Abstract

We demonstrate a low-cost hybrid integrated and compact 100 GBaud four-lane coarse wavelength division multiplexing (CWDM) receiver optical sub-assembly (ROSA) based on an arrayed waveguide grating de-multiplexer in the O band. To achieve the horizontal light coupling between the planar light-wave circuit (PLC) based arrayed waveguide grating de-multiplexer and photodetector array, a 42° polished facet is applied for total reflection. A flexible printed circuit with high-frequency coplanar waveguides is used for a power supply of trans-impedance amplifier and signal transmission. The fabricated CWDM ROSA module, whose size is 18  mm×22  mm×6  mm, shows a 3 dB bandwidth of 21.2, 18.4, 19.6, and 19.3 GHz, respectively, in each lane. The overall symbol error rates are at a magnitude of 107 for 25 GBaud four-level pulse amplitude modulation (PAM-4) transmission with an average input optical power of 5 dBm.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Low-cost hybrid integrated 4 × 25.78  Gb/s CWDM TOSA for 10  km transmission using DFB-LDs and an arrayed waveguide grating multiplexer

Jun Liu, Qingzhong Huang, Shiqi Tao, Cheng Zeng, and Jinsong Xia
Photon. Res. 6(11) 1067-1073 (2018)

Low-cost and miniaturized 100-Gb/s (2 × 50 Gb/s) PAM-4 TO-packaged ROSA for data center networks

Sae-Kyoung Kang, Joon Young Huh, Jie Hyun Lee, and Joon Ki Lee
Opt. Express 26(5) 6172-6181 (2018)

Compact and high-sensitivity 100-Gb/s (4 × 25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer

Toshihide Yoshimatsu, Masahiro Nada, Manabu Oguma, Haruki Yokoyama, Tetsuichiro Ohno, Yoshiyuki Doi, Ikuo Ogawa, Hiroshi Takahashi, and Eiji Yoshida
Opt. Express 20(26) B393-B398 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Ke, Y. Gao, and J. C. Cartledge, “400  Gbit/s single-carrier and 1  Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping,” Opt. Express 22, 71–83 (2014).
    [Crossref]
  2. Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett. 29, 1788–1791 (2017).
    [Crossref]
  3. M. Li, L. Zhang, L.-M. Tong, and D.-X. Dai, “Hybrid silicon nonlinear photonics [Invited],” Photon. Res. 6, B13–B22 (2018).
    [Crossref]
  4. M. Nada, M. Nakamura, and H. Matsuzaki, “25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching,” Opt. Express 22, 443–449 (2014).
    [Crossref]
  5. S. Kanazawa, T. Fujisawa, N. Nunoya, A. Ohki, K. Takahata, H. Sanjoh, R. Iga, and H. Ishii, “Ultra-compact 100  GbE transmitter optical sub-assembly for 40-km SMF transmission,” J. Lightwave Technol. 31, 602–608 (2013).
    [Crossref]
  6. Y. Doi, T. Ohyama, T. Yoshimatsu, S. Soma, and M. Oguma, “400  GbE demonstration utilizing 100  GbE optical sub-assemblies and cyclic arrayed waveguide gratings,” in Optical Fiber Communications Conference and Exhibition (2014), paper M2E.2.
  7. S. K. Kang, J. Y. Huh, J. H. Lee, and J. K. Lee, “Low-cost and miniaturized 100-Gb/s (2 × 50  Gb/s) PAM-4 TO-packaged ROSA for data center networks,” Opt. Express 26, 6172–6181 (2018).
    [Crossref]
  8. Y. Wang, J. Yu, N. Chi, and G.-K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7, 7201805 (2015).
    [Crossref]
  9. C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photon. J. 8, 7903907 (2016).
    [Crossref]
  10. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100  Gb/s short reach optical transmission systems,” Opt. Express 23, 1176–1189 (2015).
    [Crossref]
  11. K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km transmission of PAM-4 signal at 1.3  μm for short reach communications,” IEEE Photon. Technol. Lett. 27, 1757–1760 (2015).
    [Crossref]
  12. J. Y. Huh, S. K. Kang, J. H. Lee, J. K. Lee, and S. Kim, “Highly alignment tolerant and high-sensitivity 100  Gb/s (4 × 25  Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer,” Opt. Express 24, 27104–27114 (2016).
    [Crossref]
  13. J. K. Lee, J. Y. Huh, S. K. Kang, and Y. S. Jang, “Analysis of dimensional tolerance for an optical demultiplexer of a highly alignment tolerant 4 × 25  Gb/s ROSA module,” Opt. Express 22, 4307–4315 (2014).
    [Crossref]
  14. J. K. Lee and Y.-S. Jang, “Compact 4 × 25  Gb/s optical receiver and transceiver for 100G ethernet interface,” in International Conference on ICT Convergence (2015), pp. 758–760.
  15. T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
    [Crossref]
  16. S.-K. Kang, J. K. Lee, J. C. Lee, and K. Kim, “A compact 4 × 10-Gb/s CWDM ROSA module for 40G ethernet optical transceiver,” in 60th Electronic Components and Technology Conference (2010), pp. 2001–2005.
  17. L. Soldano, J. Kubicky, D. Ton, J. Wendland, M. Allen, A. Grant, and B. Pezeshki, “Multi-wavelength 100  Gb/s silicon photonics based transceiver with silica mux/demux and MEMS-coupled InP lasers,” in Optical Fiber Communications Conference and Exhibition (2017), paper Th3B.1.
  18. Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 × 25  Gb/s) ethernet with a PLC-based AWG demultiplexer,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013), paper NW1J.5.
  19. T. Ohyama, Y. Doi, W. Kobayashi, S. Kanazawa, K. Takahata, A. Kanda, T. Kurosaki, T. Tanaka, T. Ohno, H. Sanjoh, and T. Hashimoto, “Compact hybrid integrated 100-Gb/s transmitter optical sub-assembly using optical butt-coupling between EADFB lasers and silica-based AWG multiplexer,” J. Lightwave Technol. 34, 1038–1046 (2016).
    [Crossref]

2018 (2)

2017 (1)

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

2016 (3)

2015 (3)

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100  Gb/s short reach optical transmission systems,” Opt. Express 23, 1176–1189 (2015).
[Crossref]

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km transmission of PAM-4 signal at 1.3  μm for short reach communications,” IEEE Photon. Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Y. Wang, J. Yu, N. Chi, and G.-K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7, 7201805 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (1)

Allen, M.

L. Soldano, J. Kubicky, D. Ton, J. Wendland, M. Allen, A. Grant, and B. Pezeshki, “Multi-wavelength 100  Gb/s silicon photonics based transceiver with silica mux/demux and MEMS-coupled InP lasers,” in Optical Fiber Communications Conference and Exhibition (2017), paper Th3B.1.

Cartledge, J. C.

Chang, G.-K.

Y. Wang, J. Yu, N. Chi, and G.-K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7, 7201805 (2015).
[Crossref]

Chen, W.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km transmission of PAM-4 signal at 1.3  μm for short reach communications,” IEEE Photon. Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100  Gb/s short reach optical transmission systems,” Opt. Express 23, 1176–1189 (2015).
[Crossref]

Chi, N.

Y. Wang, J. Yu, N. Chi, and G.-K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7, 7201805 (2015).
[Crossref]

Dai, D.-X.

Doi, Y.

T. Ohyama, Y. Doi, W. Kobayashi, S. Kanazawa, K. Takahata, A. Kanda, T. Kurosaki, T. Tanaka, T. Ohno, H. Sanjoh, and T. Hashimoto, “Compact hybrid integrated 100-Gb/s transmitter optical sub-assembly using optical butt-coupling between EADFB lasers and silica-based AWG multiplexer,” J. Lightwave Technol. 34, 1038–1046 (2016).
[Crossref]

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 × 25  Gb/s) ethernet with a PLC-based AWG demultiplexer,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013), paper NW1J.5.

Y. Doi, T. Ohyama, T. Yoshimatsu, S. Soma, and M. Oguma, “400  GbE demonstration utilizing 100  GbE optical sub-assemblies and cyclic arrayed waveguide gratings,” in Optical Fiber Communications Conference and Exhibition (2014), paper M2E.2.

Fujisawa, T.

Gao, Y.

Grant, A.

L. Soldano, J. Kubicky, D. Ton, J. Wendland, M. Allen, A. Grant, and B. Pezeshki, “Multi-wavelength 100  Gb/s silicon photonics based transceiver with silica mux/demux and MEMS-coupled InP lasers,” in Optical Fiber Communications Conference and Exhibition (2017), paper Th3B.1.

Gui, T.

Hashimoto, T.

Hu, R.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photon. J. 8, 7903907 (2016).
[Crossref]

Huh, J. Y.

Iga, R.

Ishii, H.

Ito, M.

Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 × 25  Gb/s) ethernet with a PLC-based AWG demultiplexer,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013), paper NW1J.5.

Jang, Y. S.

Jang, Y.-S.

J. K. Lee and Y.-S. Jang, “Compact 4 × 25  Gb/s optical receiver and transceiver for 100G ethernet interface,” in International Conference on ICT Convergence (2015), pp. 758–760.

Kanazawa, S.

Kanda, A.

Kang, S. K.

Kang, S.-K.

S.-K. Kang, J. K. Lee, J. C. Lee, and K. Kim, “A compact 4 × 10-Gb/s CWDM ROSA module for 40G ethernet optical transceiver,” in 60th Electronic Components and Technology Conference (2010), pp. 2001–2005.

Ke, J. H.

Kim, K.

S.-K. Kang, J. K. Lee, J. C. Lee, and K. Kim, “A compact 4 × 10-Gb/s CWDM ROSA module for 40G ethernet optical transceiver,” in 60th Electronic Components and Technology Conference (2010), pp. 2001–2005.

Kim, S.

Kobayashi, W.

Kubicky, J.

L. Soldano, J. Kubicky, D. Ton, J. Wendland, M. Allen, A. Grant, and B. Pezeshki, “Multi-wavelength 100  Gb/s silicon photonics based transceiver with silica mux/demux and MEMS-coupled InP lasers,” in Optical Fiber Communications Conference and Exhibition (2017), paper Th3B.1.

Kurosaki, T.

Lau, A. P.

Lau, A. P. T.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km transmission of PAM-4 signal at 1.3  μm for short reach communications,” IEEE Photon. Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Lee, J. C.

S.-K. Kang, J. K. Lee, J. C. Lee, and K. Kim, “A compact 4 × 10-Gb/s CWDM ROSA module for 40G ethernet optical transceiver,” in 60th Electronic Components and Technology Conference (2010), pp. 2001–2005.

Lee, J. H.

Lee, J. K.

Li, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photon. J. 8, 7903907 (2016).
[Crossref]

Li, H.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photon. J. 8, 7903907 (2016).
[Crossref]

Li, M.

Lu, C.

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100  Gb/s short reach optical transmission systems,” Opt. Express 23, 1176–1189 (2015).
[Crossref]

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km transmission of PAM-4 signal at 1.3  μm for short reach communications,” IEEE Photon. Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Luo, M.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photon. J. 8, 7903907 (2016).
[Crossref]

Man, J.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km transmission of PAM-4 signal at 1.3  μm for short reach communications,” IEEE Photon. Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100  Gb/s short reach optical transmission systems,” Opt. Express 23, 1176–1189 (2015).
[Crossref]

Matsuzaki, H.

Nada, M.

Nakamura, M.

Nunoya, N.

Ogawa, I.

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 × 25  Gb/s) ethernet with a PLC-based AWG demultiplexer,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013), paper NW1J.5.

Oguma, M.

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 × 25  Gb/s) ethernet with a PLC-based AWG demultiplexer,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013), paper NW1J.5.

Y. Doi, T. Ohyama, T. Yoshimatsu, S. Soma, and M. Oguma, “400  GbE demonstration utilizing 100  GbE optical sub-assemblies and cyclic arrayed waveguide gratings,” in Optical Fiber Communications Conference and Exhibition (2014), paper M2E.2.

Ohki, A.

Ohno, T.

Ohyama, T.

T. Ohyama, Y. Doi, W. Kobayashi, S. Kanazawa, K. Takahata, A. Kanda, T. Kurosaki, T. Tanaka, T. Ohno, H. Sanjoh, and T. Hashimoto, “Compact hybrid integrated 100-Gb/s transmitter optical sub-assembly using optical butt-coupling between EADFB lasers and silica-based AWG multiplexer,” J. Lightwave Technol. 34, 1038–1046 (2016).
[Crossref]

Y. Doi, T. Ohyama, T. Yoshimatsu, S. Soma, and M. Oguma, “400  GbE demonstration utilizing 100  GbE optical sub-assemblies and cyclic arrayed waveguide gratings,” in Optical Fiber Communications Conference and Exhibition (2014), paper M2E.2.

Pezeshki, B.

L. Soldano, J. Kubicky, D. Ton, J. Wendland, M. Allen, A. Grant, and B. Pezeshki, “Multi-wavelength 100  Gb/s silicon photonics based transceiver with silica mux/demux and MEMS-coupled InP lasers,” in Optical Fiber Communications Conference and Exhibition (2017), paper Th3B.1.

Ruan, X.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

Sanjoh, H.

Soldano, L.

L. Soldano, J. Kubicky, D. Ton, J. Wendland, M. Allen, A. Grant, and B. Pezeshki, “Multi-wavelength 100  Gb/s silicon photonics based transceiver with silica mux/demux and MEMS-coupled InP lasers,” in Optical Fiber Communications Conference and Exhibition (2017), paper Th3B.1.

Soma, S.

Y. Doi, T. Ohyama, T. Yoshimatsu, S. Soma, and M. Oguma, “400  GbE demonstration utilizing 100  GbE optical sub-assemblies and cyclic arrayed waveguide gratings,” in Optical Fiber Communications Conference and Exhibition (2014), paper M2E.2.

Takahashi, H.

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 × 25  Gb/s) ethernet with a PLC-based AWG demultiplexer,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013), paper NW1J.5.

Takahata, K.

Tanaka, T.

Tao, L.

Ton, D.

L. Soldano, J. Kubicky, D. Ton, J. Wendland, M. Allen, A. Grant, and B. Pezeshki, “Multi-wavelength 100  Gb/s silicon photonics based transceiver with silica mux/demux and MEMS-coupled InP lasers,” in Optical Fiber Communications Conference and Exhibition (2017), paper Th3B.1.

Tong, L.-M.

Wang, Y.

Y. Wang, J. Yu, N. Chi, and G.-K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7, 7201805 (2015).
[Crossref]

Wendland, J.

L. Soldano, J. Kubicky, D. Ton, J. Wendland, M. Allen, A. Grant, and B. Pezeshki, “Multi-wavelength 100  Gb/s silicon photonics based transceiver with silica mux/demux and MEMS-coupled InP lasers,” in Optical Fiber Communications Conference and Exhibition (2017), paper Th3B.1.

Yang, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photon. J. 8, 7903907 (2016).
[Crossref]

Yang, Q.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photon. J. 8, 7903907 (2016).
[Crossref]

Yokoyama, H.

Yoshida, E.

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 × 25  Gb/s) ethernet with a PLC-based AWG demultiplexer,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013), paper NW1J.5.

Yoshimatsu, T.

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 × 25  Gb/s) ethernet with a PLC-based AWG demultiplexer,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013), paper NW1J.5.

Y. Doi, T. Ohyama, T. Yoshimatsu, S. Soma, and M. Oguma, “400  GbE demonstration utilizing 100  GbE optical sub-assemblies and cyclic arrayed waveguide gratings,” in Optical Fiber Communications Conference and Exhibition (2014), paper M2E.2.

Yu, J.

Y. Wang, J. Yu, N. Chi, and G.-K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7, 7201805 (2015).
[Crossref]

Yu, S.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photon. J. 8, 7903907 (2016).
[Crossref]

Zeng, L.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km transmission of PAM-4 signal at 1.3  μm for short reach communications,” IEEE Photon. Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100  Gb/s short reach optical transmission systems,” Opt. Express 23, 1176–1189 (2015).
[Crossref]

Zhang, F.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

Zhang, L.

Zhong, K.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km transmission of PAM-4 signal at 1.3  μm for short reach communications,” IEEE Photon. Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100  Gb/s short reach optical transmission systems,” Opt. Express 23, 1176–1189 (2015).
[Crossref]

Zhou, X.

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100  Gb/s short reach optical transmission systems,” Opt. Express 23, 1176–1189 (2015).
[Crossref]

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km transmission of PAM-4 signal at 1.3  μm for short reach communications,” IEEE Photon. Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Zhu, Y.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

Zou, K.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

IEEE Photon. J. (2)

Y. Wang, J. Yu, N. Chi, and G.-K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7, 7201805 (2015).
[Crossref]

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photon. J. 8, 7903907 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km transmission of PAM-4 signal at 1.3  μm for short reach communications,” IEEE Photon. Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (7)

S. K. Kang, J. Y. Huh, J. H. Lee, and J. K. Lee, “Low-cost and miniaturized 100-Gb/s (2 × 50  Gb/s) PAM-4 TO-packaged ROSA for data center networks,” Opt. Express 26, 6172–6181 (2018).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100  Gb/s short reach optical transmission systems,” Opt. Express 23, 1176–1189 (2015).
[Crossref]

J. H. Ke, Y. Gao, and J. C. Cartledge, “400  Gbit/s single-carrier and 1  Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping,” Opt. Express 22, 71–83 (2014).
[Crossref]

M. Nada, M. Nakamura, and H. Matsuzaki, “25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching,” Opt. Express 22, 443–449 (2014).
[Crossref]

J. Y. Huh, S. K. Kang, J. H. Lee, J. K. Lee, and S. Kim, “Highly alignment tolerant and high-sensitivity 100  Gb/s (4 × 25  Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer,” Opt. Express 24, 27104–27114 (2016).
[Crossref]

J. K. Lee, J. Y. Huh, S. K. Kang, and Y. S. Jang, “Analysis of dimensional tolerance for an optical demultiplexer of a highly alignment tolerant 4 × 25  Gb/s ROSA module,” Opt. Express 22, 4307–4315 (2014).
[Crossref]

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

Photon. Res. (1)

Other (5)

Y. Doi, T. Ohyama, T. Yoshimatsu, S. Soma, and M. Oguma, “400  GbE demonstration utilizing 100  GbE optical sub-assemblies and cyclic arrayed waveguide gratings,” in Optical Fiber Communications Conference and Exhibition (2014), paper M2E.2.

S.-K. Kang, J. K. Lee, J. C. Lee, and K. Kim, “A compact 4 × 10-Gb/s CWDM ROSA module for 40G ethernet optical transceiver,” in 60th Electronic Components and Technology Conference (2010), pp. 2001–2005.

L. Soldano, J. Kubicky, D. Ton, J. Wendland, M. Allen, A. Grant, and B. Pezeshki, “Multi-wavelength 100  Gb/s silicon photonics based transceiver with silica mux/demux and MEMS-coupled InP lasers,” in Optical Fiber Communications Conference and Exhibition (2017), paper Th3B.1.

Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 × 25  Gb/s) ethernet with a PLC-based AWG demultiplexer,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013), paper NW1J.5.

J. K. Lee and Y.-S. Jang, “Compact 4 × 25  Gb/s optical receiver and transceiver for 100G ethernet interface,” in International Conference on ICT Convergence (2015), pp. 758–760.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Side view and top view of the fabricated ROSA module; (b) side view of the coupling region.
Fig. 2.
Fig. 2. Coupling efficiency (η) as a function of (a) d and (b) dx for the proposed coupling configuration.
Fig. 3.
Fig. 3. Transmission spectrum of the polished PLC AWG De-MUX coupled with an SMF.
Fig. 4.
Fig. 4. Photographs of the fabricated ROSA module with (a) the outline and (b) the internal layout.
Fig. 5.
Fig. 5. Small-signal frequency response of S21 of the ROSA module.
Fig. 6.
Fig. 6. Experimental setup of the PAM-4 eye pattern and error analysis.
Fig. 7.
Fig. 7. PAM-4 eye patterns of the ROSA module at a Baud rate of (a) 20 GBaud, (b) 25 GBaud, (c) 28 GBaud, and (d) 30 GBaud.
Fig. 8.
Fig. 8. Symbol error ratio of PAM-4 transmission with different Baud rates for all lanes.