Abstract

Optical absorbers with dynamic tuning features are able to flexibly control the absorption performance, which offers a good platform for realizing optical switching, filtering, modulating, etc. Here, we propose a thermally tunable broadband absorber applying a patterned plasmonic metasurface with thermo-chromic vanadium dioxide (VO2) spacers. An actively tunable absorption bandwidth and peak resonant wavelength in the region from the near- to mid-infrared (NMIR) are simultaneously achieved with the insulating–metallic phase transition of VO2. Moreover, the scalable unit cell, which is composed of multi-width sub-cells, provides a new freedom to further manipulate (i.e., broaden or narrow) the absorption bandwidth while maintaining a high relative absorption bandwidth and efficient absorbance at the same time. For both transverse-electric and transverse-magnetic polarizations, the proposed nanostructure exhibits a high absorption over a wide angular range up to 60°. This method holds a promising potential for versatile utilizations in optical integrated devices, NMIR photodetection, thermal emitters, smart temperature control systems, and so forth.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic infrared thin-film absorbers with tunable absorption level based on VO2 phase transition

Zizhuo Liu, Berker Banar, Serkan Butun, Hasan Kocer, Kevin Wang, Jacob Scheuer, Junqiao Wu, and Koray Aydin
Opt. Mater. Express 8(8) 2151-2158 (2018)

Frequency tunable near-infrared metamaterials based on VO2 phase transition

Matthew J. Dicken, Koray Aydin, Imogen M. Pryce, Luke A. Sweatlock, Elizabeth M. Boyd, Sameer Walavalkar, James Ma, and Harry A. Atwater
Opt. Express 17(20) 18330-18339 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
    [Crossref]
  2. V. Rawat and S. N. Kale, “Metamaterials for energy-harvesting applications: a review,” Nanotech Insights 6, 1–8 (2015).
  3. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
    [Crossref]
  4. Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
    [Crossref]
  5. Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
    [Crossref]
  6. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
    [Crossref]
  7. Y. Zhu, S. Vegesna, Y. Zhao, V. Kuryatkov, M. Holtz, Z. Fan, M. Saed, and A. A. Bernussi, “Tunable dual-band terahertz metamaterial bandpass filters,” Opt. Lett. 38, 2382–2384 (2013).
    [Crossref]
  8. Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
    [Crossref]
  9. D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
    [Crossref]
  10. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
    [Crossref]
  11. E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
    [Crossref]
  12. R. Feng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Orbital angular momentum generation method based on transformation electromagnetics,” Opt. Express 26, 11708–11717 (2018).
    [Crossref]
  13. B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116, 094504 (2014).
    [Crossref]
  14. B. X. Wang, X. Zhaia, G. Zhen Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117, 014504 (2015).
    [Crossref]
  15. L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26, 5686–5693 (2018).
    [Crossref]
  16. K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
    [Crossref]
  17. H. M. K. Wong and A. S. Helmy, “Performance enhancement of nanoscale VO2 modulators using hybrid plasmonics,” J. Lightwave Technol. 36, 797–808 (2018).
    [Crossref]
  18. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22, 22743–22752 (2014).
    [Crossref]
  19. A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
    [Crossref]
  20. J. K. Pradhan, S. A. Ramakrishna, B. Rajeswaran, A. M. Umarji, V. G. Achanta, A. K. Agarwal, and A. Ghosh, “High contrast switchability of VO2 based metamaterial absorbers with ITO ground plane,” Opt. Express 25, 9116–9121 (2017).
    [Crossref]
  21. J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
    [Crossref]
  22. G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5, 55–73 (2016).
    [Crossref]
  23. K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
    [Crossref]
  24. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
    [Crossref]
  25. L. D. Sánchez, I. Olivares, J. Parra, M. Menghini, P. Homm, J. P. Locquet, and P. Sanchis, “Experimental demonstration of a tunable transverse electric pass polarizer based on hybrid VO2/silicon technology,” Opt. Lett. 43, 3650–3653 (2018).
    [Crossref]
  26. L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
    [Crossref]
  27. H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29, 024002 (2018).
    [Crossref]
  28. D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
    [Crossref]
  29. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26, 7148–7154 (2018).
    [Crossref]
  30. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007).
  31. S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109, 061105 (2016).
    [Crossref]
  32. Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
    [Crossref]
  33. Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
    [Crossref]
  34. S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide-angle band absorbers,” Opt. Express 23, 963–970 (2015).
    [Crossref]
  35. Y. J. Jen, Y. J. Huang, W. C. Liu, and Y. W. Lin, “Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber,” Sci. Rep. 7, 39791 (2017).
    [Crossref]
  36. P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
    [Crossref]
  37. Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photon. J. 8, 2200109 (2016).
    [Crossref]
  38. M. Currie, M. A. Mastro, and V. D. Wheeler, “Characterizing the tunable refractive index of vanadium dioxide,” Opt. Mater. Express 7, 1697–1707 (2017).
    [Crossref]
  39. F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
    [Crossref]
  40. A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
    [Crossref]
  41. D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
    [Crossref]

2018 (8)

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29, 024002 (2018).
[Crossref]

A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
[Crossref]

H. M. K. Wong and A. S. Helmy, “Performance enhancement of nanoscale VO2 modulators using hybrid plasmonics,” J. Lightwave Technol. 36, 797–808 (2018).
[Crossref]

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26, 5686–5693 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26, 7148–7154 (2018).
[Crossref]

R. Feng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Orbital angular momentum generation method based on transformation electromagnetics,” Opt. Express 26, 11708–11717 (2018).
[Crossref]

L. D. Sánchez, I. Olivares, J. Parra, M. Menghini, P. Homm, J. P. Locquet, and P. Sanchis, “Experimental demonstration of a tunable transverse electric pass polarizer based on hybrid VO2/silicon technology,” Opt. Lett. 43, 3650–3653 (2018).
[Crossref]

2017 (6)

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Y. J. Jen, Y. J. Huang, W. C. Liu, and Y. W. Lin, “Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber,” Sci. Rep. 7, 39791 (2017).
[Crossref]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
[Crossref]

J. K. Pradhan, S. A. Ramakrishna, B. Rajeswaran, A. M. Umarji, V. G. Achanta, A. K. Agarwal, and A. Ghosh, “High contrast switchability of VO2 based metamaterial absorbers with ITO ground plane,” Opt. Express 25, 9116–9121 (2017).
[Crossref]

M. Currie, M. A. Mastro, and V. D. Wheeler, “Characterizing the tunable refractive index of vanadium dioxide,” Opt. Mater. Express 7, 1697–1707 (2017).
[Crossref]

2016 (8)

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5, 55–73 (2016).
[Crossref]

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109, 061105 (2016).
[Crossref]

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photon. J. 8, 2200109 (2016).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref]

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

2015 (8)

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

V. Rawat and S. N. Kale, “Metamaterials for energy-harvesting applications: a review,” Nanotech Insights 6, 1–8 (2015).

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

B. X. Wang, X. Zhaia, G. Zhen Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117, 014504 (2015).
[Crossref]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide-angle band absorbers,” Opt. Express 23, 963–970 (2015).
[Crossref]

2014 (7)

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22, 22743–22752 (2014).
[Crossref]

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116, 094504 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

2013 (2)

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[Crossref]

Y. Zhu, S. Vegesna, Y. Zhao, V. Kuryatkov, M. Holtz, Z. Fan, M. Saed, and A. A. Bernussi, “Tunable dual-band terahertz metamaterial bandpass filters,” Opt. Lett. 38, 2382–2384 (2013).
[Crossref]

2009 (1)

Abramski, K. M.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Achanta, V. G.

Agarwal, A. K.

Arnold, M.

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5, 55–73 (2016).
[Crossref]

Atwater, H. A.

Aydin, K.

Azad, A. K.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Bernussi, A. A.

Bian, B. R.

B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116, 094504 (2014).
[Crossref]

Bilenberg, B.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

Biyikli, N.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref]

Boyd, E. M.

Boyd, R. W.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Bozhevolnyi, S. I.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Briggs, D.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Burokur, S. N.

Cao, C.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[Crossref]

Cao, F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Chan, K.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Cheah, K. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, B. R.

Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photon. J. 8, 2200109 (2016).
[Crossref]

Chen, H. T.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Chen, L.

Chen, M.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, S.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Chen, X.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Chen, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Chen, Z.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[Crossref]

Chu, W. S.

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Cortie, M.

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5, 55–73 (2016).
[Crossref]

Currie, M.

Dai, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Dai, L.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[Crossref]

Dalvit, D. A. R.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

de Groot, C. H.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

Demirtzioglou, I.

A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
[Crossref]

Devine, A.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109, 061105 (2016).
[Crossref]

Dicken, M. J.

Ding, F.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Dyachenko, P. N.

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Eich, M.

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Fan, L. L.

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Fan, Z.

Fang, B. Y.

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

Feng, R.

Feng, Y.

Fu, S. M.

Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photon. J. 8, 2200109 (2016).
[Crossref]

Fujita, H.

Gao, C.

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Gao, Y.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[Crossref]

Gentle, A.

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5, 55–73 (2016).
[Crossref]

Ghosh, A.

Gok, A.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref]

Gong, C.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

Gong, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Gorgulu, K.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref]

Gu, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Guo, C. F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Guo, Y.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

Han, Z.

He, S.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

Helmy, A. S.

Hirakawa, K.

Holtz, M.

Homm, P.

Hong, M.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Huang, H.

Huang, W. Q.

B. X. Wang, X. Zhaia, G. Zhen Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117, 014504 (2015).
[Crossref]

Huang, Y. J.

Y. J. Jen, Y. J. Huang, W. C. Liu, and Y. W. Lin, “Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber,” Sci. Rep. 7, 39791 (2017).
[Crossref]

Huang, Y. Q.

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

Jacob, Z.

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Jen, Y. J.

Y. J. Jen, Y. J. Huang, W. C. Liu, and Y. W. Lin, “Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber,” Sci. Rep. 7, 39791 (2017).
[Crossref]

Ji, D. X.

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Jian, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Jiang, T.

Jin, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Ju, N. P.

Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photon. J. 8, 2200109 (2016).
[Crossref]

Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photon. J. 8, 2200109 (2016).
[Crossref]

Jung, Y.

A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
[Crossref]

Jussila, H.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Kale, S. N.

V. Rawat and S. N. Kale, “Metamaterials for energy-harvesting applications: a review,” Nanotech Insights 6, 1–8 (2015).

Kang, L.

Karimi, E.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Karvonen, L.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Kohno, K.

Kort-Kamp, W. J. M.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Krekeler, T.

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Kudo, K.

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007).

Kuryatkov, V.

Kyaw, C.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109, 061105 (2016).
[Crossref]

Lacava, C.

A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
[Crossref]

Lang, S.

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Lei, L.

Leon, I. D.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Li, D.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Li, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Li, J.

Li, K. F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Li, S.

Li, Y.

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

Li, Z. P.

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Liberman, V.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109, 061105 (2016).
[Crossref]

Lin, A.

Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photon. J. 8, 2200109 (2016).
[Crossref]

Lin, Y. W.

Y. J. Jen, Y. J. Huang, W. C. Liu, and Y. W. Lin, “Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber,” Sci. Rep. 7, 39791 (2017).
[Crossref]

Lipsanen, H.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Liu, C.

Liu, H.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29, 024002 (2018).
[Crossref]

Liu, Q.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Liu, Q. H.

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26, 7148–7154 (2018).
[Crossref]

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Liu, S. B.

B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116, 094504 (2014).
[Crossref]

Liu, W. C.

Y. J. Jen, Y. J. Huang, W. C. Liu, and Y. W. Lin, “Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber,” Sci. Rep. 7, 39791 (2017).
[Crossref]

Liu, X.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[Crossref]

Liu, X. C.

B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116, 094504 (2014).
[Crossref]

Liu, Y.

Liu, Z. M.

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

Locquet, J. P.

Lu, J.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29, 024002 (2018).
[Crossref]

Luk, T. S.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Luo, H.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[Crossref]

Luo, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

Luo, Z. L.

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Ma, B.

B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116, 094504 (2014).
[Crossref]

Ma, J.

Ma, R.

Ma, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Mao, Z. W.

B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116, 094504 (2014).
[Crossref]

Mastro, M. A.

Mehmood, M. Q.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Mendoza, B.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109, 061105 (2016).
[Crossref]

Mengali, S.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

Menghini, M.

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Molesky, S.

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Muskens, O. L.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

Noginov, M. A.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109, 061105 (2016).
[Crossref]

Okyay, A. K.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref]

Olivares, I.

Paletko, P.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Parra, J.

Pei, J. H.

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

Petropoulos, P.

A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
[Crossref]

Plum, E.

A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
[Crossref]

Pradhan, J. K.

Prayakarao, S.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109, 061105 (2016).
[Crossref]

Pryce, I. M.

Pu, M.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

Pun, E. Y. B.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Qassim, H.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Qiao, W.

Qiu, C.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Rajeswaran, B.

Ramakrishna, S. A.

Rawat, V.

V. Rawat and S. N. Kale, “Metamaterials for energy-harvesting applications: a review,” Nanotech Insights 6, 1–8 (2015).

Ren, Z.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Richardson, D. J.

A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
[Crossref]

Riedel, C. A.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

Ritter, M.

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Saed, M.

Sánchez, L. D.

Sanchis, P.

Schulz, S. A.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Shen, S.

Shibuya, T.

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007).

Simeoni, M.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

Smith, G.

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5, 55–73 (2016).
[Crossref]

Sobon, G.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Song, L.

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Song, Z.

Sotor, J.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Srivastava, A.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Störmer, M.

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Sun, K.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

Sun, T.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Sun, Z.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Sweatlock, L. A.

Sykora, M.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Tao, K.

Taylor, A. J.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Topalli, K.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref]

Toshiyoshi, H.

Tu, M. H.

Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photon. J. 8, 2200109 (2016).
[Crossref]

Umarji, A. M.

Upham, J.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Urbani, A.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Van Dover, R. B.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109, 061105 (2016).
[Crossref]

Vegesna, S.

Venkatesan, T.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Wakaki, M.

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007).

Walavalkar, S.

Wang, B. X.

B. X. Wang, X. Zhaia, G. Zhen Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117, 014504 (2015).
[Crossref]

Wang, B. Y.

B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116, 094504 (2014).
[Crossref]

Wang, C.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

Wang, D.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Wang, K.

Wang, L. L.

B. X. Wang, X. Zhaia, G. Zhen Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117, 014504 (2015).
[Crossref]

Wang, P.

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Wang, X. H.

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Wang, X. R.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29, 024002 (2018).
[Crossref]

Wang, Y.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

Weisse-Bernstein, N. R.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Wen, D.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Werner, D. H.

Wheeler, V. D.

Wong, H. M. K.

Wong, P. W. H.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Wu, D.

Wu, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

Wu, Y. F.

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Wu, Z. Y.

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Xiao, H.

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Xomalis, A.

A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
[Crossref]

Xu, P.

Yan, L.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Ye, G.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Ye, H.

Ye, Y.

Yi, J.

Yilmaz, M.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref]

Yong, Z.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

Yu, L.

Yu, Z.

Yu Petrov, A.

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Yue, F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Zalkovskij, M.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

Zhaia, X.

B. X. Wang, X. Zhaia, G. Zhen Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117, 014504 (2015).
[Crossref]

Zhang, H.

Zhang, J.

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

Zhang, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Zhang, S.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Zhang, Y.

Zhang, Z.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[Crossref]

Zhao, J.

Zhao, Y.

Zhao, Z.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

Zheludev, N. I.

A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
[Crossref]

Zhen Wang, G.

B. X. Wang, X. Zhaia, G. Zhen Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117, 014504 (2015).
[Crossref]

Zheng, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Zhong, Y. K.

Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photon. J. 8, 2200109 (2016).
[Crossref]

Zhou, J.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[Crossref]

Zhou, Y.

Zhu, B.

Zhu, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Zhu, Y.

Zou, C. W.

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

ACS Photon. (1)

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photon. 5, 2280–2286 (2018).
[Crossref]

Appl. Phys. Lett. (3)

A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, and N. I. Zheludev, “Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber,” Appl. Phys. Lett. 113, 051103 (2018).
[Crossref]

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109, 061105 (2016).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

IEEE Photon. J. (1)

Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photon. J. 8, 2200109 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “A tunable metamaterial absorber based on VO2/W multilayer structure,” IEEE Photon. Technol. Lett. 29, 1967–1970 (2017).
[Crossref]

J. Appl. Phys. (2)

B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116, 094504 (2014).
[Crossref]

B. X. Wang, X. Zhaia, G. Zhen Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117, 014504 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D (1)

Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D 50, 385104 (2017).
[Crossref]

Light Sci. Appl. (2)

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Nano Lett. (2)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, “Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation,” Nano Lett. 14, 4036–4043 (2014).
[Crossref]

Nanophotonics (1)

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5, 55–73 (2016).
[Crossref]

Nanotech Insights (1)

V. Rawat and S. N. Kale, “Metamaterials for energy-harvesting applications: a review,” Nanotech Insights 6, 1–8 (2015).

Nanotechnology (1)

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29, 024002 (2018).
[Crossref]

Nat. Commun. (2)

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]

Opt. Express (8)

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
[Crossref]

R. Feng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Orbital angular momentum generation method based on transformation electromagnetics,” Opt. Express 26, 11708–11717 (2018).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22, 22743–22752 (2014).
[Crossref]

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26, 5686–5693 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26, 7148–7154 (2018).
[Crossref]

J. K. Pradhan, S. A. Ramakrishna, B. Rajeswaran, A. M. Umarji, V. G. Achanta, A. K. Agarwal, and A. Ghosh, “High contrast switchability of VO2 based metamaterial absorbers with ITO ground plane,” Opt. Express 25, 9116–9121 (2017).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref]

S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide-angle band absorbers,” Opt. Express 23, 963–970 (2015).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Sci. Rep. (9)

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Y. J. Jen, Y. J. Huang, W. C. Liu, and Y. W. Lin, “Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber,” Sci. Rep. 7, 39791 (2017).
[Crossref]

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[Crossref]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref]

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref]

Other (1)

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagrams of the tunable and scalable metamaterial ultra-broadband absorber with the VO2 spacer in the (a) insulating phase and (b) metallic phase. Here, a group of multi-width CrVO2 sub-cells is placed directly on the surface of a uniform Cr substrate. Parameters are set as p=1900  nm, w1=200  nm, w2=300  nm, w3=400  nm, w4=500  nm, t1=300  nm, t2=260  nm, t3=30  nm, g1=80  nm, g2=120  nm, g3=140  nm. The surrounding material is air.
Fig. 2.
Fig. 2. Calculated absorbance spectra. BW, bandwidth; AA, average absorption.
Fig. 3.
Fig. 3. Electric and magnetic field distributions of the TSMA with the VO2 under the insulating state.
Fig. 4.
Fig. 4. Electric and magnetic field distributions of the TSMA with the VO2 under the metallic state.
Fig. 5.
Fig. 5. (a), (b) Spectral comparison between the proposed TSMA and planar films with different top metals. (c), (d) Spectral comparison between TSMAs with different top and bottom metals.
Fig. 6.
Fig. 6. (a) Real parts of the refractive indices for Cr and VO2. (b) Imaginary parts of the refractive indices for Cr and VO2. (c) Temperature-dependent absorption spectra of the VO2-based TSMA.
Fig. 7.
Fig. 7. Scalability demonstration of the VO2-TSMA with 3-width (black line) and 5-width (blue line) sub-cells, compared with the proposed reference structure with 4-width sub-cells (red line).
Fig. 8.
Fig. 8. Absorption spectra of the VO2-TSMA with various thicknesses of top-Cr and VO2, calculated at 25°C and 80°C.
Fig. 9.
Fig. 9. Angular dispersions of the TSMA under VO2 (I) as well as VO2 (M) for both TE and TM polarizations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

εVO2(T)=f(T)εins+[1f(T)]εmetal,
f(T)=1/[exp(TTcB·Tc)+1],

Metrics