Desmedt, D. Larsimont, C. Sotiriou, and E. Goormaghtigh, “Change in the microenvironment of breast cancer studied by FTIR imaging,” Analyst 138, 4058–4065 (2013).
[Crossref]

Griffiths, P. R.

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2002).

Groot, M. L.

C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study,” Phys. Chem. Chem. Phys. 12, 9256–9266 (2010).
[Crossref]

Han, J.

N. Huang, H. Liu, Z. Wang, J. Han, and S. Zhang, “Femtowatt incoherent image conversion from mid-infrared light to near-infrared light,” Laser Phys. 27, 035401 (2017).
[Crossref]

Hauser, A. E.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
[Crossref]

Herbst, J.

Herz, J.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
[Crossref]

Hiller, R. G.

C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study,” Phys. Chem. Chem. Phys. 12, 9256–9266 (2010).
[Crossref]

Høgstedt, L.

Holl, G.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Hu, Q.

Huang, N.

N. Huang, H. Liu, Z. Wang, J. Han, and S. Zhang, “Femtowatt incoherent image conversion from mid-infrared light to near-infrared light,” Laser Phys. 27, 035401 (2017).
[Crossref]

Hvozdara, L.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Karamehmedovic, E.

Kendall, C.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

Kennis, J. T. M.

C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study,” Phys. Chem. Chem. Phys. 12, 9256–9266 (2010).
[Crossref]

Kiessling, J.

Kühnemann, F.

Kumar, S.

S. Kumar, C. Desmedt, D. Larsimont, C. Sotiriou, and E. Goormaghtigh, “Change in the microenvironment of breast cancer studied by FTIR imaging,” Analyst 138, 4058–4065 (2013).
[Crossref]

Larsimont, D.

S. Kumar, C. Desmedt, D. Larsimont, C. Sotiriou, and E. Goormaghtigh, “Change in the microenvironment of breast cancer studied by FTIR imaging,” Analyst 138, 4058–4065 (2013).
[Crossref]

Leuenberger, T.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
[Crossref]

Link, S.

M. El-Sayed, M. Mohamed, C. Burda, and S. Link, “The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: assignment of the transient features by carrier quenching,” J. Phys. Chem. B 105, 12286–12292 (2001).
[Crossref]

Liu, H.

N. Huang, H. Liu, Z. Wang, J. Han, and S. Zhang, “Femtowatt incoherent image conversion from mid-infrared light to near-infrared light,” Laser Phys. 27, 035401 (2017).
[Crossref]

Maestre, H.

Mathez, M.

Midwinter, J. E.

J. E. Midwinter and J. Warner, “Up-conversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[Crossref]

Mohamed, M.

M. El-Sayed, M. Mohamed, C. Burda, and S. Link, “The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: assignment of the transient features by carrier quenching,” J. Phys. Chem. B 105, 12286–12292 (2001).
[Crossref]

Müller, A.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Nienhuys, H. K.

H. K. Nienhuys, R. A. Van Santen, and H. J. Bakker, “Orientational relaxation of liquid water molecules as an activated process,” J. Chem. Phys. 112, 8487–8494 (2000).
[Crossref]

Niesner, R. A.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
[Crossref]

Pattelli, L.

L. Pattelli, R. Savo, M. Burresi, and D. S. Wiersma, “Spatio-temporal visualization of light transport in complex photonic structures,” Light Sci. Appl. 5, e16090 (2016).
[Crossref]

Pedersen, C.

Radbruch, H.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
[Crossref]

Reddy, R. K.

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
[Crossref]

Richter, D.

D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photon. Rev. 3, 343–354 (2009).
[Crossref]

Rodrigo, P. J.

Rogalski, A.

A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2010).

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).

Savo, R.

L. Pattelli, R. Savo, M. Burresi, and D. S. Wiersma, “Spatio-temporal visualization of light transport in complex photonic structures,” Light Sci. Appl. 5, e16090 (2016).
[Crossref]

Schade, W.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Sharma, A. K.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Shepherd, N.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

Shetty, G.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

Siffrin, V.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
[Crossref]

Sotiriou, C.

S. Kumar, C. Desmedt, D. Larsimont, C. Sotiriou, and E. Goormaghtigh, “Change in the microenvironment of breast cancer studied by FTIR imaging,” Analyst 138, 4058–4065 (2013).
[Crossref]

Stone, N.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).

Tidemand-Lichtenberg, P.

Torregrosa, A. J.

Trendle, T.

Van Grondelle, R.

C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study,” Phys. Chem. Chem. Phys. 12, 9256–9266 (2010).
[Crossref]

Van Santen, R. A.

H. K. Nienhuys, R. A. Van Santen, and H. J. Bakker, “Orientational relaxation of liquid water molecules as an activated process,” J. Chem. Phys. 112, 8487–8494 (2000).
[Crossref]

Van Stokkum, I. H. M.

C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study,” Phys. Chem. Chem. Phys. 12, 9256–9266 (2010).
[Crossref]

Walsh, M. J.

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
[Crossref]

Wang, Z.

N. Huang, H. Liu, Z. Wang, J. Han, and S. Zhang, “Femtowatt incoherent image conversion from mid-infrared light to near-infrared light,” Laser Phys. 27, 035401 (2017).
[Crossref]

Warner, J.

J. Warner, “Parametric up-conversion from the infrared,” J. Opto-Electron. 3, 37–48 (1971).
[Crossref]

J. E. Midwinter and J. Warner, “Up-conversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[Crossref]

Weibring, P.

D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photon. Rev. 3, 343–354 (2009).
[Crossref]

Wiersma, D. S.

L. Pattelli, R. Savo, M. Burresi, and D. S. Wiersma, “Spatio-temporal visualization of light transport in complex photonic structures,” Light Sci. Appl. 5, e16090 (2016).
[Crossref]

Willer, U.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Wolf, S.

Zhang, S.

N. Huang, H. Liu, Z. Wang, J. Han, and S. Zhang, “Femtowatt incoherent image conversion from mid-infrared light to near-infrared light,” Laser Phys. 27, 035401 (2017).
[Crossref]

Zipp, F.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389, 1155–1169 (2007).
[Crossref]

Analyst (1)

S. Kumar, C. Desmedt, D. Larsimont, C. Sotiriou, and E. Goormaghtigh, “Change in the microenvironment of breast cancer studied by FTIR imaging,” Analyst 138, 4058–4065 (2013).
[Crossref]

Appl. Phys. B (1)

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92, 327–333 (2008).
[Crossref]

Biophys. J. (1)

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98, 715–723 (2010).
[Crossref]

Br. J. Cancer (1)

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
[Crossref]

J. Appl. Phys. (1)

J. E. Midwinter and J. Warner, “Up-conversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[Crossref]

J. Chem. Phys. (1)

H. K. Nienhuys, R. A. Van Santen, and H. J. Bakker, “Orientational relaxation of liquid water molecules as an activated process,” J. Chem. Phys. 112, 8487–8494 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opto-Electron. (1)

J. Warner, “Parametric up-conversion from the infrared,” J. Opto-Electron. 3, 37–48 (1971).
[Crossref]

J. Phys. Chem. B (1)

M. El-Sayed, M. Mohamed, C. Burda, and S. Link, “The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: assignment of the transient features by carrier quenching,” J. Phys. Chem. B 105, 12286–12292 (2001).
[Crossref]

Laser Photon. Rev. (1)

D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photon. Rev. 3, 343–354 (2009).
[Crossref]

Laser Phys. (1)

N. Huang, H. Liu, Z. Wang, J. Han, and S. Zhang, “Femtowatt incoherent image conversion from mid-infrared light to near-infrared light,” Laser Phys. 27, 035401 (2017).
[Crossref]

Light Sci. Appl. (1)

L. Pattelli, R. Savo, M. Burresi, and D. S. Wiersma, “Spatio-temporal visualization of light transport in complex photonic structures,” Light Sci. Appl. 5, e16090 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study,” Phys. Chem. Chem. Phys. 12, 9256–9266 (2010).
[Crossref]

Other (4)

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2002).

A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2010).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the experimental setup used for mid-IR femtosecond upconversion imaging. HWP, half-wave plate; PBS, polarizing beam splitter; OPO, optical parametric oscillator; BC, beam combiner; LN, lithium niobate crystal; MgO:PPLN, magnesium oxide-doped periodically poled LN crystal; f, lenses.
Fig. 2.
Fig. 2. Illustration of various angles used in the calculations. Description of different lines used is included in the figure. c^ represents the optic axis of the crystal, θir is the angle between the mid-IR field and the pump field, θup is the angle between the upconverted field and the pump field, θcut is the cutting angle of the crystal with respect to the c^ axis, ρc is the external crystal rotation angle with respect to the pump field, and ϕ is the angle between the extraordinary upconverted field and the c^ axis. The pump field direction is considered to be fixed.
Fig. 3.
Fig. 3. Calculation of I(ρc). (a) shows the contribution to I(ρc) from different mid-IR input angles; (b) shows the contribution to I(ρc) from all mid-IR angles and wavelengths; (c) shows the contribution to I(ρc) from all mid-IR angles and all mid-IR and pump wavelengths. The spectral weighing is applied at all mid-IR and pump wavelengths, respectively, in (b) and (c). The peak of intensity at each wavelength traces a Gaussian profile. (d) shows the final upconverted intensity I(ρc) for the three experimental central mid-IR wavelengths.
Fig. 4.
Fig. 4. Comparison of experimental and theoretical values of Δρc for the three different mid-IR wavelengths.
Fig. 5.
Fig. 5. Illustration of upconverted intensity as a function of (a) mid-IR input angles and (b) mid-IR wavelengths. The FWHM of the intensities in (a) and (b) provides the angular and spectral acceptance bandwidth, respectively, for the upconversion process. The choice of ρc in (a) corresponds to the collinear case for that particular mid-IR wavelength and that in (b) corresponds to the value at which the peak intensity occurs at the central mid-IR wavelength used during the experiment.
Fig. 6.
Fig. 6. Resolvability of the upconversion system. The USAF resolution target (top left) with green encircled portion indicates the region of the target that is upconverted; the upconverted image of the highlighted portion is at the top right. The intensity plot along a vertical strip (blue line) from the upconverted image is shown at the bottom. This strip contains the smallest feature of the target, and its corresponding intensity profile is enclosed within the green dotted ellipse.
Fig. 7.
Fig. 7. Illustration of chromatic blurring for broadband mid-IR light and a broad nonlinear acceptance bandwidth. (a) is a vectorial representation of the chromatic blurring effect. (b) shows the effect of a cone of incoming infrared angles being transferred as a blurred cone in the image plane. IP, image plane.
Fig. 8.
Fig. 8. Illustration of the net blurring effect. (a) shows the upconverted image. The dotted yellow circle shows the uncertainty of the collinear point. The four numbered sections correspond to four different locations in the image whose intensity versus pixel plot along the red and blue lines is given at the bottom. Red corresponds to tangential features, whereas blue corresponds to radial features with respect to the center. One pixel in the camera corresponds to 10  μm×10  μm. (b) shows the qualitative indication of net blurring at different locations in the image plane. (c) is a plot of the blurring in the object plane from different factors.

Tables (1)

Tables Icon

Table 1. Representation of Values of leff for Different Values of Temporal Overlap τ and Indication of How It Affects Various Upconversion Parametersa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

nup(ϕ)λupsin(θup)=nirλirsin(θir),
Δkz(ρc,θir,λir,λpump)=2π[nup(ϕ)λupcos(θup)nirλircos(θir)npumpλpump],
Iup=K·leff2sinc2[Δkz(ρc,θir,λir,λpump)·leff2],
leff=τ|1/vg,ir1/vg,pump|,
Iup=K·leff2λpump,minλpump,maxSpump(λpump)λir,minλir,maxSir(λir)·θir,minθir,maxsinc2[Δkz(ρc,θir,λir,λpump)·leff2]·dθir·dλir·dλpump.
R=2f1λirπDp2,