Abstract

Monolayer transition metal dichalcogenides (TMDs) are ideal materials for atomically thin, flexible optoelectronic and catalytic devices. However, their optoelectrical performance such as quantum yield and carrier mobility often shows below theoretical expectations due to the existence of defects. For monolayer TMD-based devices, finding a low-cost, time-efficient, and nondestructive technique to visualize the change of defect distribution in the space domain and the defect-induced change of the carrier’s lifetime is vital for optimizing their optoelectronic properties. Here, we propose a microscopic pump-probe technique to map the defect distribution of monolayer TMDs. It is found that there is a linear relationship between transient differential reflection intensity and defect density, suggesting that this technique not only realizes the visualization of the defect distribution but also achieves the quantitative estimation of defect density. Moreover, the carrier lifetime at each point can also be obtained by the technique. The technique used here provides a new route to characterize the defect of monolayer TMDs on the micro-zone, which will hopefully guide the fabrication of high-quality two-dimensional (2D) materials and the promotion of optoelectrical performance.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Exciton dynamics in monolayer transition metal dichalcogenides [Invited]

Galan Moody, John Schaibley, and Xiaodong Xu
J. Opt. Soc. Am. B 33(7) C39-C49 (2016)

Lateral and vertical heterostructures in two-dimensional transition-metal dichalcogenides [Invited]

Hossein Taghinejad, Ali A. Eftekhar, and Ali Adibi
Opt. Mater. Express 9(4) 1590-1607 (2019)

Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk ReSe2

Jiaqi He, Lu Zhang, Dawei He, Yongsheng Wang, Zhiyi He, and Hui Zhao
Opt. Express 26(17) 21501-21509 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
    [Crossref]
  2. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  3. Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
    [Crossref]
  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
    [Crossref]
  5. W. Y. Wang, A. Klots, D. Prasai, Y. M. Yang, K. I. Bolotin, and J. Valentine, “Hot electron-based near-infrared photodetection using bilayer MoS2,” Nano Lett. 15, 7440–7444 (2015).
    [Crossref]
  6. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
    [Crossref]
  7. Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
    [Crossref]
  8. D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, “Catalysis with two-dimensional materials and their heterostructures,” Nat. Nanotechnol. 11, 218–230 (2016).
    [Crossref]
  9. T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317, 100–102 (2007).
    [Crossref]
  10. W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
    [Crossref]
  11. R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
    [Crossref]
  12. H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
    [Crossref]
  13. G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys. 11, 26–31 (2014).
    [Crossref]
  14. H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
    [Crossref]
  15. Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
    [Crossref]
  16. H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
    [Crossref]
  17. X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
    [Crossref]
  18. W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
    [Crossref]
  19. A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
    [Crossref]
  20. J. Kibsgaard, Z. B. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11, 963–969 (2012).
    [Crossref]
  21. B. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater. 22, 4467–4472 (2010).
    [Crossref]
  22. G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
    [Crossref]
  23. Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
    [Crossref]
  24. Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
    [Crossref]
  25. J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
    [Crossref]
  26. D. W. Wang, K. H. Wu, I. R. Gentle, and G. Q. Lu, “Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature,” Carbon 50, 3333–3341 (2012).
    [Crossref]
  27. D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
    [Crossref]
  28. S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
    [Crossref]
  29. A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235–246 (2013).
    [Crossref]
  30. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
    [Crossref]
  31. W. T. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
    [Crossref]
  32. R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, “Tip-enhanced Raman mapping of local strain in graphene,” Nanotechnology 26, 175702 (2015).
    [Crossref]
  33. S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, and D. Roy, “Probing individual point defects in graphene via near-field Raman scattering,” Nanoscale 7, 19413–19418 (2015).
    [Crossref]
  34. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
    [Crossref]
  35. H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
    [Crossref]
  36. Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
    [Crossref]
  37. W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
    [Crossref]
  38. W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
    [Crossref]
  39. L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
    [Crossref]
  40. Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
    [Crossref]
  41. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
    [Crossref]
  42. S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
    [Crossref]
  43. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
    [Crossref]
  44. N. Kumar, Q. N. Cui, F. Ceballos, D. W. He, Y. S. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
    [Crossref]
  45. D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
    [Crossref]
  46. H. N. Wang, C. J. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2,” Nano Lett. 15, 339–345 (2015).
    [Crossref]
  47. R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide,” Phys. Rev. B 86, 045406 (2012).
    [Crossref]
  48. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
    [Crossref]
  49. M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15, 2794–2800 (2015).
    [Crossref]
  50. L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, and M. C. Martin, “Determination of the electronic structure of bilayer graphene from infrared spectroscopy,” Phys. Rev. B 78, 235408 (2008).
    [Crossref]
  51. A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96, 213116 (2010).
    [Crossref]
  52. S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, “Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics,” Phys. Rev. B 88, 075434 (2013).
    [Crossref]
  53. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
    [Crossref]
  54. Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
    [Crossref]
  55. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
    [Crossref]
  56. Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
    [Crossref]

2019 (2)

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

2018 (3)

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

W. T. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

2017 (2)

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

2016 (5)

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, “Catalysis with two-dimensional materials and their heterostructures,” Nat. Nanotechnol. 11, 218–230 (2016).
[Crossref]

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

2015 (12)

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, “Tip-enhanced Raman mapping of local strain in graphene,” Nanotechnology 26, 175702 (2015).
[Crossref]

S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, and D. Roy, “Probing individual point defects in graphene via near-field Raman scattering,” Nanoscale 7, 19413–19418 (2015).
[Crossref]

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

W. Y. Wang, A. Klots, D. Prasai, Y. M. Yang, K. I. Bolotin, and J. Valentine, “Hot electron-based near-infrared photodetection using bilayer MoS2,” Nano Lett. 15, 7440–7444 (2015).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

H. N. Wang, C. J. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2,” Nano Lett. 15, 339–345 (2015).
[Crossref]

M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15, 2794–2800 (2015).
[Crossref]

2014 (7)

N. Kumar, Q. N. Cui, F. Ceballos, D. W. He, Y. S. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref]

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys. 11, 26–31 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

2013 (9)

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235–246 (2013).
[Crossref]

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, “Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics,” Phys. Rev. B 88, 075434 (2013).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

2012 (6)

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide,” Phys. Rev. B 86, 045406 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

J. Kibsgaard, Z. B. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11, 963–969 (2012).
[Crossref]

D. W. Wang, K. H. Wu, I. R. Gentle, and G. Q. Lu, “Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature,” Carbon 50, 3333–3341 (2012).
[Crossref]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

2011 (2)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

2010 (3)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96, 213116 (2010).
[Crossref]

B. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater. 22, 4467–4472 (2010).
[Crossref]

2009 (1)

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

2008 (1)

L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, and M. C. Martin, “Determination of the electronic structure of bilayer graphene from infrared spectroscopy,” Phys. Rev. B 78, 235408 (2008).
[Crossref]

2007 (1)

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317, 100–102 (2007).
[Crossref]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

2004 (1)

J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
[Crossref]

Abild-Pedersen, F.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Addou, R.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Agraït, N.

A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96, 213116 (2010).
[Crossref]

Aivazian, G.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Ajayan, P. M.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Alem, N.

B. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater. 22, 4467–4472 (2010).
[Crossref]

Aloni, S.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Alshareef, H. N.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Amani, M.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

An, S. J.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

Ashby, P. D.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

Ataca, C.

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

Avouris, P.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Azcatl, A.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Bao, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Bao, W.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Bao, X. H.

D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, “Catalysis with two-dimensional materials and their heterostructures,” Nat. Nanotechnol. 11, 218–230 (2016).
[Crossref]

Barrera, D.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Basko, D. M.

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235–246 (2013).
[Crossref]

Basov, D. N.

L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, and M. C. Martin, “Determination of the electronic structure of bilayer graphene from infrared spectroscopy,” Phys. Rev. B 78, 235408 (2008).
[Crossref]

Beams, R.

R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, “Tip-enhanced Raman mapping of local strain in graphene,” Nanotechnology 26, 175702 (2015).
[Crossref]

Bellus, M. Z.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide,” Phys. Rev. B 86, 045406 (2012).
[Crossref]

Berkdemir, A.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Berkelbach, T. C.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

Bernardi, M.

M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15, 2794–2800 (2015).
[Crossref]

Bi, K. D.

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

Birdwell, A. G.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

Bjorkman, T.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Bokor, J.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Bolotin, K. I.

W. Y. Wang, A. Klots, D. Prasai, Y. M. Yang, K. I. Bolotin, and J. Valentine, “Hot electron-based near-infrared photodetection using bilayer MoS2,” Nano Lett. 15, 7440–7444 (2015).
[Crossref]

Bonde, J.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317, 100–102 (2007).
[Crossref]

Bonini, N.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Borys, N. J.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

Bozoklu, G.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Brennan, B.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, and D. Roy, “Probing individual point defects in graphene via near-field Raman scattering,” Nanoscale 7, 19413–19418 (2015).
[Crossref]

Brezin, L.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Buyanin, A.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

Cabrini, S.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Cai, L.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Cancado, L. G.

R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, “Tip-enhanced Raman mapping of local strain in graphene,” Nanotechnology 26, 175702 (2015).
[Crossref]

Cao, R.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Carozo, V.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

Caselli, N.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Castellanos-Gomez, A.

A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96, 213116 (2010).
[Crossref]

Ceballos, F.

N. Kumar, Q. N. Cui, F. Ceballos, D. W. He, Y. S. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Chaigneau, M.

W. T. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

Chang, C. S.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Chang, K. D.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Chang, M. T.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Chang, Y.-H.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Chen, G.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref]

Chen, Q.

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Chen, S.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Chen, X.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Chen, Y.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Chen, Y. F.

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

Chen, Z. B.

J. Kibsgaard, Z. B. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11, 963–969 (2012).
[Crossref]

Chenet, D. A.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

Chiu, H.-Y.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide,” Phys. Rev. B 86, 045406 (2012).
[Crossref]

Chiu, P. W.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Choi, H.

S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, “Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics,” Phys. Rev. B 88, 075434 (2013).
[Crossref]

Choo, H.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Chorkendorff, I.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317, 100–102 (2007).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Colombo, L.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Contryman, A. W.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Cooper, R. C.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

Crawford, B.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

Crespi, V. H.

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Crowne, F. J.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

Cui, Q. N.

N. Kumar, Q. N. Cui, F. Ceballos, D. W. He, Y. S. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Cullen, D. A.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

Deng, D. H.

D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, “Catalysis with two-dimensional materials and their heterostructures,” Nat. Nanotechnol. 11, 218–230 (2016).
[Crossref]

Dong, Y.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Dong, Z.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Du, J. L.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Dubey, M.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

Eda, G.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Elías, A. L.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Erickson, B. K.

B. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater. 22, 4467–4472 (2010).
[Crossref]

Erni, R.

B. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater. 22, 4467–4472 (2010).
[Crossref]

Fan, D.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Fan, W.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

Feng, Y.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Ferrari, A. C.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235–246 (2013).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Field, D. A.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Fogler, M.

L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, and M. C. Martin, “Determination of the electronic structure of bilayer graphene from infrared spectroscopy,” Phys. Rev. B 78, 235408 (2008).
[Crossref]

Fragapane, A. H.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Fu, Q.

D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, “Catalysis with two-dimensional materials and their heterostructures,” Nat. Nanotechnol. 11, 218–230 (2016).
[Crossref]

Fuhr, J. D.

J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
[Crossref]

Fujisawa, K.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

Gannett, W.

B. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater. 22, 4467–4472 (2010).
[Crossref]

Ge, Y.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Gentle, I. R.

D. W. Wang, K. H. Wu, I. R. Gentle, and G. Q. Lu, “Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature,” Carbon 50, 3333–3341 (2012).
[Crossref]

Ghimire, N. J.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Gilmore, I. S.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, and D. Roy, “Probing individual point defects in graphene via near-field Raman scattering,” Nanoscale 7, 19413–19418 (2015).
[Crossref]

Gómez-Herrero, J.

G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys. 11, 26–31 (2014).
[Crossref]

Gómez-Navarro, C.

G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys. 11, 26–31 (2014).
[Crossref]

Grinblat, G.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Grossman, J. C.

M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15, 2794–2800 (2015).
[Crossref]

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

Gu, L.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Gu, Y.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Guinea, F.

G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys. 11, 26–31 (2014).
[Crossref]

Guo, J.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Guo, X. T.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

Guo, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Guo, Z. B.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Gutiérrez, H. R.

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Hammerberg, A. G.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

Han, H. S.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Hao, Z.

L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, and M. C. Martin, “Determination of the electronic structure of bilayer graphene from infrared spectroscopy,” Phys. Rev. B 78, 235408 (2008).
[Crossref]

Harutyunyan, A. R.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref]

He, D. W.

N. Kumar, Q. N. Cui, F. Ceballos, D. W. He, Y. S. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

He, Z.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Heinz, T. F.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref]

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Heydrich, S.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

Hinkle, C. L.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Hirmer, M.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

Hone, J.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Hone, J. C.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

Horch, S.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317, 100–102 (2007).
[Crossref]

Hsu, J. W. P.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Huang, F. S.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Huang, P. Y.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

Huang, W.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Huang, Y. S.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Idrobo, J. C.

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

In, C.

S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, “Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics,” Phys. Rev. B 88, 075434 (2013).
[Crossref]

Intonti, F.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Jadczak, J.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Jaramillo, T. F.

J. Kibsgaard, Z. B. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11, 963–969 (2012).
[Crossref]

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317, 100–102 (2007).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Jiang, G.

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Jiang, X.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Jiang, X.-F.

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Jiang, Y.

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Jones, A. M.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Jørgensen, K. P.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317, 100–102 (2007).
[Crossref]

Jorio, A.

R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, “Tip-enhanced Raman mapping of local strain in graphene,” Nanotechnology 26, 175702 (2015).
[Crossref]

Jung, I.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Kabius, B.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kang, J. S.

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

Kang, Z.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Katsnelson, M. I.

G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys. 11, 26–31 (2014).
[Crossref]

Kibsgaard, J.

J. Kibsgaard, Z. B. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11, 963–969 (2012).
[Crossref]

Kim, H.

S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, “Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics,” Phys. Rev. B 88, 075434 (2013).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Klots, A.

W. Y. Wang, A. Klots, D. Prasai, Y. M. Yang, K. I. Bolotin, and J. Valentine, “Hot electron-based near-infrared photodetection using bilayer MoS2,” Nano Lett. 15, 7440–7444 (2015).
[Crossref]

Ko, C.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

Koh, A. L.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Komsa, H. P.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Kong, J.

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Korn, T.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

Krasheninnikov, A. V.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Krayev, A.

W. T. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

Kumar, N.

W. T. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, and D. Roy, “Probing individual point defects in graphene via near-field Raman scattering,” Nanoscale 7, 19413–19418 (2015).
[Crossref]

N. Kumar, Q. N. Cui, F. Ceballos, D. W. He, Y. S. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide,” Phys. Rev. B 86, 045406 (2012).
[Crossref]

Kysar, J. W.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Lee, C.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Lee, G. H.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

Lee, S.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

Lee, Y. H.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Lee, Y.-S.

S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, “Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics,” Phys. Rev. B 88, 075434 (2013).
[Crossref]

Lee, Z.

B. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater. 22, 4467–4472 (2010).
[Crossref]

Li, F.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Li, H.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Li, J.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Li, J. B.

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

Li, L. J.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Li, L.-J.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Li, Z.

L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, and M. C. Martin, “Determination of the electronic structure of bilayer graphene from infrared spectroscopy,” Phys. Rev. B 78, 235408 (2008).
[Crossref]

Liang, W.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Liang, Z.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Liao, L.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Liao, Q. L.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Lin, C. T.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Lin, K. H.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Lin, T. W.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Lin, Y. C.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Liu, B. S.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Liu, F.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Liu, J.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

Liu, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Liu, X. Z.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Liu, Z.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Long, G.

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

López-Polín, G.

G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys. 11, 26–31 (2014).
[Crossref]

Lopez-Urías, F.

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Lou, J.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Lu, G. Q.

D. W. Wang, K. H. Wu, I. R. Gentle, and G. Q. Lu, “Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature,” Carbon 50, 3333–3341 (2012).
[Crossref]

Lu, S.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Lu, Y.

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Luo, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Luo, Z. Z.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

Lv, R.

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Ma, D.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Maier, S. A.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Mallouk, T. E.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

Mandrus, D. G.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Manoharan, H. C.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Martin, M. C.

L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, and M. C. Martin, “Determination of the electronic structure of bilayer graphene from infrared spectroscopy,” Phys. Rev. B 78, 235408 (2008).
[Crossref]

Matthews, T. S.

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

McCreary, A.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

McDonnell, S.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Melli, M.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Miao, F.

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Miao, L.

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Mignuzzi, S.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, and D. Roy, “Probing individual point defects in graphene via near-field Raman scattering,” Nanoscale 7, 19413–19418 (2015).
[Crossref]

Mueller, T.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Muller, D. A.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

Najmaei, S.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Nan, H. Y.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Nguyen, M. A.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

Ni, Z. H.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Nielsen, J. H.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317, 100–102 (2007).
[Crossref]

Nørskov, J. K.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Novoselov, K. S.

D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, “Catalysis with two-dimensional materials and their heterostructures,” Nat. Nanotechnol. 11, 218–230 (2016).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Novotny, L.

R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, “Tip-enhanced Raman mapping of local strain in graphene,” Nanotechnology 26, 175702 (2015).
[Crossref]

Ogletree, D. F.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Oliver, W.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

Ou, Y.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Palummo, M.

M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15, 2794–2800 (2015).
[Crossref]

Parente, V.

G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys. 11, 26–31 (2014).
[Crossref]

Park, J.

S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, “Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics,” Phys. Rev. B 88, 075434 (2013).
[Crossref]

Park, S.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Perea-Lopez, N.

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Perea-López, N.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

Pérez-Murano, F.

G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys. 11, 26–31 (2014).
[Crossref]

Petrone, N.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

Pimenta, M. A.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Piner, R. D.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Polini, M.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Pollard, A. J.

S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, and D. Roy, “Probing individual point defects in graphene via near-field Raman scattering,” Nanoscale 7, 19413–19418 (2015).
[Crossref]

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Prasai, D.

W. Y. Wang, A. Klots, D. Prasai, Y. M. Yang, K. I. Bolotin, and J. Valentine, “Hot electron-based near-infrared photodetection using bilayer MoS2,” Nano Lett. 15, 7440–7444 (2015).
[Crossref]

Qi, X.

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Qiu, C. Y.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

Qiu, C.-W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Qiu, H.

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Quevedo-Lopez, M.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Ramasubramaniam, A.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Rana, F.

H. N. Wang, C. J. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2,” Nano Lett. 15, 339–345 (2015).
[Crossref]

Rao, Y.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref]

Reichman, D. R.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

Reider, G. A.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref]

Reinecke, B. N.

J. Kibsgaard, Z. B. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11, 963–969 (2012).
[Crossref]

Ren, W.

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Riboli, F.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Richards, D.

S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, and D. Roy, “Probing individual point defects in graphene via near-field Raman scattering,” Nanoscale 7, 19413–19418 (2015).
[Crossref]

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Ross, J. S.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Roy, D.

S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, and D. Roy, “Probing individual point defects in graphene via near-field Raman scattering,” Nanoscale 7, 19413–19418 (2015).
[Crossref]

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Rubio-Bollinger, G.

A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96, 213116 (2010).
[Crossref]

Ruoff, R. S.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Ruzicka, B. A.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide,” Phys. Rev. B 86, 045406 (2012).
[Crossref]

Salmeron, M. B.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Saul, A.

J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
[Crossref]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Schmutzler, J.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

Schuck, P. J.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Schüller, C.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Shao, J.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Shen, Y. T.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

Shi, Y.

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Shi, Y. M.

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Sim, S.

S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, “Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics,” Phys. Rev. B 88, 075434 (2013).
[Crossref]

Sofo, J. O.

J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
[Crossref]

Song, F. Q.

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Song, J.-G.

S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, “Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics,” Phys. Rev. B 88, 075434 (2013).
[Crossref]

Song, Y.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Staffaroni, M.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Stankovich, S.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Stoller, M.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Su, W. T.

W. T. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

Suenaga, K.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Suh, J.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

Sun, D.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref]

Sun, L. T.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Sun, Z.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Tan, P. H.

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Tang, S.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Tang, X.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Teng, P. Y.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Terrones, H.

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Terrones, M.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Thron, A.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

Tian, Z. Q.

D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, “Catalysis with two-dimensional materials and their heterostructures,” Nat. Nanotechnol. 11, 218–230 (2016).
[Crossref]

Tongay, S.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

Tsai, C.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Vajtai, R.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

Valentine, J.

W. Y. Wang, A. Klots, D. Prasai, Y. M. Yang, K. I. Bolotin, and J. Valentine, “Hot electron-based near-infrared photodetection using bilayer MoS2,” Nano Lett. 15, 7440–7444 (2015).
[Crossref]

Vamivakas, A. N.

R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, “Tip-enhanced Raman mapping of local strain in graphene,” Nanotechnology 26, 175702 (2015).
[Crossref]

van der Zande, A.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

van der Zande, A. M.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

Velamakanni, A.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Ventrice, C. A.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Vitiello, M. S.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Wallace, R. M.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Wang, B.

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Wang, C.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Wang, D. W.

D. W. Wang, K. H. Wu, I. R. Gentle, and G. Q. Lu, “Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature,” Carbon 50, 3333–3341 (2012).
[Crossref]

Wang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Wang, H. N.

H. N. Wang, C. J. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2,” Nano Lett. 15, 339–345 (2015).
[Crossref]

Wang, J.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Wang, J. L.

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Wang, J. T.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, R.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide,” Phys. Rev. B 86, 045406 (2012).
[Crossref]

Wang, W. H.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Wang, W. Y.

W. Y. Wang, A. Klots, D. Prasai, Y. M. Yang, K. I. Bolotin, and J. Valentine, “Hot electron-based near-infrared photodetection using bilayer MoS2,” Nano Lett. 15, 7440–7444 (2015).
[Crossref]

Wang, X. R.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Wang, Y.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Wang, Y. L.

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

Wang, Y. S.

N. Kumar, Q. N. Cui, F. Ceballos, D. W. He, Y. S. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Wang, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Wang, Z. L.

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Weber-Bargioni, A.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Wee, A. T. S.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Wen, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Wen, S.

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Wiersma, D. S.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Wu, J. Q.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

Wu, K. H.

D. W. Wang, K. H. Wu, I. R. Gentle, and G. Q. Lu, “Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature,” Carbon 50, 3333–3341 (2012).
[Crossref]

Wu, L.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Wu, S.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Wu, Z. T.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

Xia, F. N.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xia, Z. H.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

Xiang, Y.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Xiao, D.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Xiao, J. K.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Xie, H.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Xu, J.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Xu, Q.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

Xu, T.

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Xu, X.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Xu, Y.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Xu, Z. P.

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

Yablonovitch, E.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Yakobson, B. I.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Yan, J.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Yang, D. X.

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

Yang, J. K.

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

Yang, J. K. W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Yang, Y. M.

W. Y. Wang, A. Klots, D. Prasai, Y. M. Yang, K. I. Bolotin, and J. Valentine, “Hot electron-based near-infrared photodetection using bilayer MoS2,” Nano Lett. 15, 7440–7444 (2015).
[Crossref]

Yang, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Yao, W.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Yeh, C. H.

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Yi, Y.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

You, L.

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

You, Y. M.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref]

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

Yu, H.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Yu, T.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

Yu, X. F.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Yu, Y. C.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Yuan, S. J.

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

Zettl, A.

B. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater. 22, 4467–4472 (2010).
[Crossref]

Zhang, C. J.

H. N. Wang, C. J. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2,” Nano Lett. 15, 339–345 (2015).
[Crossref]

Zhang, D.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Zhang, F.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Zhang, H.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Zhang, J.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

Zhang, L.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, and M. C. Martin, “Determination of the electronic structure of bilayer graphene from infrared spectroscopy,” Phys. Rev. B 78, 235408 (2008).
[Crossref]

Zhang, S. H.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Zhang, W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Zhang, W. J.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Zhang, X. K.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Zhang, X. Q.

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Zhang, Y.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Zhang, Y. J.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

Zhang, Z.

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Zhao, B.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Zhao, H.

N. Kumar, Q. N. Cui, F. Ceballos, D. W. He, Y. S. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide,” Phys. Rev. B 86, 045406 (2012).
[Crossref]

Zhao, J.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Zhao, J. H.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Zhao, W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

Zhao, W. W.

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

Zheng, N. F.

D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, “Catalysis with two-dimensional materials and their heterostructures,” Nat. Nanotechnol. 11, 218–230 (2016).
[Crossref]

Zheng, X. L.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

Zhou, J.

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

Zhou, W.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Zhu, H.

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

Zhu, J.

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

Zou, X. L.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

ACS Nano (2)

R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, “Impurities and electronic property variations of natural MoS2 crystal surfaces,” ACS Nano 9, 9124–9133 (2015).
[Crossref]

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, and Z. H. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Adv. Funct. Mater. (1)

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, and X. F. Yu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Adv. Mater. (4)

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

B. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater. 22, 4467–4472 (2010).
[Crossref]

Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012).
[Crossref]

Appl. Phys. Lett. (2)

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96, 213116 (2010).
[Crossref]

Carbon (2)

D. W. Wang, K. H. Wu, I. R. Gentle, and G. Q. Lu, “Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature,” Carbon 50, 3333–3341 (2012).
[Crossref]

D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon 47, 145–152 (2009).
[Crossref]

J. Mater. Res. (1)

A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, and M. Terrones, “Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods,” J. Mater. Res. 31, 931–944 (2016).
[Crossref]

Laser Photon. Rev. (3)

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Nano Lett. (7)

M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15, 2794–2800 (2015).
[Crossref]

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref]

H. N. Wang, C. J. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2,” Nano Lett. 15, 339–345 (2015).
[Crossref]

S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett. 13, 2831–2836 (2013).
[Crossref]

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

W. Y. Wang, A. Klots, D. Prasai, Y. M. Yang, K. I. Bolotin, and J. Valentine, “Hot electron-based near-infrared photodetection using bilayer MoS2,” Nano Lett. 15, 7440–7444 (2015).
[Crossref]

H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Nano Res. (1)

Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, “Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation,” Nano Res. 9, 3622–3631 (2016).
[Crossref]

Nanoscale (1)

S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, and D. Roy, “Probing individual point defects in graphene via near-field Raman scattering,” Nanoscale 7, 19413–19418 (2015).
[Crossref]

Nanotechnology (1)

R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, “Tip-enhanced Raman mapping of local strain in graphene,” Nanotechnology 26, 175702 (2015).
[Crossref]

Nat. Commun. (7)

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6, 7993 (2015).
[Crossref]

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref]

W. T. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun. 6, 6736 (2015).
[Crossref]

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref]

H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, and X. R. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun. 4, 2642 (2013).
[Crossref]

X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, and Y. Zhang, “Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode,” Nat. Commun. 8, 15881 (2017).
[Crossref]

Nat. Mater. (3)

J. Kibsgaard, Z. B. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11, 963–969 (2012).
[Crossref]

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. L. Zheng, “Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48–53 (2016).
[Crossref]

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554–561 (2013).
[Crossref]

Nat. Nanotechnol. (6)

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235–246 (2013).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, “Catalysis with two-dimensional materials and their heterostructures,” Nat. Nanotechnol. 11, 218–230 (2016).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Nat. Photonics (1)

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Nat. Phys. (1)

G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys. 11, 26–31 (2014).
[Crossref]

Phys. Rev. B (5)

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, and M. C. Martin, “Determination of the electronic structure of bilayer graphene from infrared spectroscopy,” Phys. Rev. B 78, 235408 (2008).
[Crossref]

S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, “Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics,” Phys. Rev. B 88, 075434 (2013).
[Crossref]

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide,” Phys. Rev. B 86, 045406 (2012).
[Crossref]

N. Kumar, Q. N. Cui, F. Ceballos, D. W. He, Y. S. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Phys. Rev. Lett. (3)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
[Crossref]

Sci. Rep. (2)

W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, and Z. H. Ni, “Defect-engineered heat transport in graphene: a route to high efficient thermal rectification,” Sci. Rep. 5, 11962 (2015).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Science (3)

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317, 100–102 (2007).
[Crossref]

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340, 1073–1076 (2013).
[Crossref]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338, 1317–1321 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of the experimental measurement by a microscopic pump-probe optical system. M1–M5 are the mirrors, and BS is the beam splitter. The wavelengths of the pump and probe are 400 nm and 680 nm, respectively. The time delay between the two laser pulses is controlled by the stepper motor. (b) Schematic of the dependence of PL mapping, transient differential reflection mapping, and lifetime mapping on the defect number for the same piece of MoS2 monolayer based on the data in our work.
Fig. 2.
Fig. 2. (a) High-resolution XPS profiles for Mo 3d of MoS2 with the in situ, first deal, and second deal samples. Blue and red lines represent the intrinsic MoS2 (i-MoS2) and defective MoS2 (d-MoS2), respectively. (b) High-resolution XPS profiles for S 2p of MoS2 with different deal times. (c) Raman spectra of the same piece of MoS2 with in situ (gray), first deal (green), and second deal (blue) samples.
Fig. 3.
Fig. 3. Optical properties of the same piece of MoS2 with in situ (gray), first deal (green), and second deal (blue) samples are as follows: (a) reflectance spectra, (b) PL spectra, (c) transient differential reflection spectra. The sample is excited under a pump fluence of 12.5  μJ/cm2. The wavelengths of pump and probe are 400 nm and 680 nm, respectively. The inset image in (a) is the optical image of the measured MoS2 monolayer, and the scale bar is 5 μm.
Fig. 4.
Fig. 4. (a)–(c) are the PL mapping images of MoS2 with in situ, first deal, and second deal samples. (d)–(f) are the peak ΔR/R0 mapping images of the corresponding samples. The measured sample is the same piece of MoS2 monolayer.
Fig. 5.
Fig. 5. (a)–(c) are the PL mapping images of a MoS2 monolayer with the in situ, first deal, and second deal samples measured by commercial confocal microscope under a 532 nm laser with a power of 50 mW at room temperature. The inset image in (a) is the optical image of the corresponding MoS2 monolayer, and the scale bar is 10 μm.
Fig. 6.
Fig. 6. (a)–(c) are the pump-fluences-dependent differential reflection spectra of the same point of MoS2. (d) is the dependence of peak ΔR/R0 on injected exciton density for the same point of MoS2 with in situ (gray ball), first deal (green ball), and second deal (blue ball) samples. The solid lines (red) are the fitting curves. (e) is the dependence of saturation exciton density (Ns) on the peak ΔR/R0 of the same sample at different positions. Positions 1–4 are the ball, triangle, diamond, and hexagon, respectively. (f) is the dependence of defect ratio on the peak ΔR/R0.
Fig. 7.
Fig. 7. (a) is a peak ΔR/R0 mapping image of WS2 monolayer with the in situ sample. The sample is excited under a pump fluence of 12.5  μJ/cm2. The wavelengths of pump and probe are 400 nm and 630 nm, respectively. (b) is the dependence of saturation exciton density (Ns) on the peak ΔR/R0 of the same piece of WS2 monolayer at different positions. The inset image in (b) is the optical image of the measured WS2 monolayer, and the scale bar is 5 μm.
Fig. 8.
Fig. 8. (a)–(c) are the decay time of fast decay process (τfast) mapping images of the same piece of a MoS2 monolayer with in situ, first deal, and second deal samples. (d)–(f) are the decay time of the slow decay process (τslow) mapping images of the corresponding sample.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R(n1˜)=|r1ei(φ1+φ2)+r2ei(φ1φ2)+r3ei(φ1+φ2)+r1r2r3ei(φ1+φ2)ei(φ1+φ2)+r1r2ei(φ1+φ2)+r1r3ei(φ1+φ2)+r2r3ei(φ1+φ2)|,