Abstract

We investigate optical and electrical behaviors of a graphene saturable absorber (SA) and mode-locking performance of a graphene-SA-based mode-locked Er fiber laser in gamma-ray radiation. When irradiated up to 4.8 kGy at 100Gy/hr dose rate, the overall nonlinear transmittance in transverse electric mode was increased, while maintaining modulation depth to >10%. The corresponding polarization-dependent loss was reduced at a 1.2-dB/kGy rate. In the electrical properties, the charge carrier mobility was reduced, and the Dirac voltage shift was increased to positive under gamma-ray radiation. The radiation-induced optical and electrical changes turned out to be almost recovered after a few days. In addition, we confirmed that the graphene-SA-based laser showed stable CW mode-locking operation while the inserted graphene SA was irradiated for 2-kGy at a 45-Gy/hr dose rate, which corresponds to >40 years of operation in low Earth orbit satellites. To the best of our knowledge, this is the first evaluation of graphene SAs and graphene-SA-based mode-locked lasers in gamma-ray radiation, and the measured results confirm the high potential of graphene SAs and graphene-SA-based lasers in various outer-space environments as well as other radiation environments, including particle accelerators and radiation-based medical instruments.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber

Jaroslaw Sotor, Grzegorz Sobon, Iwona Pasternak, Aleksandra Krajewska, Wlodek Strupinski, and Krzysztof M. Abramski
Opt. Express 21(16) 18994-19002 (2013)

Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber

Youngwoong Kim, Seongmin Ju, Seongmook Jeong, Seung Ho Lee, and Won-Taek Han
Opt. Express 24(4) 3910-3920 (2016)

Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 200-fs EDFL mode-locking

David Steinberg, Rodrigo M. Gerosa, Fernanda N. Pellicer, Juan D. Zapata, Sergio H. Domingues, Eunézio A. Thoroh de Souza, and Lúcia A. M. Saito
Opt. Mater. Express 8(1) 144-156 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10, 933–936 (2014).
    [Crossref]
  2. S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94, 124043 (2016).
    [Crossref]
  3. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  4. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
    [Crossref]
  5. J. A. Stone and P. Egan, “An optical frequency comb tied to GPS for laser frequency/wavelength calibration,” J. Res. Natl. Inst. Stand. Technol. 115, 413–431 (2010).
    [Crossref]
  6. J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
    [Crossref]
  7. M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3, 1381–1387 (2016).
    [Crossref]
  8. M. N. Ott, “Radiation effects data on commercially available optical fiber: database summary,” in Proceedings of IEEE Radiation Effects Data Workshop (IEEE, 2002), pp. 24–31.
  9. M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
    [Crossref]
  10. O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16, 2227–2229 (2004).
    [Crossref]
  11. Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39, 2831–2834 (2014).
    [Crossref]
  12. G. Buchs, S. Kundermann, E. Portuondo-Campa, and S. Lecomte, “Radiation hard mode-locked laser suitable as a spaceborne frequency comb,” Opt. Express 23, 9890–9900 (2015).
    [Crossref]
  13. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  14. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  15. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
    [Crossref]
  16. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  17. G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012).
    [Crossref]
  18. N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23, 19806–19812 (2015).
    [Crossref]
  19. E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
    [Crossref]
  20. E. H. Åhlgren, J. Kotakoski, O. Lehtinen, and A. V. Krasheninnikov, “Ion irradiation tolerance of graphene as studied by atomistic simulations,” Appl. Phys. Lett. 100, 233108 (2012).
    [Crossref]
  21. E. J. Siochi, “Graphene in the sky and beyond,” Nat. Nanotechnol. 9, 745–747 (2014).
    [Crossref]
  22. Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
    [Crossref]
  23. A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
    [Crossref]
  24. D. N. Kleut, Z. M. Marković, I. D. H. Antunović, M. D. Dramićanin, D. P. Kepić, and B. M. T. Marković, “Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study,” Phys. Scr. T162, 014025 (2014).
    [Crossref]
  25. K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
    [Crossref]
  26. A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.
  27. S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
    [Crossref]
  28. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
    [Crossref]
  29. C.-C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108, 129–135 (2012).
    [Crossref]
  30. M. H. MacAlester and W. Murtagh, “Extreme space weather impact: an emergency management perspective,” Space Weather 12, 530–537 (2014).
    [Crossref]
  31. E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for electronics,” Proc. IEEE 76, 1423–1442 (1988).
    [Crossref]
  32. B. R. Bhat, N. Upadhyaya, and R. Kulkarni, “Total radiation dose at geostationary orbit,” IEEE Trans. Nucl. Sci. 52, 530–534 (2005).
    [Crossref]
  33. P. Fortescue, G. Swinerd, and J. Stark, Spacecraft Systems Engineering, 4th ed. (Wiley, 2011), p. 399.
  34. F. A. Mettler, W. Huda, T. T. Yoshizumi, and M. Mahesh, “Effective doses in radiology and diagnostic nuclear medicine: a catalog,” Radiology 248, 254–263 (2008).
    [Crossref]

2018 (1)

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

2016 (3)

K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
[Crossref]

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94, 124043 (2016).
[Crossref]

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3, 1381–1387 (2016).
[Crossref]

2015 (3)

2014 (8)

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39, 2831–2834 (2014).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10, 933–936 (2014).
[Crossref]

E. J. Siochi, “Graphene in the sky and beyond,” Nat. Nanotechnol. 9, 745–747 (2014).
[Crossref]

Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
[Crossref]

A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
[Crossref]

D. N. Kleut, Z. M. Marković, I. D. H. Antunović, M. D. Dramićanin, D. P. Kepić, and B. M. T. Marković, “Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study,” Phys. Scr. T162, 014025 (2014).
[Crossref]

M. H. MacAlester and W. Murtagh, “Extreme space weather impact: an emergency management perspective,” Space Weather 12, 530–537 (2014).
[Crossref]

2012 (5)

C.-C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108, 129–135 (2012).
[Crossref]

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012).
[Crossref]

E. H. Åhlgren, J. Kotakoski, O. Lehtinen, and A. V. Krasheninnikov, “Ion irradiation tolerance of graphene as studied by atomistic simulations,” Appl. Phys. Lett. 100, 233108 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

2010 (3)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

J. A. Stone and P. Egan, “An optical frequency comb tied to GPS for laser frequency/wavelength calibration,” J. Res. Natl. Inst. Stand. Technol. 115, 413–431 (2010).
[Crossref]

2009 (1)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

2008 (2)

F. A. Mettler, W. Huda, T. T. Yoshizumi, and M. Mahesh, “Effective doses in radiology and diagnostic nuclear medicine: a catalog,” Radiology 248, 254–263 (2008).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

2005 (1)

B. R. Bhat, N. Upadhyaya, and R. Kulkarni, “Total radiation dose at geostationary orbit,” IEEE Trans. Nucl. Sci. 52, 530–534 (2005).
[Crossref]

2004 (1)

O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16, 2227–2229 (2004).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

1988 (1)

E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for electronics,” Proc. IEEE 76, 1423–1442 (1988).
[Crossref]

Abramski, K. M.

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012).
[Crossref]

Åhlgren, E. H.

E. H. Åhlgren, J. Kotakoski, O. Lehtinen, and A. V. Krasheninnikov, “Ion irradiation tolerance of graphene as studied by atomistic simulations,” Appl. Phys. Lett. 100, 233108 (2012).
[Crossref]

Ahn, J.-H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

Ahn, K. J.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Ahn, Y. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Alexandrou, K.

K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
[Crossref]

Ansón-Casaos, A.

A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
[Crossref]

Antunovic, I. D. H.

D. N. Kleut, Z. M. Marković, I. D. H. Antunović, M. D. Dramićanin, D. P. Kepić, and B. M. T. Marković, “Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study,” Phys. Scr. T162, 014025 (2014).
[Crossref]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Assmann, W.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Bae, S.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Benito, A. M.

A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
[Crossref]

Berné, O.

O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16, 2227–2229 (2004).
[Crossref]

Bhat, B. R.

B. R. Bhat, N. Upadhyaya, and R. Kulkarni, “Total radiation dose at geostationary orbit,” IEEE Trans. Nucl. Sci. 52, 530–534 (2005).
[Crossref]

Boguski, J.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Bolen, M. L.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Bonnefois, J.-J.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Boukenter, A.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Boutillier, M.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Buchs, G.

Cadier, B.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Capano, M. A.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Castell, P.

A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
[Crossref]

Caussanel, M.

O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16, 2227–2229 (2004).
[Crossref]

Chen, Y.

Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
[Crossref]

Chen, Y. P.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Childres, I.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Choi, J.-Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

Choi, S. Y.

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23, 19806–19812 (2015).
[Crossref]

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Derevianko, A.

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10, 933–936 (2014).
[Crossref]

Deutsch, C.

Dinkelaker, A.

Dramicanin, M. D.

D. N. Kleut, Z. M. Marković, I. D. H. Antunović, M. D. Dramićanin, D. P. Kepić, and B. M. T. Marković, “Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study,” Phys. Scr. T162, 014025 (2014).
[Crossref]

Duncker, H.

Edrees, H.

K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
[Crossref]

Egan, P.

J. A. Stone and P. Egan, “An optical frequency comb tied to GPS for laser frequency/wavelength calibration,” J. Res. Natl. Inst. Stand. Technol. 115, 413–431 (2010).
[Crossref]

Ekström, C.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Feng, Y.

Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Fortescue, P.

P. Fortescue, G. Swinerd, and J. Stark, Spacecraft Systems Engineering, 4th ed. (Wiley, 2011), p. 399.

Foxe, M.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Gilard, O.

O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16, 2227–2229 (2004).
[Crossref]

Girard, S.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Giunta, M.

Greiter, M.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Gu, J.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Habs, D.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Han, S.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39, 2831–2834 (2014).
[Crossref]

Hänsch, T. W.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3, 1381–1387 (2016).
[Crossref]

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hao, Y.

K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Hellmig, O.

Hernández-Ferrer, J.

A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
[Crossref]

Hoeschen, C.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Holzwarth, R.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3, 1381–1387 (2016).
[Crossref]

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hone, J.

K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
[Crossref]

Hong, B. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

Huda, W.

F. A. Mettler, W. Huda, T. T. Yoshizumi, and M. Mahesh, “Effective doses in radiology and diagnostic nuclear medicine: a catalog,” Radiology 248, 254–263 (2008).
[Crossref]

Hülsing, T.

Jang, H.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

Jang, Y.-S.

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39, 2831–2834 (2014).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

Jeong, H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23, 19806–19812 (2015).
[Crossref]

Jovanovic, I.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Kang, K.-I.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Kepic, D. P.

D. N. Kleut, Z. M. Marković, I. D. H. Antunović, M. D. Dramićanin, D. P. Kepić, and B. M. T. Marković, “Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study,” Phys. Scr. T162, 014025 (2014).
[Crossref]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

Kim, M. H.

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23, 19806–19812 (2015).
[Crossref]

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

Kim, S.

Kim, S. J.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Kim, S.-W.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39, 2831–2834 (2014).
[Crossref]

Kim, Y.-J.

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39, 2831–2834 (2014).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

Kleut, D. N.

D. N. Kleut, Z. M. Marković, I. D. H. Antunović, M. D. Dramićanin, D. P. Kepić, and B. M. T. Marković, “Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study,” Phys. Scr. T162, 014025 (2014).
[Crossref]

Kohfeldt, A.

Kolkowitz, S.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94, 124043 (2016).
[Crossref]

Kotakoski, J.

E. H. Åhlgren, J. Kotakoski, O. Lehtinen, and A. V. Krasheninnikov, “Ion irradiation tolerance of graphene as studied by atomistic simulations,” Appl. Phys. Lett. 100, 233108 (2012).
[Crossref]

Koybasi, O.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Krasheninnikov, A. V.

E. H. Åhlgren, J. Kotakoski, O. Lehtinen, and A. V. Krasheninnikov, “Ion irradiation tolerance of graphene as studied by atomistic simulations,” Appl. Phys. Lett. 100, 233108 (2012).
[Crossref]

Krutzik, M.

Kulkarni, R.

B. R. Bhat, N. Upadhyaya, and R. Kulkarni, “Total radiation dose at geostationary orbit,” IEEE Trans. Nucl. Sci. 52, 530–534 (2005).
[Crossref]

Kundermann, S.

Kymissis, I.

K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
[Crossref]

Ladaci, A.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Lampmann, K.

Langellier, N.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94, 124043 (2016).
[Crossref]

Lecomte, S.

Lee, C.-C.

C.-C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108, 129–135 (2012).
[Crossref]

Lee, E. J.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Lee, J.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39, 2831–2834 (2014).
[Crossref]

Lee, K.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39, 2831–2834 (2014).
[Crossref]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

Lee, S.-H.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

Lehtinen, O.

E. H. Åhlgren, J. Kotakoski, O. Lehtinen, and A. V. Krasheninnikov, “Ion irradiation tolerance of graphene as studied by atomistic simulations,” Appl. Phys. Lett. 100, 233108 (2012).
[Crossref]

Lezius, M.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3, 1381–1387 (2016).
[Crossref]

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Lim, C.-W.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

Lopez, G.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Lukin, M. D.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94, 124043 (2016).
[Crossref]

MacAlester, M. H.

M. H. MacAlester and W. Murtagh, “Extreme space weather impact: an emergency management perspective,” Space Weather 12, 530–537 (2014).
[Crossref]

Mahesh, M.

F. A. Mettler, W. Huda, T. T. Yoshizumi, and M. Mahesh, “Effective doses in radiology and diagnostic nuclear medicine: a catalog,” Radiology 248, 254–263 (2008).
[Crossref]

Mandel, O.

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Marin, E.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Markovic, B. M. T.

D. N. Kleut, Z. M. Marković, I. D. H. Antunović, M. D. Dramićanin, D. P. Kepić, and B. M. T. Marković, “Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study,” Phys. Scr. T162, 014025 (2014).
[Crossref]

Markovic, Z. M.

D. N. Kleut, Z. M. Marković, I. D. H. Antunović, M. D. Dramićanin, D. P. Kepić, and B. M. T. Marković, “Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study,” Phys. Scr. T162, 014025 (2014).
[Crossref]

Martínez, M. T.

A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
[Crossref]

Maser, W. K.

A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
[Crossref]

Masurkar, A.

K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
[Crossref]

Mekki, J.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Mescia, L.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Mettler, F. A.

F. A. Mettler, W. Huda, T. T. Yoshizumi, and M. Mahesh, “Effective doses in radiology and diagnostic nuclear medicine: a catalog,” Radiology 248, 254–263 (2008).
[Crossref]

Miller, J. M.

C.-C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108, 129–135 (2012).
[Crossref]

Mo, F.

Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
[Crossref]

Morana, A.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Murtagh, W.

M. H. MacAlester and W. Murtagh, “Extreme space weather impact: an emergency management perspective,” Space Weather 12, 530–537 (2014).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Ott, M. N.

M. N. Ott, “Radiation effects data on commercially available optical fiber: database summary,” in Proceedings of IEEE Radiation Effects Data Workshop (IEEE, 2002), pp. 24–31.

Ouerdane, Y.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Park, J.-K.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Park, J.-Y.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Park, N. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23, 19806–19812 (2015).
[Crossref]

Pascual, F. J.

A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
[Crossref]

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Patil, A.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Paveau, A.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Peters, A.

Petrone, N.

K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
[Crossref]

Pikovski, I.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94, 124043 (2016).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Portuondo-Campa, E.

Pospelov, M.

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10, 933–936 (2014).
[Crossref]

Predehl, K.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Prokofiev, A.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Puértolas, J. A.

A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
[Crossref]

Qian, G.

Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
[Crossref]

Raymond, J. P.

E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for electronics,” Proc. IEEE 76, 1423–1442 (1988).
[Crossref]

Robin, T.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

Roecker, C.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Rotermund, F.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23, 19806–19812 (2015).
[Crossref]

Schibli, T. R.

C.-C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108, 129–135 (2012).
[Crossref]

Schiemangk, M.

Schkolnik, V.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Sengstock, K.

Siochi, E. J.

E. J. Siochi, “Graphene in the sky and beyond,” Nat. Nanotechnol. 9, 745–747 (2014).
[Crossref]

Sobon, G.

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012).
[Crossref]

Son, S.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Sotor, J.

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012).
[Crossref]

Stark, J.

P. Fortescue, G. Swinerd, and J. Stark, Spacecraft Systems Engineering, 4th ed. (Wiley, 2011), p. 399.

Stassinopoulos, E. G.

E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for electronics,” Proc. IEEE 76, 1423–1442 (1988).
[Crossref]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Stone, J. A.

J. A. Stone and P. Egan, “An optical frequency comb tied to GPS for laser frequency/wavelength calibration,” J. Res. Natl. Inst. Stand. Technol. 115, 413–431 (2010).
[Crossref]

Stöwer, W.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Swinerd, G.

P. Fortescue, G. Swinerd, and J. Stark, Spacecraft Systems Engineering, 4th ed. (Wiley, 2011), p. 399.

Thaller, A.

Thirolf, P.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Türler, A.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Upadhyaya, N.

B. R. Bhat, N. Upadhyaya, and R. Kulkarni, “Total radiation dose at geostationary orbit,” IEEE Trans. Nucl. Sci. 52, 530–534 (2005).
[Crossref]

Walsworth, R. L.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94, 124043 (2016).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Wang, Y.

Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
[Crossref]

Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
[Crossref]

Wicht, A.

Wilken, T.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3, 1381–1387 (2016).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Windpassinger, P.

Wishart, J. F.

K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
[Crossref]

Ye, J.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94, 124043 (2016).
[Crossref]

Ye, P.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

Yeom, D.-I.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23, 19806–19812 (2015).
[Crossref]

Yim, W.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Yoshizumi, T. T.

F. A. Mettler, W. Huda, T. T. Yoshizumi, and M. Mahesh, “Effective doses in radiology and diagnostic nuclear medicine: a catalog,” Radiology 248, 254–263 (2008).
[Crossref]

Yu, D.

Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
[Crossref]

Zhang, X.

Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
[Crossref]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Appl. Phys. B (1)

C.-C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108, 129–135 (2012).
[Crossref]

Appl. Phys. Lett. (3)

E. H. Åhlgren, J. Kotakoski, O. Lehtinen, and A. V. Krasheninnikov, “Ion irradiation tolerance of graphene as studied by atomistic simulations,” Appl. Phys. Lett. 100, 233108 (2012).
[Crossref]

Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, and X. Zhang, “Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays,” Appl. Phys. Lett. 105, 023102 (2014).
[Crossref]

K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, and I. Kymissis, “Improving the radiation hardness of graphene field effect transistors,” Appl. Phys. Lett. 109, 153108 (2016).
[Crossref]

Appl. Surf. Sci. (1)

A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martínez, “The effect of gamma-irradiation on few-layered graphene materials,” Appl. Surf. Sci. 301, 264–272 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16, 2227–2229 (2004).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

B. R. Bhat, N. Upadhyaya, and R. Kulkarni, “Total radiation dose at geostationary orbit,” IEEE Trans. Nucl. Sci. 52, 530–534 (2005).
[Crossref]

J. Opt. (1)

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20, 093001 (2018).
[Crossref]

J. Res. Natl. Inst. Stand. Technol. (1)

J. A. Stone and P. Egan, “An optical frequency comb tied to GPS for laser frequency/wavelength calibration,” J. Res. Natl. Inst. Stand. Technol. 115, 413–431 (2010).
[Crossref]

Laser Phys. Lett. (1)

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012).
[Crossref]

Nat. Commun. (1)

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nat. Nanotechnol. (1)

E. J. Siochi, “Graphene in the sky and beyond,” Nat. Nanotechnol. 9, 745–747 (2014).
[Crossref]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Nat. Phys. (1)

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10, 933–936 (2014).
[Crossref]

Nature (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Phys. Rev. D (1)

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94, 124043 (2016).
[Crossref]

Phys. Scr. (1)

D. N. Kleut, Z. M. Marković, I. D. H. Antunović, M. D. Dramićanin, D. P. Kepić, and B. M. T. Marković, “Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study,” Phys. Scr. T162, 014025 (2014).
[Crossref]

Proc. IEEE (1)

E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for electronics,” Proc. IEEE 76, 1423–1442 (1988).
[Crossref]

Radiology (1)

F. A. Mettler, W. Huda, T. T. Yoshizumi, and M. Mahesh, “Effective doses in radiology and diagnostic nuclear medicine: a catalog,” Radiology 248, 254–263 (2008).
[Crossref]

Sci. Rep. (1)

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
[Crossref]

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Space Weather (1)

M. H. MacAlester and W. Murtagh, “Extreme space weather impact: an emergency management perspective,” Space Weather 12, 530–537 (2014).
[Crossref]

Other (3)

P. Fortescue, G. Swinerd, and J. Stark, Spacecraft Systems Engineering, 4th ed. (Wiley, 2011), p. 399.

A. Patil, O. Koybasi, G. Lopez, M. Foxe, I. Childres, C. Roecker, J. Boguski, J. Gu, M. L. Bolen, M. A. Capano, P. Ye, I. Jovanovic, and Y. P. Chen, “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455–459.

M. N. Ott, “Radiation effects data on commercially available optical fiber: database summary,” in Proceedings of IEEE Radiation Effects Data Workshop (IEEE, 2002), pp. 24–31.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the graphene SA with a UV-cured polymer over-cladding on the monolayer graphene sheet and (b) back-gated graphene FET including the over-cladding. (c) Optical microscope image of the graphene SA at the edge of interaction region. (d) Photo of the devices.
Fig. 2.
Fig. 2. (a) NLT of the graphene SA measured by the femtosecond pulses in TE mode (inset: NLT in TM mode). (b) PDL and IL of the graphene SA as a function of irradiation dose measured by the CW light. (i) 0 kGy, (ii) 2.5 kGy, (iii) 4.8 kGy, and (iv) 6.7 kGy at 98 Gy/hr average dose rate. Note that the 6.7 kGy-irradiated sample (iv) was measured three days after radiation (without any special treatment), showing the recovery property in PDL.
Fig. 3.
Fig. 3. Measured NLT curve of the graphene SA in TE mode (i) before radiation and (ii) three days after radiation of 6.7 kGy (inset: NLT curve in TM mode). Note that there was no special treatment for three days.
Fig. 4.
Fig. 4. Measured transfer characteristics of the back-gated graphene FET including the over-cladding layer. The results are for (i) 0 kGy, (ii) 2.3 kGy, and (iii) 4.2 kGy at a 95 Gy/hr dose rate [inset: changes of the average charge carriers mobility [(iv) electron and (v) hole] and (vi) the Dirac voltage of the graphene FET as a function of irradiation dose]. Note that the result of 4.2 kGy irradiation (iii) was measured four days after radiation without any special treatment.
Fig. 5.
Fig. 5. Measured Raman spectra of our sample under different radiation conditions (0 kGy, 2.1 kGy, and 4.2 kGy).
Fig. 6.
Fig. 6. (a) Photo of the radiation test setup of the mode-locked laser. Note that the rest of the parts in the laser except the graphene SA were irradiated with a lower dose (3.4% of the irradiation dose to the graphene SA). (b) Schematic of the laser under test. EDF, Er-doped fiber; LD, pump laser diode; PC, polarization controller.
Fig. 7.
Fig. 7. (a) Optical spectra and (b) time-domain photodetected pulse trains of the mode-locked laser for different radiation conditions (0 kGy, 0.5 kGy, 1.0 kGy, 1.5 kGy, and 1.98 kGy). (c) Average optical power change of the mode-locked laser while the graphene SA was irradiated at a 45 Gy/hr dose rate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

q(S)=qsS(1+S)arctanh(S1+S)+qns,