Abstract

An all-optically reconfigurable generation of optical vortices would be highly beneficial to the implementation of next-generation optical communication and advanced information processing. The previously demonstrated approaches based on the parametric nonlinear optical processes, however, have exhibited limited conversion efficiency due to the group velocity mismatch and nonlinear phase shifts, and require the cumbersome preparation of either the optical element or initial seed beam having a non-zero topological charge. Here, we propose and analyze a novel scheme for highly efficient all-optical generation and control of optical vortices based on the dynamic acoustic vortex grating created by forward stimulated intermodal Brillouin scattering in a subwavelength-hole photonic waveguide. The dual-frequency pump beams in two different hybrid optical modes drive an acoustic vortex mode, which transforms a signal in the fundamental optical mode into an optical vortex mode. This scheme not only eliminates the need for the initial preparation of an angular-momentum-carrying medium or an optical vortex seed but also guarantees high modal purity and nearly 100% conversion efficiency assisted by the energy-momentum conservation. We also investigate the feasibility and practicability of the subwavelength-hole waveguides by examining the intermodal conversion efficiency and robustness of guidance of the optical vortices, taking into account the impact of the Kerr-type nonlinear effects on the intermodal Brillouin interactions based on our rigorous full-vectorial analytical theory.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of acousto-optic interaction based on forward stimulated Brillouin scattering in hybrid phononic-photonic waveguides

Ruiwen Zhang, Guodong Chen, and Junqiang Sun
Opt. Express 24(12) 13051-13059 (2016)

Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide

Guodong Chen, Ruiwen Zhang, Junqiang Sun, Heng Xie, Ya Gao, Danqi Feng, and Huang Xiong
Opt. Express 22(26) 32060-32070 (2014)

Reversible orbital angular momentum photon–phonon conversion

Zhihan Zhu, Wei Gao, Chunyuan Mu, and Hongwei Li
Optica 3(2) 212-217 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
    [Crossref]
  2. M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 118–121 (2010).
    [Crossref]
  3. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
    [Crossref]
  4. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  5. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [Crossref]
  6. M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
    [Crossref]
  7. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref]
  8. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
    [Crossref]
  9. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [Crossref]
  10. H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38, 1978–1980 (2013).
    [Crossref]
  11. C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008).
    [Crossref]
  12. A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739–1748 (1967).
    [Crossref]
  13. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
    [Crossref]
  14. W. Jiang, Q. F. Chen, Y. S. Zhang, and G. C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
    [Crossref]
  15. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
    [Crossref]
  16. Y. Zhang, Z. Nie, Y. Zhao, C. Li, R. Wang, J. Si, and M. Xiao, “Modulated vortex solitons of four-wave mixing,” Opt. Express 18, 10963–10972 (2010).
    [Crossref]
  17. Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42, 1059–1062 (2017).
    [Crossref]
  18. D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42, 3097–3100 (2017).
    [Crossref]
  19. Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43, 4354–4357 (2018).
    [Crossref]
  20. M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
    [Crossref]
  21. H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
    [Crossref]
  22. E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
    [Crossref]
  23. W. Gao, C. Mu, H. Li, Y. Yang, and Z. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 041119 (2015).
    [Crossref]
  24. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
    [Crossref]
  25. J. T. Mendonça, B. Thidé, and H. Then, “Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum,” Phys. Rev. Lett. 102, 185005 (2009).
    [Crossref]
  26. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
    [Crossref]
  27. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33, 926–929 (2008).
    [Crossref]
  28. E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
    [Crossref]
  29. J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
    [Crossref]
  30. K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
    [Crossref]
  31. Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37, 1889–1891 (2012).
    [Crossref]
  32. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
    [Crossref]
  33. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).
  34. R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microwave Theory Tech. 17, 893–904 (1969).
    [Crossref]
  35. T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4, 5032 (2014).
    [Crossref]
  36. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [Crossref]
  37. R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
    [Crossref]
  38. C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
    [Crossref]
  39. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
    [Crossref]
  40. S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
    [Crossref]
  41. X. Huang and S. Fan, “Complete all-optical silica fiber isolator via stimulated Brillouin scattering,” J. Lightwave Technol. 29, 2267–2275 (2011).
    [Crossref]
  42. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
    [Crossref]
  43. H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
    [Crossref]
  44. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
    [Crossref]
  45. O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
    [Crossref]
  46. D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Extremely polarization-sensitive surface acoustic wave Brillouin scattering in subwavelength waveguides,” Appl. Phys. Lett. 113, 121108 (2018).
    [Crossref]
  47. D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Polarization-selective control of nonlinear optomechanical interactions in subwavelength elliptical waveguides,” Opt. Express 27, 1718–1726 (2019).
    [Crossref]
  48. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [Crossref]
  49. J. D. Love and N. Riesen, “Single-, few-, and multimode Y-junctions,” J. Lightwave Technol. 30, 304–309 (2012).
    [Crossref]
  50. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22, 11610–11619 (2014).
    [Crossref]
  51. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref]
  52. M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch,” Opt. Lett. 31, 1612–1614 (2006).
    [Crossref]
  53. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37, 207–217 (2001).
    [Crossref]
  54. L. Zhang and P. L. Marston, “Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects,” Phys. Rev. E 84, 065601 (2011).
    [Crossref]
  55. R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
    [Crossref]

2019 (1)

2018 (3)

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43, 4354–4357 (2018).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Extremely polarization-sensitive surface acoustic wave Brillouin scattering in subwavelength waveguides,” Appl. Phys. Lett. 113, 121108 (2018).
[Crossref]

2017 (4)

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42, 1059–1062 (2017).
[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42, 3097–3100 (2017).
[Crossref]

2016 (2)

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref]

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

2015 (6)

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

W. Gao, C. Mu, H. Li, Y. Yang, and Z. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 041119 (2015).
[Crossref]

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

2014 (4)

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref]

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22, 11610–11619 (2014).
[Crossref]

2013 (3)

H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38, 1978–1980 (2013).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

2012 (4)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[Crossref]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

J. D. Love and N. Riesen, “Single-, few-, and multimode Y-junctions,” J. Lightwave Technol. 30, 304–309 (2012).
[Crossref]

Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37, 1889–1891 (2012).
[Crossref]

2011 (2)

X. Huang and S. Fan, “Complete all-optical silica fiber isolator via stimulated Brillouin scattering,” J. Lightwave Technol. 29, 2267–2275 (2011).
[Crossref]

L. Zhang and P. L. Marston, “Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects,” Phys. Rev. E 84, 065601 (2011).
[Crossref]

2010 (2)

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 118–121 (2010).
[Crossref]

Y. Zhang, Z. Nie, Y. Zhao, C. Li, R. Wang, J. Si, and M. Xiao, “Modulated vortex solitons of four-wave mixing,” Opt. Express 18, 10963–10972 (2010).
[Crossref]

2009 (4)

S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[Crossref]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

J. T. Mendonça, B. Thidé, and H. Then, “Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum,” Phys. Rev. Lett. 102, 185005 (2009).
[Crossref]

2008 (2)

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008).
[Crossref]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33, 926–929 (2008).
[Crossref]

2007 (1)

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[Crossref]

2006 (5)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
[Crossref]

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref]

W. Jiang, Q. F. Chen, Y. S. Zhang, and G. C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[Crossref]

M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch,” Opt. Lett. 31, 1612–1614 (2006).
[Crossref]

2005 (1)

2001 (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37, 207–217 (2001).
[Crossref]

1999 (1)

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[Crossref]

1996 (1)

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

1995 (2)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

1994 (2)

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

1969 (1)

R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microwave Theory Tech. 17, 893–904 (1969).
[Crossref]

1967 (1)

Afshar, S.

Ahmed, N.

Alexeyev, C. N.

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008).
[Crossref]

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
[Crossref]

Allen, L.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

Anant, V.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

Andersen, M. F.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref]

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[Crossref]

Arlt, J.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[Crossref]

Aspelmeyer, M.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

Bache, M.

Baets, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Bang, O.

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Benabid, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[Crossref]

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

Boyd, R. W.

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Brambilla, G.

Brenn, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37, 207–217 (2001).
[Crossref]

Büttner, T. F. S.

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref]

Camacho, R.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Cao, M.

Chen, C. P.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

Chen, Q. F.

W. Jiang, Q. F. Chen, Y. S. Zhang, and G. C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[Crossref]

Cladé, P.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Cordeiro, C. M. B.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref]

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[Crossref]

Couny, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[Crossref]

Cox, J. A.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Cruz, C. H. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[Crossref]

Dainese, P.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref]

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
[Crossref]

Davids, P.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Deng, Y.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

Dennis, M. R.

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 118–121 (2010).
[Crossref]

Dholakia, K.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

Dolinar, S.

Eggleton, B. J.

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref]

Espinel, Y. A. V.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref]

Fan, S.

Florez, O.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref]

Foo, G.

Fragnito, H. L.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[Crossref]

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

Gao, W.

W. Gao, C. Mu, H. Li, Y. Yang, and Z. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 041119 (2015).
[Crossref]

Gauthier, D. J.

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

Gertler, S.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

Gröblacher, S.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

Guo, G. C.

W. Jiang, Q. F. Chen, Y. S. Zhang, and G. C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[Crossref]

Han, D. S.

D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Polarization-selective control of nonlinear optomechanical interactions in subwavelength elliptical waveguides,” Opt. Express 27, 1718–1726 (2019).
[Crossref]

D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Extremely polarization-sensitive surface acoustic wave Brillouin scattering in subwavelength waveguides,” Appl. Phys. Lett. 113, 121108 (2018).
[Crossref]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

He, Z.

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Hell, S. W.

Helmerson, K.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref]

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37, 207–217 (2001).
[Crossref]

Hong, S.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

Hotate, K.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37, 1889–1891 (2012).
[Crossref]

Huang, X.

Hudson, D. D.

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref]

Ismaeel, R.

Jack, B.

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 118–121 (2010).
[Crossref]

Jarecki, R.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Jarschel, P. F.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref]

Jiang, W.

W. Jiang, Q. F. Chen, Y. S. Zhang, and G. C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[Crossref]

Judge, A. C.

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref]

Jung, Y.

Kabakova, I. V.

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref]

Kang, M. S.

D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Polarization-selective control of nonlinear optomechanical interactions in subwavelength elliptical waveguides,” Opt. Express 27, 1718–1726 (2019).
[Crossref]

D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Extremely polarization-sensitive surface acoustic wave Brillouin scattering in subwavelength waveguides,” Appl. Phys. Lett. 113, 121108 (2018).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Kharel, P.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

King, R. P.

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 118–121 (2010).
[Crossref]

Kittlaus, E. A.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

Knight, J. C.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[Crossref]

Krause, A. G.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
[Crossref]

Kuyken, B.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Lægsgaard, J.

Lavery, M. P. J.

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
[Crossref]

Lee, I.-M.

D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Polarization-selective control of nonlinear optomechanical interactions in subwavelength elliptical waveguides,” Opt. Express 27, 1718–1726 (2019).
[Crossref]

D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Extremely polarization-sensitive surface acoustic wave Brillouin scattering in subwavelength waveguides,” Appl. Phys. Lett. 113, 121108 (2018).
[Crossref]

Lee, T.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Li, C.

Li, H.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

W. Gao, C. Mu, H. Li, Y. Yang, and Z. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 041119 (2015).
[Crossref]

Li, X.

Lipson, M.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

Liu, X.

Lohmann, A. W.

Love, J. D.

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

Ma, D.

Magaña-Loaiza, O. S.

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

Maier, S. A.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[Crossref]

Malik, M.

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Marston, P. L.

L. Zhang and P. L. Marston, “Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects,” Phys. Rev. E 84, 065601 (2011).
[Crossref]

Mayer Alegre, T. P.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref]

Mendonça, J. T.

J. T. Mendonça, B. Thidé, and H. Then, “Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum,” Phys. Rev. Lett. 102, 185005 (2009).
[Crossref]

Mirhosseini, M.

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

Miyamoto, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[Crossref]

Monro, T. M.

Morita, R.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[Crossref]

Mu, C.

W. Gao, C. Mu, H. Li, Y. Yang, and Z. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 041119 (2015).
[Crossref]

Natarajan, V.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref]

Nazarkin, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Nie, Z.

Nielsen, H.

Nori, F.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

Norte, R. A.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

O’Holleran, K.

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 118–121 (2010).
[Crossref]

O’Sullivan, M. N.

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

Oduro, B.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Omatsu, T.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[Crossref]

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

Otterstrom, N. T.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

Padgett, M. J.

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 118–121 (2010).
[Crossref]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

Palacios, D. M.

Pant, R.

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Paris, D. P.

Park, K. H.

D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Polarization-selective control of nonlinear optomechanical interactions in subwavelength elliptical waveguides,” Opt. Express 27, 1718–1726 (2019).
[Crossref]

D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Extremely polarization-sensitive surface acoustic wave Brillouin scattering in subwavelength waveguides,” Appl. Phys. Lett. 113, 121108 (2018).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Petersen, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref]

Phillips, W. D.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref]

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

Poulton, C. G.

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref]

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Rakich, P. T.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
[Crossref]

Rauschenbeutel, A.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref]

Reinke, C.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37, 1889–1891 (2012).
[Crossref]

Riedinger, R.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

Riesen, N.

Rodenburg, B.

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Russell, P. St.J.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Ryu, C.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref]

Shang, J.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Shin, H.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Si, J.

Simpson, N. B.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

Slater, J. A.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

Smirnova, D.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Song, K. Y.

Starbuck, A.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Steel, M. J.

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

Sun, Y.

Swartzlander, G. A.

Tang, X.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

Then, H.

J. T. Mendonça, B. Thidé, and H. Then, “Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum,” Phys. Rev. Lett. 102, 185005 (2009).
[Crossref]

Thidé, B.

J. T. Mendonça, B. Thidé, and H. Then, “Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum,” Phys. Rev. Lett. 102, 185005 (2009).
[Crossref]

Toyoda, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37, 1889–1891 (2012).
[Crossref]

Van Laer, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Van Thourhout, D.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Vaziri, A.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref]

Volz, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref]

Waldron, R. A.

R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microwave Theory Tech. 17, 893–904 (1969).
[Crossref]

Wang, R.

Wang, Z.

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43, 4354–4357 (2018).
[Crossref]

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Wichmann, J.

Wiederhecker, G. S.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref]

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[Crossref]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37, 1889–1891 (2012).
[Crossref]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Wolff, C.

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

Xi, L.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

Xiao, M.

Xu, H.

Xu, Z.

Yan, M. F.

Yan, Y.

Yang, J.

Yang, J.-Y.

Yang, L.

Yang, Y.

W. Gao, C. Mu, H. Li, Y. Yang, and Z. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 041119 (2015).
[Crossref]

Yavorsky, M. A.

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37, 1889–1891 (2012).
[Crossref]

Zhang, D.

Zhang, H.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

Zhang, L.

Zhang, W.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

Zhang, X.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

Zhang, Y.

Zhang, Y. S.

W. Jiang, Q. F. Chen, Y. S. Zhang, and G. C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[Crossref]

Zhang, Z.

Zhao, Y.

Zhu, Z.

W. Gao, C. Mu, H. Li, Y. Yang, and Z. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 041119 (2015).
[Crossref]

Zou, W.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. Gao, C. Mu, H. Li, Y. Yang, and Z. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 041119 (2015).
[Crossref]

D. S. Han, I.-M. Lee, K. H. Park, and M. S. Kang, “Extremely polarization-sensitive surface acoustic wave Brillouin scattering in subwavelength waveguides,” Appl. Phys. Lett. 113, 121108 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37, 207–217 (2001).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microwave Theory Tech. 17, 893–904 (1969).
[Crossref]

J. Lightwave Technol. (3)

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[Crossref]

Nat. Commun. (5)

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref]

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref]

Nat. Photonics (3)

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[Crossref]

Nat. Phys. (2)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 118–121 (2010).
[Crossref]

Nature (1)

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref]

New J. Phys. (1)

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

Opt. Commun. (2)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (10)

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42, 1059–1062 (2017).
[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42, 3097–3100 (2017).
[Crossref]

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43, 4354–4357 (2018).
[Crossref]

G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33, 926–929 (2008).
[Crossref]

H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38, 1978–1980 (2013).
[Crossref]

Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37, 1889–1891 (2012).
[Crossref]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
[Crossref]

M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch,” Opt. Lett. 31, 1612–1614 (2006).
[Crossref]

Phys. Rev. A (5)

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

W. Jiang, Q. F. Chen, Y. S. Zhang, and G. C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[Crossref]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[Crossref]

Phys. Rev. B (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Phys. Rev. E (1)

L. Zhang and P. L. Marston, “Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects,” Phys. Rev. E 84, 065601 (2011).
[Crossref]

Phys. Rev. Lett. (5)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref]

J. T. Mendonça, B. Thidé, and H. Then, “Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum,” Phys. Rev. Lett. 102, 185005 (2009).
[Crossref]

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
[Crossref]

Phys. Rev. X (1)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Sci. Rep. (1)

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref]

Science (3)

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref]

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Other (1)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).

Supplementary Material (2)

NameDescription
» Visualization 1       Vibrational motion of the AV_11 acoustic vortex mode
» Visualization 2       Vibrational motion of the AV_21 acoustic vortex mode

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of optical vortex (OV) generation based on forward stimulated intermodal Brillouin scattering. A circularly polarized fundamental mode (a1) and a higher-order hybrid mode (a2) drive a coherent acoustic vortex (AV) (b), which in turn transforms the incident signal (a3) in the circularly polarized fundamental mode into the OV beam (a4). (b) Vector diagram describing the angular momentum conservation in this process.
Fig. 2.
Fig. 2. (a) Silica-glass subwavelength-hole waveguide (SWHW) suspended in the air, together with the Cartesian coordinates. (b) Intensity profiles of the circularly polarized fundamental mode and the three lowest-order optical vortex modes (OVMs), together with the corresponding compositions of the conventional even/odd hybrid modes for λ=1550  nm, Rin=1.2  μm, and Rout=3.0  μm. The light blue arrows represent the electric field distributions for the hybrid modes and the polarization states of the transverse electric fields for the OVMs. The rightmost column corresponds to the phase pattern of the x component of the electric field, arg(Ex).
Fig. 3.
Fig. 3. (a) Dispersion curves for the acoustic modes with the lowest radial mode number (m=1) in silica-glass SWHWs. The red, purple, and blue curves represent the acoustic modes with the three lowest azimuthal mode numbers, l=0, 1, and 2, respectively. The frequencies and wavevectors of the acoustic modes are in units of VL/Rout and π/Rout, respectively, where VL=5.972  km/s is the longitudinal sound velocity in fused silica. Some examples of the phase-matched acoustic modes are marked with green filled circles. (b) Displacement distributions of the longitudinal L01 (A), radial R01 (B), flexural F11 (C), and torsional-radial TR21 (D) acoustic modes, together with the resulting acoustic vortex modes (AVMs). The solid and dashed curves represent the deformed and undeformed boundaries, respectively, and the color map is used to describe the profile of the magnitude of total displacement. All the calculations in (a) and (b) are carried out at the wavelength of λ=1550  nm and for the SWHW parameters of Rin=1.2  μm and Rout=3.0  μm. See Visualization 1 and Visualization 2, which display the vibrational motions of the AV1,1 and AV2,1 modes, respectively.
Fig. 4.
Fig. 4. Real and imaginary parts of the typical optical force distributions for the three types of angular momentum (AM) transfer processes, PROC1, PROC2, and PROC3, which involve different higher-order hybrid optical modes: HE21, EH11, and HE31 modes, respectively. All the calculations are performed at the wavelength of λ=1550  nm and for the SWHW parameters of Rin=1.2  μm and Rout=3.0  μm. In addition, the photoelastic coefficients are set as p11=0.121 and p12=0.270. For the electrostriction body force, the blue color intensities and black arrows depict the magnitude and direction, respectively, of the optical force. The optical boundary force is composed of the electrostriction force f(es) (blue) and radiation pressure f(rp) (red), where their magnitude and direction are plotted by the arrows in the same scale for all the three processes for comparison. We choose a particular global phase in such a way that the longitudinal component of the total electric field in the waveguide is purely real.
Fig. 5.
Fig. 5. Color maps displaying the 3 dB coupling length ζ in silica-glass SWHWs over a range of Rout and MRin/Rout for (a) PROC1, (b) PROC2, and (c) PROC3, where the pink curves indicate the cutoff of the HE21, EH11, and HE31 mode, respectively. The contour plots on top of the color maps show the minimum Δneff between the adjacent vector modes, i.e., among the TE01, TM01, and HE21 modes for (a), and between the EH11 and HE31 modes for (b) and (c). The black curves correspond to the power fraction p=85% in the waveguide core. The OVMs have lower confinement losses over the regions below the black curves.
Fig. 6.
Fig. 6. Spatial evolution of the optical and acoustic powers in PROC1 in silica-glass SWHW with (Rout,M)=(3  μm,0.4). (a) Optical and acoustic powers as functions of the propagation distance, z, at zero signal frequency detuning Δω13ω1ω3=0. P1 and P2 are normalized to P0=1  W, P3 and P4 to P30=1  mW, and Pb to |b(z=0)|2. (b) Mode conversion efficiency P4(zmax)/P30 after propagation along zmax=3  m, where the optical dispersions of the silica-glass SWHWs are taken into account. (c) Same plots as (a) but at the different signal frequency detuning Δω13=10  GHz with different input pump power ratios of P10:P20=1:3 (dashed curves) and P10:P20=3:1 (solid curves). (d) Mode conversion efficiency at the optimum waveguide length P4(zopt)/P30, where zopt is the propagation length at which P4(z) is maximized.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

OV±(l1),m±=HEl,meven±iHEl,modd,
OV±(l+1),m=EHl,meven±iEHl,modd,
a1z=iω1Q*a2b+iγ1SPM|a1|2a1+iν1γ1νXPM|aν|2a1+i(γ4FWMa4*+γ5FWMa5*)a2a3eiκz,
a2z=iω2Qa1b*+iγ2SPM|a2|2a2+iν2γ2νXPM|aν|2a2+i(γ4FWMa4+γ5FWMa5)a1a3*eiκz,
a3z=iω3R*a4beiκz+iγ3SPM|a3|2a3+iν3γ3νXPM|aν|2a3+i(γ4FWMa4+γ5FWMa5)a1a2*eiκz,
a4z=iω4Ra3b*eiκz+iγ4SPM|a4|2a4+iν4γ4νXPM|aν|2a4+iγ4FWMa1*a2a3eiκz,
a5z=iγ5SPM|a5|2a5+iν5γ5νXPM|aν|2a5+iγ5FWMa1*a2a3eiκz,
bz+αbb=iΩQa1a2*+iΩRa3a4*eiκz,

Metrics