Abstract

AlGaN nanocrystals have emerged as the building blocks of future optoelectronic devices operating in the ultraviolet (UV) spectral range. In this article, we describe the design and performance characteristics of AlGaN nanocrystal UV light-emitting diodes (LEDs) and surface-emitting UV laser diodes. The selective-area epitaxy and structural, optical, and electrical properties of AlGaN nanocrystals are presented. The recent experimental demonstrations of AlGaN nanocrystal LEDs and laser diodes are also discussed.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
AlGaN photonics: recent advances in materials and ultraviolet devices

Dabing Li, Ke Jiang, Xiaojuan Sun, and Chunlei Guo
Adv. Opt. Photon. 10(1) 43-110 (2018)

Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics

Xianhe Liu, Binh H. Le, Steffi Y. Woo, Songrui Zhao, Alexandre Pofelski, Gianluigi A. Botton, and Zetian Mi
Opt. Express 25(24) 30494-30502 (2017)

Effect of electron blocking layer on the efficiency of AlGaN mid-ultraviolet light emitting diodes

A. Pandey, W. J. Shin, X. Liu, and Z. Mi
Opt. Express 27(12) A738-A745 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. S. Ramanujam and R. H. Berg, “Photodimerization in dipeptides for high capacity optical digital storage,” Appl. Phys. Lett. 85, 1665–1667 (2004).
    [Crossref]
  2. M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection,” Water Res. 45, 1481–1489 (2011).
    [Crossref]
  3. K. G. Lindenauer and J. L. Darby, “Ultraviolet disinfection of wastewater: effect of dose on subsequent photoreactivation,” Water Res. 28, 805–817 (1994).
    [Crossref]
  4. B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med. 21, 149–158 (1997).
    [Crossref]
  5. P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.
  6. J. D. Robert and M. S. Brian, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29, 084006 (2014).
    [Crossref]
  7. D. K. Serkland, G. A. Keeler, K. M. Geib, and G. M. Peake, “Narrow linewidth VCSELs for high-resolution spectroscopy,” Proc. SPIE 7229, 722907 (2009).
    [Crossref]
  8. S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6p 2Po1/2 level of Yb+,” Phys. Rev. A 80, 022502 (2009).
    [Crossref]
  9. H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, “227  nm AlGaN light-emitting diode with 0.15  mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density,” Appl. Phys. Express 1, 051101 (2008).
    [Crossref]
  10. H. Hirayama, N. Noguchi, and N. Kamata, “222  nm deep-ultraviolet AlGaN quantum well light-emitting diode with vertical emission properties,” Appl. Phys. Express 3, 032102 (2010).
    [Crossref]
  11. M. Jo, N. Maeda, and H. Hirayama, “Enhanced light extraction in 260  nm light-emitting diode with a highly transparent p-AlGaN layer,” Appl. Phys. Express 9, 012102 (2015).
    [Crossref]
  12. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
    [Crossref]
  13. J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
    [Crossref]
  14. A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
    [Crossref]
  15. C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
    [Crossref]
  16. T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
    [Crossref]
  17. T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103, 031109 (2013).
    [Crossref]
  18. F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
    [Crossref]
  19. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
    [Crossref]
  20. H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A 206, 1176–1182 (2009).
    [Crossref]
  21. H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “226-273  nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire,” Phys. Status Solidi C 5, 2969–2971 (2008).
    [Crossref]
  22. H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
    [Crossref]
  23. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336  nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93, 241106 (2008).
    [Crossref]
  24. M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, “Correlation between optical and electrical properties of Mg-doped AlN epilayers,” Appl. Phys. Lett. 89, 152120 (2006).
    [Crossref]
  25. Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
    [Crossref]
  26. U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, “Hole conductivity and compensation in epitaxial GaN:Mg layers,” Phys. Rev. B 62, 10867–10872 (2000).
    [Crossref]
  27. H. Kawanishi, M. Senuma, M. Yamamoto, E. Niikura, and T. Nukui, “Extremely weak surface emission from (0001) c-plane AlGaN multiple quantum well structure in deep-ultraviolet spectral region,” Appl. Phys. Lett. 89, 081121 (2006).
    [Crossref]
  28. S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
    [Crossref]
  29. S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, and Z. Mi, “Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers,” Nano Lett. 15, 7801–7807 (2015).
    [Crossref]
  30. S. Zhao, X. Liu, S. Y. Woo, J. Kang, G. A. Botton, and Z. Mi, “An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band,” Appl. Phys. Lett. 107, 043101 (2015).
    [Crossref]
  31. S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, and Z. Mi, “An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band,” Nano Lett. 17, 1212–1218 (2017).
    [Crossref]
  32. S. M. Sadaf, Y. H. Ra, T. Szkopek, and Z. Mi, “Monolithically integrated metal/semiconductor tunnel junction nanowire light-emitting diodes,” Nano Lett. 16, 1076–1080 (2016).
    [Crossref]
  33. X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, and Z. Mi, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics,” Opt. Express 25, 30494–30502 (2017).
    [Crossref]
  34. K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10, 140–144 (2015).
    [Crossref]
  35. D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
    [Crossref]
  36. B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, and Z. Mi, “Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation‐free planar ultraviolet photonic device applications,” Adv. Mater. 28, 8446–8454 (2016).
    [Crossref]
  37. X. Liu, S. Zhao, B. H. Le, and Z. Mi, “Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes,” Appl. Phys. Lett. 111, 101103 (2017).
    [Crossref]
  38. S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “III-Nitride nanowire optoelectronics,” Prog. Quantum Electron. 44, 14–68 (2015).
    [Crossref]
  39. S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
    [Crossref]
  40. J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, and K. H. Ploog, “AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization,” Phys. Status Solidi A 192, 60–66 (2002).
    [Crossref]
  41. K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287, 522–527 (2006).
    [Crossref]
  42. S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
    [Crossref]
  43. F. K. Thomas, D. C. Santino, A. T. M. Sarwar, J. P. Patrick, F. K. Robert, and C. M. Roberto, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
    [Crossref]
  44. S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, and R. C. Myers, “Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes,” Nano Lett. 13, 3029–3035 (2013).
    [Crossref]
  45. A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, and B. Daudin, “Growth, structural and optical properties of AlGaN nanowires in the whole composition range,” Nanotechnology 24, 115704 (2013).
    [Crossref]
  46. A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of AlxGa1-xN nanowires,” Phys. Status Solidi (RRL) 7, 868–873 (2013).
    [Crossref]
  47. Y. Wu, Y. Wang, K. Sun, and Z. Mi, “Molecular beam epitaxy and characterization of AlGaN nanowire ultraviolet light emitting diodes on Al coated Si (001) substrate,” J. Cryst. Growth 507, 65–69 (2019).
    [Crossref]
  48. B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
    [Crossref]
  49. N. H. Tran, B. H. Le, S. Zhao, and Z. Mi, “On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures,” Appl. Phys. Lett. 110, 032102 (2017).
    [Crossref]
  50. Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
    [Crossref]
  51. B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
    [Crossref]
  52. K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311, 2063–2068 (2009).
    [Crossref]
  53. T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, “Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer,” Nanotechnology 22, 095603 (2011).
    [Crossref]
  54. K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “Selective-area growth of III-V nanowires and their applications,” J. Mater. Res. 26, 2127–2141 (2011).
    [Crossref]
  55. A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
    [Crossref]
  56. H. J. Chu, T. W. Yeh, L. Stewart, and P. D. Dapkus, “Wurtzite InP nanowire arrays grown by selective area MOCVD,” Phys. Status Solidi C 7, 2494–2497 (2010).
    [Crossref]
  57. H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, “Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using templates,” J. Cryst. Growth 310, 5093–5097 (2008).
    [Crossref]
  58. J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, “Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates,” J. Cryst. Growth 272, 180–185 (2004).
    [Crossref]
  59. R. Wang, X. Liu, I. Shih, and Z. Mi, “High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si,” Appl. Phys. Lett. 106, 261104 (2015).
    [Crossref]
  60. Q. Wang, H. P. T. Nguyen, K. Cui, and Z. Mi, “High efficiency ultraviolet emission from AlxGa1-xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy,” Appl. Phys. Lett. 101, 043115 (2012).
    [Crossref]
  61. X. Liu, K. Mashooq, T. Szkopek, and Z. Mi, “Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal,” IEEE Photon. J. 10, 4501211 (2018).
    [Crossref]
  62. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).
  63. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley, 2004).
  64. T. F. Krauss, “Photonic crystals for integrated optics,” in AIP Conference Proceedings (IOP Publishing, 2001), pp. 89–98.
  65. K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
    [Crossref]
  66. T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express 17, 20440–20447 (2009).
    [Crossref]
  67. J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
    [Crossref]
  68. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008).
    [Crossref]
  69. B. H. Le, X. Liu, N. H. Tran, S. Zhao, and Z. Mi, “An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser,” Opt. Express 27, 5843–5850 (2019).
    [Crossref]
  70. M. Charlton, M. Zoorob, and T. Lee, “Photonic quasi-crystal LEDs: design, modelling, and optimisation,” Proc. SPIE 6486, 64860R (2007).
    [Crossref]
  71. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
    [Crossref]
  72. A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
    [Crossref]
  73. C. Wiesmann, K. Bergenek, N. Linder, and U. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
    [Crossref]
  74. H. Benisty, J. Danglot, A. Talneau, S. Enoch, J. M. Pottage, and A. David, “Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures,” IEEE J. Quantum Electron. 44, 777–789 (2008).
    [Crossref]
  75. C.-Y. Cho, J.-B. Lee, S.-J. Lee, S.-H. Han, T.-Y. Park, J. W. Kim, Y. C. Kim, and S.-J. Park, “Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO2,” Opt. Express 18, 1462–1468 (2010).
    [Crossref]
  76. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
    [Crossref]
  77. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
    [Crossref]
  78. M. Boroditsky, R. Vrijen, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999).
    [Crossref]
  79. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
    [Crossref]
  80. S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19, 11963–11968 (2011).
    [Crossref]
  81. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84, 195119 (2011).
    [Crossref]
  82. Y. Liang, C. Peng, K. Ishizaki, S. Iwahashi, K. Sakai, Y. Tanaka, K. Kitamura, and S. Noda, “Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization,” Opt. Express 21, 565–580 (2013).
    [Crossref]
  83. E. Miyai and S. Noda, “Phase-shift effect on a two-dimensional surface-emitting photonic-crystal laser,” Appl. Phys. Lett. 86, 111113 (2005).
    [Crossref]
  84. N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
    [Crossref]
  85. K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
    [Crossref]
  86. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
    [Crossref]
  87. W. R. Frei, H. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
    [Crossref]
  88. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
    [Crossref]
  89. C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photon. Rev. 3, 262–286 (2009).
    [Crossref]
  90. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
    [Crossref]
  91. R. J. E. Taylor, D. M. Williams, J. R. Orchard, D. T. D. Childs, S. Khamas, and R. A. Hogg, “Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers,” J. Phys. D 46, 264005 (2013).
    [Crossref]
  92. Y.-T. Lin, T.-W. Yeh, Y. Nakajima, and P. D. Dapkus, “Catalyst-free GaN nanorods synthesized by selective area growth,” Adv. Funct. Mater. 24, 3162–3171 (2014).
    [Crossref]
  93. T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010).
    [Crossref]
  94. S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
    [Crossref]
  95. A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
    [Crossref]
  96. R. Merlin and S. Young, “Photonic crystals as topological high-Q resonators,” Opt. Express 22, 18579–18587 (2014).
    [Crossref]
  97. H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 96, 211122 (2010).
    [Crossref]
  98. C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. D. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108, 141101 (2016).
    [Crossref]
  99. S. L. Chuang, Physics of Photonic Devices (Wiley, 2009).
  100. F. M. D. Sopra, H. P. Zappe, M. Moser, R. Hovel, H. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett. 11, 1533–1535 (1999).
    [Crossref]
  101. P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
    [Crossref]
  102. R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, and J. J. Coleman, “Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
    [Crossref]
  103. M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6  kHz) spectral linewidth,” Electron. Lett. 29, 1696–1697 (1993).
    [Crossref]
  104. W.-J. Liu, X.-L. Hu, L.-Y. Ying, J.-Y. Zhang, and B.-P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104, 251116 (2014).
    [Crossref]
  105. M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser,” Appl. Phys. Express 11, 112101 (2018).
    [Crossref]
  106. Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
    [Crossref]
  107. G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
    [Crossref]
  108. K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
    [Crossref]
  109. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
    [Crossref]
  110. C. H. Henry, R. A. Logan, and F. R. Merritt, “Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers,” J. Appl. Phys. 51, 3042–3050 (1980).
    [Crossref]
  111. S. H. Park and S. L. Chuang, “Linewidth enhancement factor of wurtzite GaN/AlGaN quantum-well lasers with spontaneous polarization and piezoelectric effects,” Appl. Phys. A 78, 107–111 (2004).
    [Crossref]
  112. K. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, and Y. Kawakami, “Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates,” J. Cryst. Growth 425, 316–321 (2015).
    [Crossref]
  113. M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys,” Appl. Phys. Lett. 86, 092108 (2005).
    [Crossref]
  114. T. Kinoshita, T. Obata, H. Yanagi, and S.-I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013).
    [Crossref]
  115. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041–3043 (2003).
    [Crossref]
  116. K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, and B. Daudin, “Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111),” Phys. Rev. B 84, 245302 (2011).
    [Crossref]
  117. A. Urban, J. Malindretos, J. H. Klein-Wiele, P. Simon, and A. Rizzi, “Ga-polar GaN nanocolumn arrays with semipolar faceted tips,” New J. Phys. 15, 053045 (2013).
    [Crossref]
  118. M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
    [Crossref]
  119. S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
    [Crossref]
  120. S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
    [Crossref]
  121. B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
    [Crossref]
  122. M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys,” Appl. Phys. Lett. 94, 091903 (2009).
    [Crossref]
  123. A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
    [Crossref]
  124. S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
    [Crossref]
  125. A. A. Allerman, M. H. Crawford, M. A. Miller, and S. R. Lee, “Growth and characterization of Mg-doped AlGaN-AlN short-period superlattices for deep-UV optoelectronic devices,” J. Cryst. Growth 312, 756–761 (2010).
    [Crossref]
  126. P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett. 74, 3681–3683 (1999).
    [Crossref]
  127. K. Laaksonen, M. G. Ganchenkova, and R. M. Nieminen, “Vacancies in wurtzite GaN and AlN,” J. Phys. Condens. Matter 21, 015803 (2008).
    [Crossref]
  128. F. Shahedipour and B. W. Wessels, “Investigation of the formation of the 2.8  eV luminescence band in p-type GaN:Mg,” Appl. Phys. Lett. 76, 3011–3013 (2000).
    [Crossref]
  129. S. Zhao, M. Djavid, and Z. Mi, “Surface emitting, high efficiency near-vacuum ultraviolet light source with aluminum nitride nanowires monolithically grown on silicon,” Nano Lett. 15, 7006–7009 (2015).
    [Crossref]
  130. R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Appl. Phys. Lett. 98, 211110 (2011).
    [Crossref]
  131. C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, and L. Wirtz, “Coupling of excitons and defect states in boron-nitride nanostructures,” Phys. Rev. B 83, 144115 (2011).
    [Crossref]
  132. W. Orellana and H. Chacham, “Stability of native defects in hexagonal and cubic boron nitride,” Phys. Rev. B 63, 125205 (2001).
    [Crossref]
  133. V. Wang, R. J. Liu, H. P. He, C. M. Yang, and L. Ma, “Hybrid functional with semi-empirical van der Waals study of native defects in hexagonal BN,” Solid State Commun. 177, 74–79 (2014).
    [Crossref]
  134. Y. Taniyasu and M. Kasu, “Origin of exciton emissions from an AlN p-n junction light-emitting diode,” Appl. Phys. Lett. 98, 131910 (2011).
    [Crossref]
  135. Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, and R. Siddharth, “Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs,” Appl. Phys. Express 9, 052102 (2016).
    [Crossref]
  136. Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
    [Crossref]
  137. S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, and Z. Mi, “Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes,” Nano Lett. 15, 6696–6701 (2015).
    [Crossref]
  138. A. T. M. G. Sarwar, B. J. May, J. I. Deitz, T. J. Grassman, D. W. McComb, and R. C. Myers, “Tunnel junction enhanced nanowire ultraviolet light emitting diodes,” Appl. Phys. Lett. 107, 101103 (2015).
    [Crossref]
  139. Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, and S. Rajan, “Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions,” Appl. Phys. Lett. 109, 121102 (2016).
    [Crossref]
  140. S. Zhao, S. M. Sadaf, S. Vanka, Y. Wang, R. Rashid, and Z. Mi, “Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242  nm,” Appl. Phys. Lett. 109, 201106 (2016).
    [Crossref]
  141. B. H. Le, S. Zhao, N. H. Tran, T. Szkopek, and Z. Mi, “On the Fermi-level pinning of InN grown surfaces,” Appl. Phys. Express 8, 061001 (2015).
    [Crossref]
  142. S. Zhao, X. Liu, Y. Wu, and Z. Mi, “An electrically pumped 239  nm AlGaN nanowire laser operating at room temperature,” Appl. Phys. Lett. 109, 191106 (2016).
    [Crossref]
  143. M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97, 151109 (2010).
    [Crossref]
  144. M.-H. Lo, Y.-J. Cheng, M.-C. Liu, H.-C. Kuo, and S. C. Wang, “Lasing at exciton transition in optically pumped gallium nitride nanopillars,” Opt. Express 19, 17960–17965 (2011).
    [Crossref]
  145. C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
    [Crossref]
  146. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
    [Crossref]
  147. J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
    [Crossref]
  148. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2, 551–554 (2008).
    [Crossref]

2019 (2)

Y. Wu, Y. Wang, K. Sun, and Z. Mi, “Molecular beam epitaxy and characterization of AlGaN nanowire ultraviolet light emitting diodes on Al coated Si (001) substrate,” J. Cryst. Growth 507, 65–69 (2019).
[Crossref]

B. H. Le, X. Liu, N. H. Tran, S. Zhao, and Z. Mi, “An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser,” Opt. Express 27, 5843–5850 (2019).
[Crossref]

2018 (4)

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser,” Appl. Phys. Express 11, 112101 (2018).
[Crossref]

B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
[Crossref]

X. Liu, K. Mashooq, T. Szkopek, and Z. Mi, “Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal,” IEEE Photon. J. 10, 4501211 (2018).
[Crossref]

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

2017 (9)

S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, and Z. Mi, “An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band,” Nano Lett. 17, 1212–1218 (2017).
[Crossref]

X. Liu, S. Zhao, B. H. Le, and Z. Mi, “Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes,” Appl. Phys. Lett. 111, 101103 (2017).
[Crossref]

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

N. H. Tran, B. H. Le, S. Zhao, and Z. Mi, “On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures,” Appl. Phys. Lett. 110, 032102 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, and Z. Mi, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics,” Opt. Express 25, 30494–30502 (2017).
[Crossref]

2016 (13)

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

S. Zhao, X. Liu, Y. Wu, and Z. Mi, “An electrically pumped 239  nm AlGaN nanowire laser operating at room temperature,” Appl. Phys. Lett. 109, 191106 (2016).
[Crossref]

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. D. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108, 141101 (2016).
[Crossref]

Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, and R. Siddharth, “Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs,” Appl. Phys. Express 9, 052102 (2016).
[Crossref]

Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, and S. Rajan, “Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions,” Appl. Phys. Lett. 109, 121102 (2016).
[Crossref]

S. Zhao, S. M. Sadaf, S. Vanka, Y. Wang, R. Rashid, and Z. Mi, “Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242  nm,” Appl. Phys. Lett. 109, 201106 (2016).
[Crossref]

M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, and Z. Mi, “Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation‐free planar ultraviolet photonic device applications,” Adv. Mater. 28, 8446–8454 (2016).
[Crossref]

S. M. Sadaf, Y. H. Ra, T. Szkopek, and Z. Mi, “Monolithically integrated metal/semiconductor tunnel junction nanowire light-emitting diodes,” Nano Lett. 16, 1076–1080 (2016).
[Crossref]

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

2015 (14)

S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, and Z. Mi, “Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers,” Nano Lett. 15, 7801–7807 (2015).
[Crossref]

S. Zhao, X. Liu, S. Y. Woo, J. Kang, G. A. Botton, and Z. Mi, “An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band,” Appl. Phys. Lett. 107, 043101 (2015).
[Crossref]

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10, 140–144 (2015).
[Crossref]

S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “III-Nitride nanowire optoelectronics,” Prog. Quantum Electron. 44, 14–68 (2015).
[Crossref]

M. Jo, N. Maeda, and H. Hirayama, “Enhanced light extraction in 260  nm light-emitting diode with a highly transparent p-AlGaN layer,” Appl. Phys. Express 9, 012102 (2015).
[Crossref]

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

R. Wang, X. Liu, I. Shih, and Z. Mi, “High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si,” Appl. Phys. Lett. 106, 261104 (2015).
[Crossref]

K. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, and Y. Kawakami, “Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates,” J. Cryst. Growth 425, 316–321 (2015).
[Crossref]

A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
[Crossref]

S. Zhao, M. Djavid, and Z. Mi, “Surface emitting, high efficiency near-vacuum ultraviolet light source with aluminum nitride nanowires monolithically grown on silicon,” Nano Lett. 15, 7006–7009 (2015).
[Crossref]

B. H. Le, S. Zhao, N. H. Tran, T. Szkopek, and Z. Mi, “On the Fermi-level pinning of InN grown surfaces,” Appl. Phys. Express 8, 061001 (2015).
[Crossref]

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, and Z. Mi, “Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes,” Nano Lett. 15, 6696–6701 (2015).
[Crossref]

A. T. M. G. Sarwar, B. J. May, J. I. Deitz, T. J. Grassman, D. W. McComb, and R. C. Myers, “Tunnel junction enhanced nanowire ultraviolet light emitting diodes,” Appl. Phys. Lett. 107, 101103 (2015).
[Crossref]

2014 (11)

V. Wang, R. J. Liu, H. P. He, C. M. Yang, and L. Ma, “Hybrid functional with semi-empirical van der Waals study of native defects in hexagonal BN,” Solid State Commun. 177, 74–79 (2014).
[Crossref]

R. Merlin and S. Young, “Photonic crystals as topological high-Q resonators,” Opt. Express 22, 18579–18587 (2014).
[Crossref]

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

W.-J. Liu, X.-L. Hu, L.-Y. Ying, J.-Y. Zhang, and B.-P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104, 251116 (2014).
[Crossref]

Y.-T. Lin, T.-W. Yeh, Y. Nakajima, and P. D. Dapkus, “Catalyst-free GaN nanorods synthesized by selective area growth,” Adv. Funct. Mater. 24, 3162–3171 (2014).
[Crossref]

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

F. K. Thomas, D. C. Santino, A. T. M. Sarwar, J. P. Patrick, F. K. Robert, and C. M. Roberto, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
[Crossref]

A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
[Crossref]

J. D. Robert and M. S. Brian, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29, 084006 (2014).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

2013 (12)

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103, 031109 (2013).
[Crossref]

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, and R. C. Myers, “Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes,” Nano Lett. 13, 3029–3035 (2013).
[Crossref]

A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, and B. Daudin, “Growth, structural and optical properties of AlGaN nanowires in the whole composition range,” Nanotechnology 24, 115704 (2013).
[Crossref]

A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of AlxGa1-xN nanowires,” Phys. Status Solidi (RRL) 7, 868–873 (2013).
[Crossref]

Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
[Crossref]

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

R. J. E. Taylor, D. M. Williams, J. R. Orchard, D. T. D. Childs, S. Khamas, and R. A. Hogg, “Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers,” J. Phys. D 46, 264005 (2013).
[Crossref]

T. Kinoshita, T. Obata, H. Yanagi, and S.-I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
[Crossref]

A. Urban, J. Malindretos, J. H. Klein-Wiele, P. Simon, and A. Rizzi, “Ga-polar GaN nanocolumn arrays with semipolar faceted tips,” New J. Phys. 15, 053045 (2013).
[Crossref]

Y. Liang, C. Peng, K. Ishizaki, S. Iwahashi, K. Sakai, Y. Tanaka, K. Kitamura, and S. Noda, “Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization,” Opt. Express 21, 565–580 (2013).
[Crossref]

2012 (2)

Q. Wang, H. P. T. Nguyen, K. Cui, and Z. Mi, “High efficiency ultraviolet emission from AlxGa1-xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy,” Appl. Phys. Lett. 101, 043115 (2012).
[Crossref]

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

2011 (13)

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, “Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer,” Nanotechnology 22, 095603 (2011).
[Crossref]

K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “Selective-area growth of III-V nanowires and their applications,” J. Mater. Res. 26, 2127–2141 (2011).
[Crossref]

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19, 11963–11968 (2011).
[Crossref]

M.-H. Lo, Y.-J. Cheng, M.-C. Liu, H.-C. Kuo, and S. C. Wang, “Lasing at exciton transition in optically pumped gallium nitride nanopillars,” Opt. Express 19, 17960–17965 (2011).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[Crossref]

Y. Taniyasu and M. Kasu, “Origin of exciton emissions from an AlN p-n junction light-emitting diode,” Appl. Phys. Lett. 98, 131910 (2011).
[Crossref]

R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Appl. Phys. Lett. 98, 211110 (2011).
[Crossref]

C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, and L. Wirtz, “Coupling of excitons and defect states in boron-nitride nanostructures,” Phys. Rev. B 83, 144115 (2011).
[Crossref]

K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, and B. Daudin, “Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111),” Phys. Rev. B 84, 245302 (2011).
[Crossref]

2010 (8)

T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010).
[Crossref]

A. A. Allerman, M. H. Crawford, M. A. Miller, and S. R. Lee, “Growth and characterization of Mg-doped AlGaN-AlN short-period superlattices for deep-UV optoelectronic devices,” J. Cryst. Growth 312, 756–761 (2010).
[Crossref]

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97, 151109 (2010).
[Crossref]

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 96, 211122 (2010).
[Crossref]

C.-Y. Cho, J.-B. Lee, S.-J. Lee, S.-H. Han, T.-Y. Park, J. W. Kim, Y. C. Kim, and S.-J. Park, “Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO2,” Opt. Express 18, 1462–1468 (2010).
[Crossref]

H. J. Chu, T. W. Yeh, L. Stewart, and P. D. Dapkus, “Wurtzite InP nanowire arrays grown by selective area MOCVD,” Phys. Status Solidi C 7, 2494–2497 (2010).
[Crossref]

H. Hirayama, N. Noguchi, and N. Kamata, “222  nm deep-ultraviolet AlGaN quantum well light-emitting diode with vertical emission properties,” Appl. Phys. Express 3, 032102 (2010).
[Crossref]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

2009 (8)

H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A 206, 1176–1182 (2009).
[Crossref]

D. K. Serkland, G. A. Keeler, K. M. Geib, and G. M. Peake, “Narrow linewidth VCSELs for high-resolution spectroscopy,” Proc. SPIE 7229, 722907 (2009).
[Crossref]

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6p 2Po1/2 level of Yb+,” Phys. Rev. A 80, 022502 (2009).
[Crossref]

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311, 2063–2068 (2009).
[Crossref]

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
[Crossref]

T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express 17, 20440–20447 (2009).
[Crossref]

M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys,” Appl. Phys. Lett. 94, 091903 (2009).
[Crossref]

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photon. Rev. 3, 262–286 (2009).
[Crossref]

2008 (11)

W. R. Frei, H. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
[Crossref]

K. Laaksonen, M. G. Ganchenkova, and R. M. Nieminen, “Vacancies in wurtzite GaN and AlN,” J. Phys. Condens. Matter 21, 015803 (2008).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2, 551–554 (2008).
[Crossref]

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008).
[Crossref]

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
[Crossref]

C. Wiesmann, K. Bergenek, N. Linder, and U. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

H. Benisty, J. Danglot, A. Talneau, S. Enoch, J. M. Pottage, and A. David, “Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures,” IEEE J. Quantum Electron. 44, 777–789 (2008).
[Crossref]

H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, “Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using templates,” J. Cryst. Growth 310, 5093–5097 (2008).
[Crossref]

H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, “227  nm AlGaN light-emitting diode with 0.15  mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density,” Appl. Phys. Express 1, 051101 (2008).
[Crossref]

H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “226-273  nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire,” Phys. Status Solidi C 5, 2969–2971 (2008).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336  nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93, 241106 (2008).
[Crossref]

2007 (1)

M. Charlton, M. Zoorob, and T. Lee, “Photonic quasi-crystal LEDs: design, modelling, and optimisation,” Proc. SPIE 6486, 64860R (2007).
[Crossref]

2006 (8)

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[Crossref]

H. Kawanishi, M. Senuma, M. Yamamoto, E. Niikura, and T. Nukui, “Extremely weak surface emission from (0001) c-plane AlGaN multiple quantum well structure in deep-ultraviolet spectral region,” Appl. Phys. Lett. 89, 081121 (2006).
[Crossref]

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287, 522–527 (2006).
[Crossref]

M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, “Correlation between optical and electrical properties of Mg-doped AlN epilayers,” Appl. Phys. Lett. 89, 152120 (2006).
[Crossref]

Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[Crossref]

S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
[Crossref]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
[Crossref]

2005 (3)

M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys,” Appl. Phys. Lett. 86, 092108 (2005).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

E. Miyai and S. Noda, “Phase-shift effect on a two-dimensional surface-emitting photonic-crystal laser,” Appl. Phys. Lett. 86, 111113 (2005).
[Crossref]

2004 (5)

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, “Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates,” J. Cryst. Growth 272, 180–185 (2004).
[Crossref]

P. S. Ramanujam and R. H. Berg, “Photodimerization in dipeptides for high capacity optical digital storage,” Appl. Phys. Lett. 85, 1665–1667 (2004).
[Crossref]

S. H. Park and S. L. Chuang, “Linewidth enhancement factor of wurtzite GaN/AlGaN quantum-well lasers with spontaneous polarization and piezoelectric effects,” Appl. Phys. A 78, 107–111 (2004).
[Crossref]

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

2003 (2)

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041–3043 (2003).
[Crossref]

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[Crossref]

2002 (2)

J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, and K. H. Ploog, “AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization,” Phys. Status Solidi A 192, 60–66 (2002).
[Crossref]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[Crossref]

2001 (4)

W. Orellana and H. Chacham, “Stability of native defects in hexagonal and cubic boron nitride,” Phys. Rev. B 63, 125205 (2001).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

2000 (2)

U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, “Hole conductivity and compensation in epitaxial GaN:Mg layers,” Phys. Rev. B 62, 10867–10872 (2000).
[Crossref]

F. Shahedipour and B. W. Wessels, “Investigation of the formation of the 2.8  eV luminescence band in p-type GaN:Mg,” Appl. Phys. Lett. 76, 3011–3013 (2000).
[Crossref]

1999 (3)

P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett. 74, 3681–3683 (1999).
[Crossref]

F. M. D. Sopra, H. P. Zappe, M. Moser, R. Hovel, H. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett. 11, 1533–1535 (1999).
[Crossref]

M. Boroditsky, R. Vrijen, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999).
[Crossref]

1997 (2)

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, and J. J. Coleman, “Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[Crossref]

B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med. 21, 149–158 (1997).
[Crossref]

1994 (1)

K. G. Lindenauer and J. L. Darby, “Ultraviolet disinfection of wastewater: effect of dose on subsequent photoreactivation,” Water Res. 28, 805–817 (1994).
[Crossref]

1993 (1)

M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6  kHz) spectral linewidth,” Electron. Lett. 29, 1696–1697 (1993).
[Crossref]

1982 (1)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

1980 (1)

C. H. Henry, R. A. Logan, and F. R. Merritt, “Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers,” J. Appl. Phys. 51, 3042–3050 (1980).
[Crossref]

Ahmadi, E.

B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

Akagi, T.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser,” Appl. Phys. Express 11, 112101 (2018).
[Crossref]

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

Akasaki, I.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Akatsuka, Y.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

Akyol, F.

Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, and S. Rajan, “Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions,” Appl. Phys. Lett. 109, 121102 (2016).
[Crossref]

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

Albadri, A. M.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

Alhamoud, A. A.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

Alkauskas, A.

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. D. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108, 141101 (2016).
[Crossref]

Allerman, A.

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

Allerman, A. A.

Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, and S. Rajan, “Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions,” Appl. Phys. Lett. 109, 121102 (2016).
[Crossref]

A. A. Allerman, M. H. Crawford, M. A. Miller, and S. R. Lee, “Growth and characterization of Mg-doped AlGaN-AlN short-period superlattices for deep-UV optoelectronic devices,” J. Cryst. Growth 312, 756–761 (2010).
[Crossref]

Altahtamouni, T. M.

M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, “Correlation between optical and electrical properties of Mg-doped AlN epilayers,” Appl. Phys. Lett. 89, 152120 (2006).
[Crossref]

Altug, H.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Alyamani, A. Y.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

Amano, H.

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Andrew, A. A.

Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, and R. Siddharth, “Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs,” Appl. Phys. Express 9, 052102 (2016).
[Crossref]

Andrew, M. A.

Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, and R. Siddharth, “Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs,” Appl. Phys. Express 9, 052102 (2016).
[Crossref]

Anjum, D. H.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

Armstrong, A.

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

Armstrong, A. M.

Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, and S. Rajan, “Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions,” Appl. Phys. Lett. 109, 121102 (2016).
[Crossref]

Asada, K.

A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
[Crossref]

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

Attaccalite, C.

C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, and L. Wirtz, “Coupling of excitons and defect states in boron-nitride nanostructures,” Phys. Rev. B 83, 144115 (2011).
[Crossref]

Baba, T.

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[Crossref]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

Balakrishnan, G.

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

Barbagini, F.

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

Barker, J. M.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287, 522–527 (2006).
[Crossref]

Bauer, J.

H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, “Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using templates,” J. Cryst. Growth 310, 5093–5097 (2008).
[Crossref]

Belleville, G.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

Bengoechea-Encabo, A.

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

Benisty, H.

H. Benisty, J. Danglot, A. Talneau, S. Enoch, J. M. Pottage, and A. David, “Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures,” IEEE J. Quantum Electron. 44, 777–789 (2008).
[Crossref]

Benndorf, G.

H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, “Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using templates,” J. Cryst. Growth 310, 5093–5097 (2008).
[Crossref]

Benz, A.

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Berg, R. H.

P. S. Ramanujam and R. H. Berg, “Photodimerization in dipeptides for high capacity optical digital storage,” Appl. Phys. Lett. 85, 1665–1667 (2004).
[Crossref]

Bergenek, K.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photon. Rev. 3, 262–286 (2009).
[Crossref]

C. Wiesmann, K. Bergenek, N. Linder, and U. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

Bertness, K. A.

M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
[Crossref]

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287, 522–527 (2006).
[Crossref]

Bhat, R.

Bilenko, Y.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Blanchard, P. T.

M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
[Crossref]

Bockstedte, M.

C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, and L. Wirtz, “Coupling of excitons and defect states in boron-nitride nanostructures,” Phys. Rev. B 83, 144115 (2011).
[Crossref]

Boroditsky, M.

Boschen, C. D.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Botton, G. A.

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, and Z. Mi, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics,” Opt. Express 25, 30494–30502 (2017).
[Crossref]

B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, and Z. Mi, “Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation‐free planar ultraviolet photonic device applications,” Adv. Mater. 28, 8446–8454 (2016).
[Crossref]

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, and Z. Mi, “Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers,” Nano Lett. 15, 7801–7807 (2015).
[Crossref]

S. Zhao, X. Liu, S. Y. Woo, J. Kang, G. A. Botton, and Z. Mi, “An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band,” Appl. Phys. Lett. 107, 043101 (2015).
[Crossref]

Bougerol, C.

A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, and B. Daudin, “Growth, structural and optical properties of AlGaN nanowires in the whole composition range,” Nanotechnology 24, 115704 (2013).
[Crossref]

A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of AlxGa1-xN nanowires,” Phys. Status Solidi (RRL) 7, 868–873 (2013).
[Crossref]

K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, and B. Daudin, “Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111),” Phys. Rev. B 84, 245302 (2011).
[Crossref]

Brener, I.

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Brian, M. S.

J. D. Robert and M. S. Brian, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29, 084006 (2014).
[Crossref]

Brubaker, M. D.

M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
[Crossref]

Brueck, S. R. J.

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

Bu, Y.

Bugnet, M.

S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, and Z. Mi, “Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers,” Nano Lett. 15, 7801–7807 (2015).
[Crossref]

Busch, K.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley, 2004).

Calarco, R.

T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, “Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer,” Nanotechnology 22, 095603 (2011).
[Crossref]

Calleja, E.

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, and K. H. Ploog, “AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization,” Phys. Status Solidi A 192, 60–66 (2002).
[Crossref]

Calleja, J. M.

J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, and K. H. Ploog, “AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization,” Phys. Status Solidi A 192, 60–66 (2002).
[Crossref]

Cao, X. K.

R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Appl. Phys. Lett. 98, 211110 (2011).
[Crossref]

Carnevale, S. D.

S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, and R. C. Myers, “Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes,” Nano Lett. 13, 3029–3035 (2013).
[Crossref]

Chacham, H.

W. Orellana and H. Chacham, “Stability of native defects in hexagonal and cubic boron nitride,” Phys. Rev. B 63, 125205 (2001).
[Crossref]

Charlton, M.

M. Charlton, M. Zoorob, and T. Lee, “Photonic quasi-crystal LEDs: design, modelling, and optimisation,” Proc. SPIE 6486, 64860R (2007).
[Crossref]

Chen, J.

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

Cheng, Y.-J.

Childs, D. T. D.

R. J. E. Taylor, D. M. Williams, J. R. Orchard, D. T. D. Childs, S. Khamas, and R. A. Hogg, “Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers,” J. Phys. D 46, 264005 (2013).
[Crossref]

Cho, C.-Y.

Cho, H. Y.

S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
[Crossref]

Choquette, K. D.

W. R. Frei, H. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
[Crossref]

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[Crossref]

Chu, H. J.

H. J. Chu, T. W. Yeh, L. Stewart, and P. D. Dapkus, “Wurtzite InP nanowire arrays grown by selective area MOCVD,” Phys. Status Solidi C 7, 2494–2497 (2010).
[Crossref]

Chua, C.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Chuang, S. L.

S. H. Park and S. L. Chuang, “Linewidth enhancement factor of wurtzite GaN/AlGaN quantum-well lasers with spontaneous polarization and piezoelectric effects,” Appl. Phys. A 78, 107–111 (2004).
[Crossref]

S. L. Chuang, Physics of Photonic Devices (Wiley, 2009).

Chutinan, A.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

Chwirot, B. W.

B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med. 21, 149–158 (1997).
[Crossref]

Chwirot, S.

B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med. 21, 149–158 (1997).
[Crossref]

Coccioli, R.

Coleman, J. J.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, and J. J. Coleman, “Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[Crossref]

Connie, A. T.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
[Crossref]

Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
[Crossref]

Crawford, M. H.

A. A. Allerman, M. H. Crawford, M. A. Miller, and S. R. Lee, “Growth and characterization of Mg-doped AlGaN-AlN short-period superlattices for deep-UV optoelectronic devices,” J. Cryst. Growth 312, 756–761 (2010).
[Crossref]

Cros, A.

A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, and B. Daudin, “Growth, structural and optical properties of AlGaN nanowires in the whole composition range,” Nanotechnology 24, 115704 (2013).
[Crossref]

Cui, K.

Q. Wang, H. P. T. Nguyen, K. Cui, and Z. Mi, “High efficiency ultraviolet emission from AlxGa1-xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy,” Appl. Phys. Lett. 101, 043115 (2012).
[Crossref]

Dahal, R.

R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Appl. Phys. Lett. 98, 211110 (2011).
[Crossref]

Danglot, J.

H. Benisty, J. Danglot, A. Talneau, S. Enoch, J. M. Pottage, and A. David, “Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures,” IEEE J. Quantum Electron. 44, 777–789 (2008).
[Crossref]

Danner, A. J.

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[Crossref]

Dapkus, P. D.

Y.-T. Lin, T.-W. Yeh, Y. Nakajima, and P. D. Dapkus, “Catalyst-free GaN nanorods synthesized by selective area growth,” Adv. Funct. Mater. 24, 3162–3171 (2014).
[Crossref]

H. J. Chu, T. W. Yeh, L. Stewart, and P. D. Dapkus, “Wurtzite InP nanowire arrays grown by selective area MOCVD,” Phys. Status Solidi C 7, 2494–2497 (2010).
[Crossref]

Darby, J. L.

K. G. Lindenauer and J. L. Darby, “Ultraviolet disinfection of wastewater: effect of dose on subsequent photoreactivation,” Water Res. 28, 805–817 (1994).
[Crossref]

Dastjerdi, M. H.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

Daudin, B.

A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, and B. Daudin, “Growth, structural and optical properties of AlGaN nanowires in the whole composition range,” Nanotechnology 24, 115704 (2013).
[Crossref]

A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of AlxGa1-xN nanowires,” Phys. Status Solidi (RRL) 7, 868–873 (2013).
[Crossref]

K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, and B. Daudin, “Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111),” Phys. Rev. B 84, 245302 (2011).
[Crossref]

David, A.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
[Crossref]

H. Benisty, J. Danglot, A. Talneau, S. Enoch, J. M. Pottage, and A. David, “Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures,” IEEE J. Quantum Electron. 44, 777–789 (2008).
[Crossref]

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
[Crossref]

Davydov, A. V.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287, 522–527 (2006).
[Crossref]

Deitz, J. I.

A. T. M. G. Sarwar, B. J. May, J. I. Deitz, T. J. Grassman, D. W. McComb, and R. C. Myers, “Tunnel junction enhanced nanowire ultraviolet light emitting diodes,” Appl. Phys. Lett. 107, 101103 (2015).
[Crossref]

DenBaars, S. P.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
[Crossref]

P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett. 74, 3681–3683 (1999).
[Crossref]

Detchprohm, T.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Djavid, M.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

S. Zhao, M. Djavid, and Z. Mi, “Surface emitting, high efficiency near-vacuum ultraviolet light source with aluminum nitride nanowires monolithically grown on silicon,” Nano Lett. 15, 7006–7009 (2015).
[Crossref]

S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, and Z. Mi, “Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes,” Nano Lett. 15, 6696–6701 (2015).
[Crossref]

Dobber, J.

B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med. 21, 149–158 (1997).
[Crossref]

Dobrinsky, A.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Dreyer, C. E.

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. D. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108, 141101 (2016).
[Crossref]

Du, X.

A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
[Crossref]

Duff, S. M.

M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
[Crossref]

Dupuis, R. D.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Einfeldt, S.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Ek, S.

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

El-Desouki, M. M.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

Ema, K.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97, 151109 (2010).
[Crossref]

Englund, D.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Enoch, S.

H. Benisty, J. Danglot, A. Talneau, S. Enoch, J. M. Pottage, and A. David, “Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures,” IEEE J. Quantum Electron. 44, 777–789 (2008).
[Crossref]

Erchak, A. A.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

Fairchild, M. N.

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

Fan, S.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

Fan, Z. Y.

M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys,” Appl. Phys. Lett. 86, 092108 (2005).
[Crossref]

Fatih, A.

Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, and R. Siddharth, “Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs,” Appl. Phys. Express 9, 052102 (2016).
[Crossref]

Feezell, D. F.

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

Fernández-Garrido, S.

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

Föll, H.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley, 2004).

Frei, W. R.

W. R. Frei, H. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
[Crossref]

Fujikawa, S.

H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A 206, 1176–1182 (2009).
[Crossref]

Fujioka, A.

A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
[Crossref]

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

Fujita, T.

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Fukahori, S.

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Fukui, T.

K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “Selective-area growth of III-V nanowires and their applications,” J. Mater. Res. 26, 2127–2141 (2011).
[Crossref]

J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, “Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates,” J. Cryst. Growth 272, 180–185 (2004).
[Crossref]

Gaborit, F.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

Ganchenkova, M. G.

K. Laaksonen, M. G. Ganchenkova, and R. M. Nieminen, “Vacancies in wurtzite GaN and AlN,” J. Phys. Condens. Matter 21, 015803 (2008).
[Crossref]

Garcia, P. D.

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Garrett, G.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Garrett, G. A.

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

Gaska, R.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Gauggel, H.

F. M. D. Sopra, H. P. Zappe, M. Moser, R. Hovel, H. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett. 11, 1533–1535 (1999).
[Crossref]

Gayral, B.

A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of AlxGa1-xN nanowires,” Phys. Status Solidi (RRL) 7, 868–873 (2013).
[Crossref]

A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, and B. Daudin, “Growth, structural and optical properties of AlGaN nanowires in the whole composition range,” Nanotechnology 24, 115704 (2013).
[Crossref]

Geib, K. M.

D. K. Serkland, G. A. Keeler, K. M. Geib, and G. M. Peake, “Narrow linewidth VCSELs for high-resolution spectroscopy,” Proc. SPIE 7229, 722907 (2009).
[Crossref]

Gibb, S. R.

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

Gotschke, T.

T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, “Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer,” Nanotechnology 22, 095603 (2011).
[Crossref]

Gottschalch, V.

H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, “Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using templates,” J. Cryst. Growth 310, 5093–5097 (2008).
[Crossref]

Grandal, J.

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

Grandusky, J. R.

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

Grassman, T. J.

A. T. M. G. Sarwar, B. J. May, J. I. Deitz, T. J. Grassman, D. W. McComb, and R. C. Myers, “Tunnel junction enhanced nanowire ultraviolet light emitting diodes,” Appl. Phys. Lett. 107, 101103 (2015).
[Crossref]

Gregersen, N.

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Guidry, M.

B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

Gulden, K.

F. M. D. Sopra, H. P. Zappe, M. Moser, R. Hovel, H. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett. 11, 1533–1535 (1999).
[Crossref]

Guo, H.

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
[Crossref]

Guttmann, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103, 031109 (2013).
[Crossref]

Han, S.-H.

Hansen, M.

P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett. 74, 3681–3683 (1999).
[Crossref]

Hara, S.

K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “Selective-area growth of III-V nanowires and their applications,” J. Mater. Res. 26, 2127–2141 (2011).
[Crossref]

Harvey, T. E.

M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
[Crossref]

Hati, A.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Hayes, D.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6p 2Po1/2 level of Yb+,” Phys. Rev. A 80, 022502 (2009).
[Crossref]

He, H. P.

V. Wang, R. J. Liu, H. P. He, C. M. Yang, and L. Ma, “Hybrid functional with semi-empirical van der Waals study of native defects in hexagonal BN,” Solid State Commun. 177, 74–79 (2014).
[Crossref]

Henry, C.

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

Henry, C. H.

C. H. Henry, R. A. Logan, and F. R. Merritt, “Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers,” J. Appl. Phys. 51, 3042–3050 (1980).
[Crossref]

Hersee, S. D.

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
[Crossref]

Hertog, M. D.

A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of AlxGa1-xN nanowires,” Phys. Status Solidi (RRL) 7, 868–873 (2013).
[Crossref]

Hestroffer, K.

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, and B. Daudin, “Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111),” Phys. Rev. B 84, 245302 (2011).
[Crossref]

Hirano, A.

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Hirayama, H.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

M. Jo, N. Maeda, and H. Hirayama, “Enhanced light extraction in 260  nm light-emitting diode with a highly transparent p-AlGaN layer,” Appl. Phys. Express 9, 012102 (2015).
[Crossref]

H. Hirayama, N. Noguchi, and N. Kamata, “222  nm deep-ultraviolet AlGaN quantum well light-emitting diode with vertical emission properties,” Appl. Phys. Express 3, 032102 (2010).
[Crossref]

H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A 206, 1176–1182 (2009).
[Crossref]

H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, “227  nm AlGaN light-emitting diode with 0.15  mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density,” Appl. Phys. Express 1, 051101 (2008).
[Crossref]

H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “226-273  nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire,” Phys. Status Solidi C 5, 2969–2971 (2008).
[Crossref]

Hirose, K.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Hiruma, K.

K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “Selective-area growth of III-V nanowires and their applications,” J. Mater. Res. 26, 2127–2141 (2011).
[Crossref]

Hofmann, W.

Hogg, R. A.

R. J. E. Taylor, D. M. Williams, J. R. Orchard, D. T. D. Childs, S. Khamas, and R. A. Hogg, “Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers,” J. Phys. D 46, 264005 (2013).
[Crossref]

Hovel, R.

F. M. D. Sopra, H. P. Zappe, M. Moser, R. Hovel, H. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett. 11, 1533–1535 (1999).
[Crossref]

Howe, D. A.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Hu, E. L.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
[Crossref]

Hu, X.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Hu, X.-L.

W.-J. Liu, X.-L. Hu, L.-Y. Ying, J.-Y. Zhang, and B.-P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104, 251116 (2014).
[Crossref]

Hughes, J. S.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, and J. J. Coleman, “Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[Crossref]

Hwang, B. R.

S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
[Crossref]

Hwang, J.

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

Hyunsik, I.

S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
[Crossref]

Ikejiri, K.

K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “Selective-area growth of III-V nanowires and their applications,” J. Mater. Res. 26, 2127–2141 (2011).
[Crossref]

Ikeyama, K.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

Imada, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

Inari, M.

J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, “Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates,” J. Cryst. Growth 272, 180–185 (2004).
[Crossref]

Inazu, T.

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Inose, Y.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97, 151109 (2010).
[Crossref]

Inoshita, K.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

Inoue, S.-I.

T. Kinoshita, T. Obata, H. Yanagi, and S.-I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013).
[Crossref]

Ippen, E. P.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

Ippommatsu, M.

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Ishizaki, K.

Ison, A.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Iwahashi, S.

Iwaya, M.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Jackowski, M.

B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med. 21, 149–158 (1997).
[Crossref]

Jacquet, J.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

Jahn, U.

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, and K. H. Ploog, “AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization,” Phys. Status Solidi A 192, 60–66 (2002).
[Crossref]

Janjua, B.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

Jau, Y.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Jedrzejczyk, W.

B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med. 21, 149–158 (1997).
[Crossref]

Jekel, M.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Jiang, H.

A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
[Crossref]

Jiang, H. X.

R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Appl. Phys. Lett. 98, 211110 (2011).
[Crossref]

M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys,” Appl. Phys. Lett. 94, 091903 (2009).
[Crossref]

M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, “Correlation between optical and electrical properties of Mg-doped AlN epilayers,” Appl. Phys. Lett. 89, 152120 (2006).
[Crossref]

M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys,” Appl. Phys. Lett. 86, 092108 (2005).
[Crossref]

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041–3043 (2003).
[Crossref]

Jianglin, Y.

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008).
[Crossref]

Jo, M.

M. Jo, N. Maeda, and H. Hirayama, “Enhanced light extraction in 260  nm light-emitting diode with a highly transparent p-AlGaN layer,” Appl. Phys. Express 9, 012102 (2015).
[Crossref]

Joannopoulos, J. D.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Johnson, H.

W. R. Frei, H. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
[Crossref]

Johnson, J. M.

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

Johnson, N. M.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Jones, A. M.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, and J. J. Coleman, “Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[Crossref]

Kamata, N.

H. Hirayama, N. Noguchi, and N. Kamata, “222  nm deep-ultraviolet AlGaN quantum well light-emitting diode with vertical emission properties,” Appl. Phys. Express 3, 032102 (2010).
[Crossref]

H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A 206, 1176–1182 (2009).
[Crossref]

H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “226-273  nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire,” Phys. Status Solidi C 5, 2969–2971 (2008).
[Crossref]

H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, “227  nm AlGaN light-emitting diode with 0.15  mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density,” Appl. Phys. Express 1, 051101 (2008).
[Crossref]

Kamiyama, S.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Kan, H.

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 96, 211122 (2010).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336  nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93, 241106 (2008).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2, 551–554 (2008).
[Crossref]

Kang, J.

S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, and Z. Mi, “Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers,” Nano Lett. 15, 7801–7807 (2015).
[Crossref]

S. Zhao, X. Liu, S. Y. Woo, J. Kang, G. A. Botton, and Z. Mi, “An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band,” Appl. Phys. Lett. 107, 043101 (2015).
[Crossref]

Kang, T. W.

S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
[Crossref]

Kao, T.-T.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Kasu, M.

Y. Taniyasu and M. Kasu, “Origin of exciton emissions from an AlN p-n junction light-emitting diode,” Appl. Phys. Lett. 98, 131910 (2011).
[Crossref]

Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[Crossref]

Kaufmann, U.

U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, “Hole conductivity and compensation in epitaxial GaN:Mg layers,” Phys. Rev. B 62, 10867–10872 (2000).
[Crossref]

Kawakami, Y.

K. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, and Y. Kawakami, “Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates,” J. Cryst. Growth 425, 316–321 (2015).
[Crossref]

Kawanishi, H.

H. Kawanishi, M. Senuma, M. Yamamoto, E. Niikura, and T. Nukui, “Extremely weak surface emission from (0001) c-plane AlGaN multiple quantum well structure in deep-ultraviolet spectral region,” Appl. Phys. Lett. 89, 081121 (2006).
[Crossref]

Keeler, G. A.

D. K. Serkland, G. A. Keeler, K. M. Geib, and G. M. Peake, “Narrow linewidth VCSELs for high-resolution spectroscopy,” Proc. SPIE 7229, 722907 (2009).
[Crossref]

Keller, S.

B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

Kellogg, J.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Kent, T. F.

S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, and R. C. Myers, “Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes,” Nano Lett. 13, 3029–3035 (2013).
[Crossref]

Khamas, S.

R. J. E. Taylor, D. M. Williams, J. R. Orchard, D. T. D. Childs, S. Khamas, and R. A. Hogg, “Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers,” J. Phys. D 46, 264005 (2013).
[Crossref]

Khizar, M.

M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys,” Appl. Phys. Lett. 86, 092108 (2005).
[Crossref]

Kibria, M. G.

S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “III-Nitride nanowire optoelectronics,” Prog. Quantum Electron. 44, 14–68 (2015).
[Crossref]

Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
[Crossref]

Kikuchi, A.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97, 151109 (2010).
[Crossref]

T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express 17, 20440–20447 (2009).
[Crossref]

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311, 2063–2068 (2009).
[Crossref]

Kim, J. W.

Kim, K. H.

M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys,” Appl. Phys. Lett. 86, 092108 (2005).
[Crossref]

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041–3043 (2003).
[Crossref]

Kim, M.

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Kim, Y. C.

Kinoshita, T.

T. Kinoshita, T. Obata, H. Yanagi, and S.-I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013).
[Crossref]

Kishikawa, D.

A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
[Crossref]

Kishino, K.

K. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, and Y. Kawakami, “Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates,” J. Cryst. Growth 425, 316–321 (2015).
[Crossref]

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97, 151109 (2010).
[Crossref]

T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express 17, 20440–20447 (2009).
[Crossref]

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311, 2063–2068 (2009).
[Crossref]

Kitamura, K.

Klein-Wiele, J. H.

A. Urban, J. Malindretos, J. H. Klein-Wiele, P. Simon, and A. Rizzi, “Ga-polar GaN nanocolumn arrays with semipolar faceted tips,” New J. Phys. 15, 053045 (2013).
[Crossref]

Klie, R. F.

S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, and R. C. Myers, “Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes,” Nano Lett. 13, 3029–3035 (2013).
[Crossref]

Knauer, A.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Kneissl, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103, 031109 (2013).
[Crossref]

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Kobayashi, S.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser,” Appl. Phys. Express 11, 112101 (2018).
[Crossref]

Kociak, M.

A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of AlxGa1-xN nanowires,” Phys. Status Solidi (RRL) 7, 868–873 (2013).
[Crossref]

Köhler, K.

U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, “Hole conductivity and compensation in epitaxial GaN:Mg layers,” Phys. Rev. B 62, 10867–10872 (2000).
[Crossref]

Koide, N.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

Kolbe, T.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103, 031109 (2013).
[Crossref]

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Koleske, D. D.

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Kolodziejski, L. A.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

Kong, X. H.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

Kosugi, T.

A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
[Crossref]

Kosvin, I.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Kouno, T.

Koyama, F.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

Kozodoy, P.

P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett. 74, 3681–3683 (1999).
[Crossref]

Kozuka, Y.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

Krauss, T. F.

T. F. Krauss, “Photonic crystals for integrated optics,” in AIP Conference Proceedings (IOP Publishing, 2001), pp. 89–98.

Krishnamoorthy, S.

Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, and S. Rajan, “Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions,” Appl. Phys. Lett. 109, 121102 (2016).
[Crossref]

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

Kuech, T. F.

T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010).
[Crossref]

Kueller, V.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Kuhn, C.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103, 031109 (2013).
[Crossref]

Külberg, A.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Kuo, H.-C.

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

M.-H. Lo, Y.-J. Cheng, M.-C. Liu, H.-C. Kuo, and S. C. Wang, “Lasing at exciton transition in optically pumped gallium nitride nanopillars,” Opt. Express 19, 17960–17965 (2011).
[Crossref]

Kuramoto, M.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser,” Appl. Phys. Express 11, 112101 (2018).
[Crossref]

Kuroki, Y.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

Kurosaka, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19, 11963–11968 (2011).
[Crossref]

Kuwabara, M.

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 96, 211122 (2010).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336  nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93, 241106 (2008).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2, 551–554 (2008).
[Crossref]

Laaksonen, K.

K. Laaksonen, M. G. Ganchenkova, and R. M. Nieminen, “Vacancies in wurtzite GaN and AlN,” J. Phys. Condens. Matter 21, 015803 (2008).
[Crossref]

Laleyan, D. A.

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

Lammert, R. M.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, and J. J. Coleman, “Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[Crossref]

Lapeyrade, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

Lau, S. P.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

Le, B. H.

B. H. Le, X. Liu, N. H. Tran, S. Zhao, and Z. Mi, “An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser,” Opt. Express 27, 5843–5850 (2019).
[Crossref]

X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, and Z. Mi, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics,” Opt. Express 25, 30494–30502 (2017).
[Crossref]

X. Liu, S. Zhao, B. H. Le, and Z. Mi, “Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes,” Appl. Phys. Lett. 111, 101103 (2017).
[Crossref]

N. H. Tran, B. H. Le, S. Zhao, and Z. Mi, “On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures,” Appl. Phys. Lett. 110, 032102 (2017).
[Crossref]

B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, and Z. Mi, “Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation‐free planar ultraviolet photonic device applications,” Adv. Mater. 28, 8446–8454 (2016).
[Crossref]

B. H. Le, S. Zhao, N. H. Tran, T. Szkopek, and Z. Mi, “On the Fermi-level pinning of InN grown surfaces,” Appl. Phys. Express 8, 061001 (2015).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
[Crossref]

Le, H. B.

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

Leclere, C.

K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, and B. Daudin, “Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111),” Phys. Rev. B 84, 245302 (2011).
[Crossref]

Lee, J. C.

S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
[Crossref]

Lee, J.-B.

Lee, S. R.

A. A. Allerman, M. H. Crawford, M. A. Miller, and S. R. Lee, “Growth and characterization of Mg-doped AlGaN-AlN short-period superlattices for deep-UV optoelectronic devices,” J. Cryst. Growth 312, 756–761 (2010).
[Crossref]

Lee, S.-J.

Lee, T.

M. Charlton, M. Zoorob, and T. Lee, “Photonic quasi-crystal LEDs: design, modelling, and optimisation,” Proc. SPIE 6486, 64860R (2007).
[Crossref]

Lester, L.

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Li, H.

B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

Li, J.

R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Appl. Phys. Lett. 98, 211110 (2011).
[Crossref]

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041–3043 (2003).
[Crossref]

Li, K. H.

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10, 140–144 (2015).
[Crossref]

Li, Q.

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Li, X.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

Li, X. H.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[Crossref]

Li, Z.

Liang, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Y. Liang, C. Peng, K. Ishizaki, S. Iwahashi, K. Sakai, Y. Tanaka, K. Kitamura, and S. Noda, “Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization,” Opt. Express 21, 565–580 (2013).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

Limbach, F.

T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, “Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer,” Nanotechnology 22, 095603 (2011).
[Crossref]

Lin, J.

A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
[Crossref]

Lin, J. Y.

R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Appl. Phys. Lett. 98, 211110 (2011).
[Crossref]

M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys,” Appl. Phys. Lett. 94, 091903 (2009).
[Crossref]

M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, “Correlation between optical and electrical properties of Mg-doped AlN epilayers,” Appl. Phys. Lett. 89, 152120 (2006).
[Crossref]

M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys,” Appl. Phys. Lett. 86, 092108 (2005).
[Crossref]

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041–3043 (2003).
[Crossref]

Lin, Y.-T.

Y.-T. Lin, T.-W. Yeh, Y. Nakajima, and P. D. Dapkus, “Catalyst-free GaN nanorods synthesized by selective area growth,” Adv. Funct. Mater. 24, 3162–3171 (2014).
[Crossref]

Lindenauer, K. G.

K. G. Lindenauer and J. L. Darby, “Ultraviolet disinfection of wastewater: effect of dose on subsequent photoreactivation,” Water Res. 28, 805–817 (1994).
[Crossref]

Linder, N.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photon. Rev. 3, 262–286 (2009).
[Crossref]

C. Wiesmann, K. Bergenek, N. Linder, and U. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

Lipsz, M.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Liu, C. Y.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[Crossref]

Liu, D. P.

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
[Crossref]

Liu, J.

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Liu, J.-P.

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

Liu, M.-C.

Liu, R. J.

V. Wang, R. J. Liu, H. P. He, C. M. Yang, and L. Ma, “Hybrid functional with semi-empirical van der Waals study of native defects in hexagonal BN,” Solid State Commun. 177, 74–79 (2014).
[Crossref]

Liu, S.

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Liu, W.-J.

W.-J. Liu, X.-L. Hu, L.-Y. Ying, J.-Y. Zhang, and B.-P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104, 251116 (2014).
[Crossref]

Liu, X.

B. H. Le, X. Liu, N. H. Tran, S. Zhao, and Z. Mi, “An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser,” Opt. Express 27, 5843–5850 (2019).
[Crossref]

X. Liu, K. Mashooq, T. Szkopek, and Z. Mi, “Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal,” IEEE Photon. J. 10, 4501211 (2018).
[Crossref]

S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, and Z. Mi, “An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band,” Nano Lett. 17, 1212–1218 (2017).
[Crossref]

X. Liu, S. Zhao, B. H. Le, and Z. Mi, “Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes,” Appl. Phys. Lett. 111, 101103 (2017).
[Crossref]

X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, and Z. Mi, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics,” Opt. Express 25, 30494–30502 (2017).
[Crossref]

S. Zhao, X. Liu, Y. Wu, and Z. Mi, “An electrically pumped 239  nm AlGaN nanowire laser operating at room temperature,” Appl. Phys. Lett. 109, 191106 (2016).
[Crossref]

B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, and Z. Mi, “Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation‐free planar ultraviolet photonic device applications,” Adv. Mater. 28, 8446–8454 (2016).
[Crossref]

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10, 140–144 (2015).
[Crossref]

S. Zhao, X. Liu, S. Y. Woo, J. Kang, G. A. Botton, and Z. Mi, “An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band,” Appl. Phys. Lett. 107, 043101 (2015).
[Crossref]

S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, and Z. Mi, “Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers,” Nano Lett. 15, 7801–7807 (2015).
[Crossref]

R. Wang, X. Liu, I. Shih, and Z. Mi, “High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si,” Appl. Phys. Lett. 106, 261104 (2015).
[Crossref]

Liu, X. D.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
[Crossref]

Liu, Y. C.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[Crossref]

Liu, Y.-S.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Lo, M.-H.

Lobo, N.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Lodahl, P.

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Logan, R. A.

C. H. Henry, R. A. Logan, and F. R. Merritt, “Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers,” J. Appl. Phys. 51, 3042–3050 (1980).
[Crossref]

Lölkes, S.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley, 2004).

Lu, P.

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Lu, T.-C.

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

Luk, T. S.

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Luna, E.

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

Lunev, A.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Lyons, J. L.

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. D. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108, 141101 (2016).
[Crossref]

Ma, J. G.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[Crossref]

Ma, L.

V. Wang, R. J. Liu, H. P. He, C. M. Yang, and L. Ma, “Hybrid functional with semi-empirical van der Waals study of native defects in hexagonal BN,” Solid State Commun. 177, 74–79 (2014).
[Crossref]

Maeda, N.

M. Jo, N. Maeda, and H. Hirayama, “Enhanced light extraction in 260  nm light-emitting diode with a highly transparent p-AlGaN layer,” Appl. Phys. Express 9, 012102 (2015).
[Crossref]

Maier, M.

U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, “Hole conductivity and compensation in epitaxial GaN:Mg layers,” Phys. Rev. B 62, 10867–10872 (2000).
[Crossref]

Mailloux, D.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Majety, S.

R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Appl. Phys. Lett. 98, 211110 (2011).
[Crossref]

Makimoto, T.

Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[Crossref]

Malindretos, J.

A. Urban, J. Malindretos, J. H. Klein-Wiele, P. Simon, and A. Rizzi, “Ga-polar GaN nanocolumn arrays with semipolar faceted tips,” New J. Phys. 15, 053045 (2013).
[Crossref]

Marin, F.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

Marini, A.

C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, and L. Wirtz, “Coupling of excitons and defect states in boron-nitride nanostructures,” Phys. Rev. B 83, 144115 (2011).
[Crossref]

Mashooq, K.

X. Liu, K. Mashooq, T. Szkopek, and Z. Mi, “Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal,” IEEE Photon. J. 10, 4501211 (2018).
[Crossref]

Matioli, E.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
[Crossref]

Matsubara, H.

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008).
[Crossref]

Matsui, K.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

Matsukevich, D. N.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6p 2Po1/2 level of Yb+,” Phys. Rev. A 80, 022502 (2009).
[Crossref]

Maunz, P.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6p 2Po1/2 level of Yb+,” Phys. Rev. A 80, 022502 (2009).
[Crossref]

Mawst, L. J.

T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010).
[Crossref]

May, B. J.

A. T. M. G. Sarwar, B. J. May, J. I. Deitz, T. J. Grassman, D. W. McComb, and R. C. Myers, “Tunnel junction enhanced nanowire ultraviolet light emitting diodes,” Appl. Phys. Lett. 107, 101103 (2015).
[Crossref]

McCants, A.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

McComb, D. W.

A. T. M. G. Sarwar, B. J. May, J. I. Deitz, T. J. Grassman, D. W. McComb, and R. C. Myers, “Tunnel junction enhanced nanowire ultraviolet light emitting diodes,” Appl. Phys. Lett. 107, 101103 (2015).
[Crossref]

McGroddy, K.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Megalini, L.

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

Megens, M. M.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
[Crossref]

Mehnke, F.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103, 031109 (2013).
[Crossref]

Mehta, K.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Mei, Y.

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

Mendrick, M. C.

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

Merlin, R.

Merritt, F. R.

C. H. Henry, R. A. Logan, and F. R. Merritt, “Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers,” J. Appl. Phys. 51, 3042–3050 (1980).
[Crossref]

Mi, Z.

Y. Wu, Y. Wang, K. Sun, and Z. Mi, “Molecular beam epitaxy and characterization of AlGaN nanowire ultraviolet light emitting diodes on Al coated Si (001) substrate,” J. Cryst. Growth 507, 65–69 (2019).
[Crossref]

B. H. Le, X. Liu, N. H. Tran, S. Zhao, and Z. Mi, “An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser,” Opt. Express 27, 5843–5850 (2019).
[Crossref]

X. Liu, K. Mashooq, T. Szkopek, and Z. Mi, “Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal,” IEEE Photon. J. 10, 4501211 (2018).
[Crossref]

N. H. Tran, B. H. Le, S. Zhao, and Z. Mi, “On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures,” Appl. Phys. Lett. 110, 032102 (2017).
[Crossref]

S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, and Z. Mi, “An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band,” Nano Lett. 17, 1212–1218 (2017).
[Crossref]

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

X. Liu, S. Zhao, B. H. Le, and Z. Mi, “Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes,” Appl. Phys. Lett. 111, 101103 (2017).
[Crossref]

X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, and Z. Mi, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics,” Opt. Express 25, 30494–30502 (2017).
[Crossref]

S. Zhao, S. M. Sadaf, S. Vanka, Y. Wang, R. Rashid, and Z. Mi, “Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242  nm,” Appl. Phys. Lett. 109, 201106 (2016).
[Crossref]

S. Zhao, X. Liu, Y. Wu, and Z. Mi, “An electrically pumped 239  nm AlGaN nanowire laser operating at room temperature,” Appl. Phys. Lett. 109, 191106 (2016).
[Crossref]

B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, and Z. Mi, “Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation‐free planar ultraviolet photonic device applications,” Adv. Mater. 28, 8446–8454 (2016).
[Crossref]

S. M. Sadaf, Y. H. Ra, T. Szkopek, and Z. Mi, “Monolithically integrated metal/semiconductor tunnel junction nanowire light-emitting diodes,” Nano Lett. 16, 1076–1080 (2016).
[Crossref]

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, and Z. Mi, “Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers,” Nano Lett. 15, 7801–7807 (2015).
[Crossref]

S. Zhao, X. Liu, S. Y. Woo, J. Kang, G. A. Botton, and Z. Mi, “An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band,” Appl. Phys. Lett. 107, 043101 (2015).
[Crossref]

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10, 140–144 (2015).
[Crossref]

S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “III-Nitride nanowire optoelectronics,” Prog. Quantum Electron. 44, 14–68 (2015).
[Crossref]

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

R. Wang, X. Liu, I. Shih, and Z. Mi, “High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si,” Appl. Phys. Lett. 106, 261104 (2015).
[Crossref]

B. H. Le, S. Zhao, N. H. Tran, T. Szkopek, and Z. Mi, “On the Fermi-level pinning of InN grown surfaces,” Appl. Phys. Express 8, 061001 (2015).
[Crossref]

S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, and Z. Mi, “Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes,” Nano Lett. 15, 6696–6701 (2015).
[Crossref]

S. Zhao, M. Djavid, and Z. Mi, “Surface emitting, high efficiency near-vacuum ultraviolet light source with aluminum nitride nanowires monolithically grown on silicon,” Nano Lett. 15, 7006–7009 (2015).
[Crossref]

A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
[Crossref]

Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
[Crossref]

Q. Wang, H. P. T. Nguyen, K. Cui, and Z. Mi, “High efficiency ultraviolet emission from AlxGa1-xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy,” Appl. Phys. Lett. 101, 043115 (2012).
[Crossref]

Michael, W. M.

Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, and R. Siddharth, “Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs,” Appl. Phys. Express 9, 052102 (2016).
[Crossref]

Miller, M. A.

A. A. Allerman, M. H. Crawford, M. A. Miller, and S. R. Lee, “Growth and characterization of Mg-doped AlGaN-AlN short-period superlattices for deep-UV optoelectronic devices,” J. Cryst. Growth 312, 756–761 (2010).
[Crossref]

Mino, T.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

Mishra, U. K.

B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett. 74, 3681–3683 (1999).
[Crossref]

Miyai, E.

E. Miyai and S. Noda, “Phase-shift effect on a two-dimensional surface-emitting photonic-crystal laser,” Appl. Phys. Lett. 86, 111113 (2005).
[Crossref]

Mochizuki, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

Moe, C.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Moe, C. G.

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

Moehring, D. L.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6p 2Po1/2 level of Yb+,” Phys. Rev. A 80, 022502 (2009).
[Crossref]

Monroe, C.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6p 2Po1/2 level of Yb+,” Phys. Rev. A 80, 022502 (2009).
[Crossref]

Moran, B.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
[Crossref]

Mørk, J.

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Moseley, M. W.

Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, and S. Rajan, “Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions,” Appl. Phys. Lett. 109, 121102 (2016).
[Crossref]

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

Moser, M.

F. M. D. Sopra, H. P. Zappe, M. Moser, R. Hovel, H. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett. 11, 1533–1535 (1999).
[Crossref]

Motohisa, J.

K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “Selective-area growth of III-V nanowires and their applications,” J. Mater. Res. 26, 2127–2141 (2011).
[Crossref]

J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, “Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates,” J. Cryst. Growth 272, 180–185 (2004).
[Crossref]

Mu, R.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[Crossref]

Mukai, T.

A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
[Crossref]

Murcia-Mascaros, S.

A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, and B. Daudin, “Growth, structural and optical properties of AlGaN nanowires in the whole composition range,” Nanotechnology 24, 115704 (2013).
[Crossref]

Myara, M.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

Myers, R. C.

A. T. M. G. Sarwar, B. J. May, J. I. Deitz, T. J. Grassman, D. W. McComb, and R. C. Myers, “Tunnel junction enhanced nanowire ultraviolet light emitting diodes,” Appl. Phys. Lett. 107, 101103 (2015).
[Crossref]

S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, and R. C. Myers, “Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes,” Nano Lett. 13, 3029–3035 (2013).
[Crossref]

Na, J. H.

S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
[Crossref]

Nagasawa, Y.

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Nakajima, Y.

Y.-T. Lin, T.-W. Yeh, Y. Nakajima, and P. D. Dapkus, “Catalyst-free GaN nanorods synthesized by selective area growth,” Adv. Funct. Mater. 24, 3162–3171 (2014).
[Crossref]

Nakamura, S.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
[Crossref]

Nakarmi, M. L.

M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys,” Appl. Phys. Lett. 94, 091903 (2009).
[Crossref]

M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, “Correlation between optical and electrical properties of Mg-doped AlN epilayers,” Appl. Phys. Lett. 89, 152120 (2006).
[Crossref]

M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys,” Appl. Phys. Lett. 86, 092108 (2005).
[Crossref]

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041–3043 (2003).
[Crossref]

Nelson, C.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Nepal, N.

M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys,” Appl. Phys. Lett. 94, 091903 (2009).
[Crossref]

M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, “Correlation between optical and electrical properties of Mg-doped AlN epilayers,” Appl. Phys. Lett. 89, 152120 (2006).
[Crossref]

Ng, T. K.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

Nguyen, H. P.

Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
[Crossref]

Nguyen, H. P. T.

S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “III-Nitride nanowire optoelectronics,” Prog. Quantum Electron. 44, 14–68 (2015).
[Crossref]

S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, and Z. Mi, “Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes,” Nano Lett. 15, 6696–6701 (2015).
[Crossref]

Q. Wang, H. P. T. Nguyen, K. Cui, and Z. Mi, “High efficiency ultraviolet emission from AlxGa1-xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy,” Appl. Phys. Lett. 101, 043115 (2012).
[Crossref]

Nieminen, R. M.

K. Laaksonen, M. G. Ganchenkova, and R. M. Nieminen, “Vacancies in wurtzite GaN and AlN,” J. Phys. Condens. Matter 21, 015803 (2008).
[Crossref]

Niikura, E.

H. Kawanishi, M. Senuma, M. Yamamoto, E. Niikura, and T. Nukui, “Extremely weak surface emission from (0001) c-plane AlGaN multiple quantum well structure in deep-ultraviolet spectral region,” Appl. Phys. Lett. 89, 081121 (2006).
[Crossref]

Noborisaka, J.

J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, “Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates,” J. Cryst. Growth 272, 180–185 (2004).
[Crossref]

Noda, S.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Y. Liang, C. Peng, K. Ishizaki, S. Iwahashi, K. Sakai, Y. Tanaka, K. Kitamura, and S. Noda, “Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization,” Opt. Express 21, 565–580 (2013).
[Crossref]

S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19, 11963–11968 (2011).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

E. Miyai and S. Noda, “Phase-shift effect on a two-dimensional surface-emitting photonic-crystal laser,” Appl. Phys. Lett. 86, 111113 (2005).
[Crossref]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

Noguchi, N.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

H. Hirayama, N. Noguchi, and N. Kamata, “222  nm deep-ultraviolet AlGaN quantum well light-emitting diode with vertical emission properties,” Appl. Phys. Express 3, 032102 (2010).
[Crossref]

H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A 206, 1176–1182 (2009).
[Crossref]

H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, “227  nm AlGaN light-emitting diode with 0.15  mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density,” Appl. Phys. Express 1, 051101 (2008).
[Crossref]

H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “226-273  nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire,” Phys. Status Solidi C 5, 2969–2971 (2008).
[Crossref]

Norimatsu, J.

H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A 206, 1176–1182 (2009).
[Crossref]

Nozaki, K.

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[Crossref]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

Nukui, T.

H. Kawanishi, M. Senuma, M. Yamamoto, E. Niikura, and T. Nukui, “Extremely weak surface emission from (0001) c-plane AlGaN multiple quantum well structure in deep-ultraviolet spectral region,” Appl. Phys. Lett. 89, 081121 (2006).
[Crossref]

Obata, T.

T. Kinoshita, T. Obata, H. Yanagi, and S.-I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013).
[Crossref]

Obloh, H.

U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, “Hole conductivity and compensation in epitaxial GaN:Mg layers,” Phys. Rev. B 62, 10867–10872 (2000).
[Crossref]

Ogawa, T.

A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
[Crossref]

Ohashi, T.

H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “226-273  nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire,” Phys. Status Solidi C 5, 2969–2971 (2008).
[Crossref]

Ohtsuka, T.

A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
[Crossref]

Ohtsuki, T.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97, 151109 (2010).
[Crossref]

Okai, M.

M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6  kHz) spectral linewidth,” Electron. Lett. 29, 1696–1697 (1993).
[Crossref]

Olmschenk, S.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6p 2Po1/2 level of Yb+,” Phys. Rev. A 80, 022502 (2009).
[Crossref]

Ooi, B. S.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

Orchard, J. R.

R. J. E. Taylor, D. M. Williams, J. R. Orchard, D. T. D. Childs, S. Khamas, and R. A. Hogg, “Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers,” J. Phys. D 46, 264005 (2013).
[Crossref]

Orellana, W.

W. Orellana and H. Chacham, “Stability of native defects in hexagonal and cubic boron nitride,” Phys. Rev. B 63, 125205 (2001).
[Crossref]

Orsal, B.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

Osowski, M. L.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, and J. J. Coleman, “Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[Crossref]

Oto, T.

K. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, and Y. Kawakami, “Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates,” J. Cryst. Growth 425, 316–321 (2015).
[Crossref]

Paetzelt, H.

H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, “Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using templates,” J. Cryst. Growth 310, 5093–5097 (2008).
[Crossref]

Pantha, B. N.

R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Appl. Phys. Lett. 98, 211110 (2011).
[Crossref]

Park, C. M.

S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
[Crossref]

Park, S. H.

S. H. Park and S. L. Chuang, “Linewidth enhancement factor of wurtzite GaN/AlGaN quantum-well lasers with spontaneous polarization and piezoelectric effects,” Appl. Phys. A 78, 107–111 (2004).
[Crossref]

Park, S.-J.

Park, T.-Y.

Park, W. I.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

Partner, H. L.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Patrick, J. P.

F. K. Thomas, D. C. Santino, A. T. M. Sarwar, J. P. Patrick, F. K. Robert, and C. M. Roberto, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
[Crossref]

Peake, G. M.

D. K. Serkland, G. A. Keeler, K. M. Geib, and G. M. Peake, “Narrow linewidth VCSELs for high-resolution spectroscopy,” Proc. SPIE 7229, 722907 (2009).
[Crossref]

Peng, C.

Y. Liang, C. Peng, K. Ishizaki, S. Iwahashi, K. Sakai, Y. Tanaka, K. Kitamura, and S. Noda, “Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization,” Opt. Express 21, 565–580 (2013).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

Pernot, C.

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Petrich, G. S.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

Phillips, P. J.

S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, and R. C. Myers, “Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes,” Nano Lett. 13, 3029–3035 (2013).
[Crossref]

Pierret, A.

A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, and B. Daudin, “Growth, structural and optical properties of AlGaN nanowires in the whole composition range,” Nanotechnology 24, 115704 (2013).
[Crossref]

A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of AlxGa1-xN nanowires,” Phys. Status Solidi (RRL) 7, 868–873 (2013).
[Crossref]

Plais, A.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

Ploog, K. H.

J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, and K. H. Ploog, “AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization,” Phys. Status Solidi A 192, 60–66 (2002).
[Crossref]

Pofelski, A.

X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, and Z. Mi, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics,” Opt. Express 25, 30494–30502 (2017).
[Crossref]

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

Ponce, F. A.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Pottage, J. M.

H. Benisty, J. Danglot, A. Talneau, S. Enoch, J. M. Pottage, and A. David, “Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures,” IEEE J. Quantum Electron. 44, 777–789 (2008).
[Crossref]

Prestage, J.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Priante, D.

Ra, Y. H.

S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, and Z. Mi, “An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band,” Nano Lett. 17, 1212–1218 (2017).
[Crossref]

S. M. Sadaf, Y. H. Ra, T. Szkopek, and Z. Mi, “Monolithically integrated metal/semiconductor tunnel junction nanowire light-emitting diodes,” Nano Lett. 16, 1076–1080 (2016).
[Crossref]

S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, and Z. Mi, “Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes,” Nano Lett. 15, 6696–6701 (2015).
[Crossref]

Raczynska, A. M.

B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med. 21, 149–158 (1997).
[Crossref]

Rajan, S.

Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, and S. Rajan, “Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions,” Appl. Phys. Lett. 109, 121102 (2016).
[Crossref]

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

Rakich, P.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

Ramanujam, P. S.

P. S. Ramanujam and R. H. Berg, “Photodimerization in dipeptides for high capacity optical digital storage,” Appl. Phys. Lett. 85, 1665–1667 (2004).
[Crossref]

Rashid, R.

S. Zhao, S. M. Sadaf, S. Vanka, Y. Wang, R. Rashid, and Z. Mi, “Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242  nm,” Appl. Phys. Lett. 109, 201106 (2016).
[Crossref]

Rashid, R. T.

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

Rass, J.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103, 031109 (2013).
[Crossref]

Reich, C.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

Renevier, H.

A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, and B. Daudin, “Growth, structural and optical properties of AlGaN nanowires in the whole composition range,” Nanotechnology 24, 115704 (2013).
[Crossref]

A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of AlxGa1-xN nanowires,” Phys. Status Solidi (RRL) 7, 868–873 (2013).
[Crossref]

K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, and B. Daudin, “Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111),” Phys. Rev. B 84, 245302 (2011).
[Crossref]

Ripin, D. J.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

Rishinaramangalam, A. K.

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

Ristic, J.

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, and K. H. Ploog, “AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization,” Phys. Status Solidi A 192, 60–66 (2002).
[Crossref]

Rizzi, A.

A. Urban, J. Malindretos, J. H. Klein-Wiele, P. Simon, and A. Rizzi, “Ga-polar GaN nanocolumn arrays with semipolar faceted tips,” New J. Phys. 15, 053045 (2013).
[Crossref]

Robert, F. K.

F. K. Thomas, D. C. Santino, A. T. M. Sarwar, J. P. Patrick, F. K. Robert, and C. M. Roberto, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
[Crossref]

Robert, J. D.

J. D. Robert and M. S. Brian, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29, 084006 (2014).
[Crossref]

Roberto, C. M.

F. K. Thomas, D. C. Santino, A. T. M. Sarwar, J. P. Patrick, F. K. Robert, and C. M. Roberto, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
[Crossref]

Rodak, L.

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

Rodriguez, H.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Roh, S. D.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, and J. J. Coleman, “Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[Crossref]

Romanczyk, B.

B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

Roshko, A.

M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
[Crossref]

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287, 522–527 (2006).
[Crossref]

Rubio, A.

C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, and L. Wirtz, “Coupling of excitons and defect states in boron-nitride nanostructures,” Phys. Rev. B 83, 144115 (2011).
[Crossref]

Sadaf, S.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

Sadaf, S. M.

S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, and Z. Mi, “An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band,” Nano Lett. 17, 1212–1218 (2017).
[Crossref]

S. M. Sadaf, Y. H. Ra, T. Szkopek, and Z. Mi, “Monolithically integrated metal/semiconductor tunnel junction nanowire light-emitting diodes,” Nano Lett. 16, 1076–1080 (2016).
[Crossref]

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

S. Zhao, S. M. Sadaf, S. Vanka, Y. Wang, R. Rashid, and Z. Mi, “Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242  nm,” Appl. Phys. Lett. 109, 201106 (2016).
[Crossref]

S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, and Z. Mi, “Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes,” Nano Lett. 15, 6696–6701 (2015).
[Crossref]

A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
[Crossref]

Saito, H.

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008).
[Crossref]

Saito, T.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser,” Appl. Phys. Express 11, 112101 (2018).
[Crossref]

Sakai, J.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

Sakai, K.

Sakai, M.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97, 151109 (2010).
[Crossref]

Sanchez-Garcia, M. A.

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

Sánchez-García, M. A.

J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, and K. H. Ploog, “AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization,” Phys. Status Solidi A 192, 60–66 (2002).
[Crossref]

Sanchez-Páramo, J.

J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, and K. H. Ploog, “AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization,” Phys. Status Solidi A 192, 60–66 (2002).
[Crossref]

Sanders, A. W.

M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
[Crossref]

Sanford, N. A.

M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
[Crossref]

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287, 522–527 (2006).
[Crossref]

Saniul Haq, A. F. M.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Sano, D.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

Santino, D. C.

F. K. Thomas, D. C. Santino, A. T. M. Sarwar, J. P. Patrick, F. K. Robert, and C. M. Roberto, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
[Crossref]

Sarwar, A. T. M.

F. K. Thomas, D. C. Santino, A. T. M. Sarwar, J. P. Patrick, F. K. Robert, and C. M. Roberto, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
[Crossref]

Sarwar, A. T. M. G.

A. T. M. G. Sarwar, B. J. May, J. I. Deitz, T. J. Grassman, D. W. McComb, and R. C. Myers, “Tunnel junction enhanced nanowire ultraviolet light emitting diodes,” Appl. Phys. Lett. 107, 101103 (2015).
[Crossref]

S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, and R. C. Myers, “Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes,” Nano Lett. 13, 3029–3035 (2013).
[Crossref]

Scherer, D.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Schlotter, P.

U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, “Hole conductivity and compensation in epitaxial GaN:Mg layers,” Phys. Rev. B 62, 10867–10872 (2000).
[Crossref]

Schowalter, L. J.

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

Schubert, M.

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Schumann, T.

T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, “Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer,” Nanotechnology 22, 095603 (2011).
[Crossref]

Schwarz, U.

C. Wiesmann, K. Bergenek, N. Linder, and U. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

Schwarz, U. T.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photon. Rev. 3, 262–286 (2009).
[Crossref]

Schwindt, P. D. D.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Sekiguchi, H.

K. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, and Y. Kawakami, “Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates,” J. Cryst. Growth 425, 316–321 (2015).
[Crossref]

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97, 151109 (2010).
[Crossref]

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311, 2063–2068 (2009).
[Crossref]

Selcu, C.

S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, and R. C. Myers, “Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes,” Nano Lett. 13, 3029–3035 (2013).
[Crossref]

Senuma, M.

H. Kawanishi, M. Senuma, M. Yamamoto, E. Niikura, and T. Nukui, “Extremely weak surface emission from (0001) c-plane AlGaN multiple quantum well structure in deep-ultraviolet spectral region,” Appl. Phys. Lett. 89, 081121 (2006).
[Crossref]

Serkland, D. K.

D. K. Serkland, G. A. Keeler, K. M. Geib, and G. M. Peake, “Narrow linewidth VCSELs for high-resolution spectroscopy,” Proc. SPIE 7229, 722907 (2009).
[Crossref]

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Shahedipour, F.

F. Shahedipour and B. W. Wessels, “Investigation of the formation of the 2.8  eV luminescence band in p-type GaN:Mg,” Appl. Phys. Lett. 76, 3011–3013 (2000).
[Crossref]

Sharif, S.

Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
[Crossref]

Shatalov, M.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Shen, S.-C.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Shih, I.

R. Wang, X. Liu, I. Shih, and Z. Mi, “High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si,” Appl. Phys. Lett. 106, 261104 (2015).
[Crossref]

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
[Crossref]

Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
[Crossref]

Shima, D. M.

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

Shur, M.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Siddharth, R.

Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, and R. Siddharth, “Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs,” Appl. Phys. Express 9, 052102 (2016).
[Crossref]

Signoret, P.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

Simon, P.

A. Urban, J. Malindretos, J. H. Klein-Wiele, P. Simon, and A. Rizzi, “Ga-polar GaN nanocolumn arrays with semipolar faceted tips,” New J. Phys. 15, 053045 (2013).
[Crossref]

Sopra, F. M. D.

F. M. D. Sopra, H. P. Zappe, M. Moser, R. Hovel, H. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett. 11, 1533–1535 (1999).
[Crossref]

Speck, J. S.

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. D. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108, 141101 (2016).
[Crossref]

Sriram, K.

Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, and R. Siddharth, “Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs,” Appl. Phys. Express 9, 052102 (2016).
[Crossref]

Stellmach, J.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Stewart, L.

H. J. Chu, T. W. Yeh, L. Stewart, and P. D. Dapkus, “Wurtzite InP nanowire arrays grown by selective area MOCVD,” Phys. Status Solidi C 7, 2494–2497 (2010).
[Crossref]

Stobbe, S.

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Stoica, T.

T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, “Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer,” Nanotechnology 22, 095603 (2011).
[Crossref]

Subramania, G.

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Sugiyama, T.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Suhr, T.

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Sun, H.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

Sun, K.

Y. Wu, Y. Wang, K. Sun, and Z. Mi, “Molecular beam epitaxy and characterization of AlGaN nanowire ultraviolet light emitting diodes on Al coated Si (001) substrate,” J. Cryst. Growth 507, 65–69 (2019).
[Crossref]

Sun, W.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Sun, X.

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
[Crossref]

Suzuki, M.

M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6  kHz) spectral linewidth,” Electron. Lett. 29, 1696–1697 (1993).
[Crossref]

Szkopek, T.

X. Liu, K. Mashooq, T. Szkopek, and Z. Mi, “Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal,” IEEE Photon. J. 10, 4501211 (2018).
[Crossref]

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

S. M. Sadaf, Y. H. Ra, T. Szkopek, and Z. Mi, “Monolithically integrated metal/semiconductor tunnel junction nanowire light-emitting diodes,” Nano Lett. 16, 1076–1080 (2016).
[Crossref]

B. H. Le, S. Zhao, N. H. Tran, T. Szkopek, and Z. Mi, “On the Fermi-level pinning of InN grown surfaces,” Appl. Phys. Express 8, 061001 (2015).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
[Crossref]

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

Takano, T.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A 206, 1176–1182 (2009).
[Crossref]

Takayama, N.

Takeda, J.

J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, “Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates,” J. Cryst. Growth 272, 180–185 (2004).
[Crossref]

Takeuchi, T.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser,” Appl. Phys. Express 11, 112101 (2018).
[Crossref]

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

Talneau, A.

H. Benisty, J. Danglot, A. Talneau, S. Enoch, J. M. Pottage, and A. David, “Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures,” IEEE J. Quantum Electron. 44, 777–789 (2008).
[Crossref]

Tanaka, K.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser,” Appl. Phys. Express 11, 112101 (2018).
[Crossref]

Tanaka, T.

K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “Selective-area growth of III-V nanowires and their applications,” J. Mater. Res. 26, 2127–2141 (2011).
[Crossref]

Tanaka, Y.

Y. Liang, C. Peng, K. Ishizaki, S. Iwahashi, K. Sakai, Y. Tanaka, K. Kitamura, and S. Noda, “Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization,” Opt. Express 21, 565–580 (2013).
[Crossref]

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

Taniwatari, T.

M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6  kHz) spectral linewidth,” Electron. Lett. 29, 1696–1697 (1993).
[Crossref]

Taniyasu, Y.

Y. Taniyasu and M. Kasu, “Origin of exciton emissions from an AlN p-n junction light-emitting diode,” Appl. Phys. Lett. 98, 131910 (2011).
[Crossref]

Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[Crossref]

Taylor, R. J. E.

R. J. E. Taylor, D. M. Williams, J. R. Orchard, D. T. D. Childs, S. Khamas, and R. A. Hogg, “Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers,” J. Phys. D 46, 264005 (2013).
[Crossref]

Tazawa, K.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser,” Appl. Phys. Express 11, 112101 (2018).
[Crossref]

Thomas, F. K.

F. K. Thomas, D. C. Santino, A. T. M. Sarwar, J. P. Patrick, F. K. Robert, and C. M. Roberto, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
[Crossref]

Tomioka, K.

K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “Selective-area growth of III-V nanowires and their applications,” J. Mater. Res. 26, 2127–2141 (2011).
[Crossref]

Tourrenc, J. P.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

Trampert, A.

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

Tran, H. N.

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

Tran, N. H.

B. H. Le, X. Liu, N. H. Tran, S. Zhao, and Z. Mi, “An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser,” Opt. Express 27, 5843–5850 (2019).
[Crossref]

N. H. Tran, B. H. Le, S. Zhao, and Z. Mi, “On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures,” Appl. Phys. Lett. 110, 032102 (2017).
[Crossref]

B. H. Le, S. Zhao, N. H. Tran, T. Szkopek, and Z. Mi, “On the Fermi-level pinning of InN grown surfaces,” Appl. Phys. Express 8, 061001 (2015).
[Crossref]

Tsubaki, K.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A 206, 1176–1182 (2009).
[Crossref]

Uchiyama, K.

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 96, 211122 (2010).
[Crossref]

Ugolini, C.

M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, “Correlation between optical and electrical properties of Mg-doped AlN epilayers,” Appl. Phys. Lett. 89, 152120 (2006).
[Crossref]

Ul Masabih, S. M.

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

Urban, A.

A. Urban, J. Malindretos, J. H. Klein-Wiele, P. Simon, and A. Rizzi, “Ga-polar GaN nanocolumn arrays with semipolar faceted tips,” New J. Phys. 15, 053045 (2013).
[Crossref]

Vanka, S.

S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, and Z. Mi, “An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band,” Nano Lett. 17, 1212–1218 (2017).
[Crossref]

S. Zhao, S. M. Sadaf, S. Vanka, Y. Wang, R. Rashid, and Z. Mi, “Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242  nm,” Appl. Phys. Lett. 109, 201106 (2016).
[Crossref]

Viciani, S.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

Vrijen, R.

Vuckovic, J.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Wagner, G.

H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, “Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using templates,” J. Cryst. Growth 310, 5093–5097 (2008).
[Crossref]

Wakahara, A.

K. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, and Y. Kawakami, “Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates,” J. Cryst. Growth 425, 316–321 (2015).
[Crossref]

Walle, C. G. V. D.

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. D. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108, 141101 (2016).
[Crossref]

Wang, G. T.

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Wang, Q.

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10, 140–144 (2015).
[Crossref]

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
[Crossref]

Q. Wang, H. P. T. Nguyen, K. Cui, and Z. Mi, “High efficiency ultraviolet emission from AlxGa1-xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy,” Appl. Phys. Lett. 101, 043115 (2012).
[Crossref]

Wang, R.

R. Wang, X. Liu, I. Shih, and Z. Mi, “High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si,” Appl. Phys. Lett. 106, 261104 (2015).
[Crossref]

Wang, S.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Wang, S. C.

Wang, V.

V. Wang, R. J. Liu, H. P. He, C. M. Yang, and L. Ma, “Hybrid functional with semi-empirical van der Waals study of native defects in hexagonal BN,” Solid State Commun. 177, 74–79 (2014).
[Crossref]

Wang, X.

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
[Crossref]

Wang, Y.

Y. Wu, Y. Wang, K. Sun, and Z. Mi, “Molecular beam epitaxy and characterization of AlGaN nanowire ultraviolet light emitting diodes on Al coated Si (001) substrate,” J. Cryst. Growth 507, 65–69 (2019).
[Crossref]

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

S. Zhao, S. M. Sadaf, S. Vanka, Y. Wang, R. Rashid, and Z. Mi, “Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242  nm,” Appl. Phys. Lett. 109, 201106 (2016).
[Crossref]

Watanabe, A.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Wehrspohn, R. B.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley, 2004).

Weisbuch, C.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
[Crossref]

Weng, G.

Wernicke, T.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103, 031109 (2013).
[Crossref]

Wessels, B. W.

F. Shahedipour and B. W. Wessels, “Investigation of the formation of the 2.8  eV luminescence band in p-type GaN:Mg,” Appl. Phys. Lett. 76, 3011–3013 (2000).
[Crossref]

Weyers, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Wienecke, S.

B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

Wierer, J. J.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
[Crossref]

Wiesmann, C.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photon. Rev. 3, 262–286 (2009).
[Crossref]

C. Wiesmann, K. Bergenek, N. Linder, and U. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

Williams, D. M.

R. J. E. Taylor, D. M. Williams, J. R. Orchard, D. T. D. Childs, S. Khamas, and R. A. Hogg, “Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers,” J. Phys. D 46, 264005 (2013).
[Crossref]

Winczakiewicz, J.

B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med. 21, 149–158 (1997).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Winrow, E.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Wirtz, L.

C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, and L. Wirtz, “Coupling of excitons and defect states in boron-nitride nanostructures,” Phys. Rev. B 83, 144115 (2011).
[Crossref]

Woo, S. Y.

X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, and Z. Mi, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics,” Opt. Express 25, 30494–30502 (2017).
[Crossref]

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, and Z. Mi, “Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation‐free planar ultraviolet photonic device applications,” Adv. Mater. 28, 8446–8454 (2016).
[Crossref]

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, and Z. Mi, “Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers,” Nano Lett. 15, 7801–7807 (2015).
[Crossref]

S. Zhao, X. Liu, S. Y. Woo, J. Kang, G. A. Botton, and Z. Mi, “An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band,” Appl. Phys. Lett. 107, 043101 (2015).
[Crossref]

Wraback, M.

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Wright, J. B.

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Wu, F.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

Wu, Y.

Y. Wu, Y. Wang, K. Sun, and Z. Mi, “Molecular beam epitaxy and characterization of AlGaN nanowire ultraviolet light emitting diodes on Al coated Si (001) substrate,” J. Cryst. Growth 507, 65–69 (2019).
[Crossref]

S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, and Z. Mi, “An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band,” Nano Lett. 17, 1212–1218 (2017).
[Crossref]

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

S. Zhao, X. Liu, Y. Wu, and Z. Mi, “An electrically pumped 239  nm AlGaN nanowire laser operating at room temperature,” Appl. Phys. Lett. 109, 191106 (2016).
[Crossref]

Würtele, M.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Xie, H.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Xu, H.

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Xu, H. Y.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[Crossref]

Xu, R.-B.

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

Yablonovitch, E.

Yamada, H.

A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
[Crossref]

Yamamoto, M.

H. Kawanishi, M. Senuma, M. Yamamoto, E. Niikura, and T. Nukui, “Extremely weak surface emission from (0001) c-plane AlGaN multiple quantum well structure in deep-ultraviolet spectral region,” Appl. Phys. Lett. 89, 081121 (2006).
[Crossref]

Yamano, K.

K. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, and Y. Kawakami, “Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates,” J. Cryst. Growth 425, 316–321 (2015).
[Crossref]

T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express 17, 20440–20447 (2009).
[Crossref]

Yamashita, Y.

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 96, 211122 (2010).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336  nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93, 241106 (2008).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2, 551–554 (2008).
[Crossref]

Yanagi, H.

T. Kinoshita, T. Obata, H. Yanagi, and S.-I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013).
[Crossref]

Yang, C. M.

V. Wang, R. J. Liu, H. P. He, C. M. Yang, and L. Ma, “Hybrid functional with semi-empirical van der Waals study of native defects in hexagonal BN,” Solid State Commun. 177, 74–79 (2014).
[Crossref]

Yang, H.

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

Yang, J.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

Yang, Z.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

Yatabe, T.

H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, “227  nm AlGaN light-emitting diode with 0.15  mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density,” Appl. Phys. Express 1, 051101 (2008).
[Crossref]

H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “226-273  nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire,” Phys. Status Solidi C 5, 2969–2971 (2008).
[Crossref]

Yeh, T. W.

H. J. Chu, T. W. Yeh, L. Stewart, and P. D. Dapkus, “Wurtzite InP nanowire arrays grown by selective area MOCVD,” Phys. Status Solidi C 7, 2494–2497 (2010).
[Crossref]

Yeh, T.-W.

Y.-T. Lin, T.-W. Yeh, Y. Nakajima, and P. D. Dapkus, “Catalyst-free GaN nanorods synthesized by selective area growth,” Adv. Funct. Mater. 24, 3162–3171 (2014).
[Crossref]

Yi, G.-C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

Ying, L.

Ying, L.-Y.

W.-J. Liu, X.-L. Hu, L.-Y. Ying, J.-Y. Zhang, and B.-P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104, 251116 (2014).
[Crossref]

Yoder, P. D.

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Yokouchi, N.

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[Crossref]

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

Yoshida, H.

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 96, 211122 (2010).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336  nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93, 241106 (2008).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2, 551–554 (2008).
[Crossref]

Yoshida, S.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

Yoshimoto, S.

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008).
[Crossref]

Young, S.

Young, S. P.

S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
[Crossref]

Younge, K. C.

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6p 2Po1/2 level of Yb+,” Phys. Rev. A 80, 022502 (2009).
[Crossref]

Yu, H.-C.

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

Yu, N.

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

Yu, S. F.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

Yuen, C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

Yuewei, Z.

Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, and R. Siddharth, “Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs,” Appl. Phys. Express 9, 052102 (2016).
[Crossref]

Zappe, H. P.

F. M. D. Sopra, H. P. Zappe, M. Moser, R. Hovel, H. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett. 11, 1533–1535 (1999).
[Crossref]

Zhang, B.

Zhang, B.-P.

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

W.-J. Liu, X.-L. Hu, L.-Y. Ying, J.-Y. Zhang, and B.-P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104, 251116 (2014).
[Crossref]

Zhang, J.

Zhang, J.-Y.

W.-J. Liu, X.-L. Hu, L.-Y. Ying, J.-Y. Zhang, and B.-P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104, 251116 (2014).
[Crossref]

Zhang, X. T.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[Crossref]

Zhang, Y.

Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, and S. Rajan, “Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions,” Appl. Phys. Lett. 109, 121102 (2016).
[Crossref]

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

Zhao, C.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

Zhao, S.

B. H. Le, X. Liu, N. H. Tran, S. Zhao, and Z. Mi, “An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser,” Opt. Express 27, 5843–5850 (2019).
[Crossref]

X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, and Z. Mi, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics,” Opt. Express 25, 30494–30502 (2017).
[Crossref]

N. H. Tran, B. H. Le, S. Zhao, and Z. Mi, “On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures,” Appl. Phys. Lett. 110, 032102 (2017).
[Crossref]

S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, and Z. Mi, “An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band,” Nano Lett. 17, 1212–1218 (2017).
[Crossref]

X. Liu, S. Zhao, B. H. Le, and Z. Mi, “Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes,” Appl. Phys. Lett. 111, 101103 (2017).
[Crossref]

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, and Z. Mi, “Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation‐free planar ultraviolet photonic device applications,” Adv. Mater. 28, 8446–8454 (2016).
[Crossref]

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

S. Zhao, X. Liu, Y. Wu, and Z. Mi, “An electrically pumped 239  nm AlGaN nanowire laser operating at room temperature,” Appl. Phys. Lett. 109, 191106 (2016).
[Crossref]

S. Zhao, S. M. Sadaf, S. Vanka, Y. Wang, R. Rashid, and Z. Mi, “Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242  nm,” Appl. Phys. Lett. 109, 201106 (2016).
[Crossref]

B. H. Le, S. Zhao, N. H. Tran, T. Szkopek, and Z. Mi, “On the Fermi-level pinning of InN grown surfaces,” Appl. Phys. Express 8, 061001 (2015).
[Crossref]

S. Zhao, M. Djavid, and Z. Mi, “Surface emitting, high efficiency near-vacuum ultraviolet light source with aluminum nitride nanowires monolithically grown on silicon,” Nano Lett. 15, 7006–7009 (2015).
[Crossref]

A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
[Crossref]

S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, and Z. Mi, “Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers,” Nano Lett. 15, 7801–7807 (2015).
[Crossref]

S. Zhao, X. Liu, S. Y. Woo, J. Kang, G. A. Botton, and Z. Mi, “An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band,” Appl. Phys. Lett. 107, 043101 (2015).
[Crossref]

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10, 140–144 (2015).
[Crossref]

S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “III-Nitride nanowire optoelectronics,” Prog. Quantum Electron. 44, 14–68 (2015).
[Crossref]

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
[Crossref]

Zheng, X.

B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

Zheng, Z.-W.

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

Zoorob, M.

M. Charlton, M. Zoorob, and T. Lee, “Photonic quasi-crystal LEDs: design, modelling, and optimisation,” Proc. SPIE 6486, 64860R (2007).
[Crossref]

Adv. Funct. Mater. (1)

Y.-T. Lin, T.-W. Yeh, Y. Nakajima, and P. D. Dapkus, “Catalyst-free GaN nanorods synthesized by selective area growth,” Adv. Funct. Mater. 24, 3162–3171 (2014).
[Crossref]

Adv. Mater. (1)

B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, and Z. Mi, “Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation‐free planar ultraviolet photonic device applications,” Adv. Mater. 28, 8446–8454 (2016).
[Crossref]

APL Mater. (1)

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” APL Mater. 4, 086115 (2016).
[Crossref]

Appl. Phys. A (1)

S. H. Park and S. L. Chuang, “Linewidth enhancement factor of wurtzite GaN/AlGaN quantum-well lasers with spontaneous polarization and piezoelectric effects,” Appl. Phys. A 78, 107–111 (2004).
[Crossref]

Appl. Phys. Express (11)

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9, 102101 (2016).
[Crossref]

H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, “227  nm AlGaN light-emitting diode with 0.15  mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density,” Appl. Phys. Express 1, 051101 (2008).
[Crossref]

H. Hirayama, N. Noguchi, and N. Kamata, “222  nm deep-ultraviolet AlGaN quantum well light-emitting diode with vertical emission properties,” Appl. Phys. Express 3, 032102 (2010).
[Crossref]

M. Jo, N. Maeda, and H. Hirayama, “Enhanced light extraction in 260  nm light-emitting diode with a highly transparent p-AlGaN layer,” Appl. Phys. Express 9, 012102 (2015).
[Crossref]

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
[Crossref]

J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power,” Appl. Phys. Express 6, 032101 (2013).
[Crossref]

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser,” Appl. Phys. Express 11, 112101 (2018).
[Crossref]

Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, and R. D. Dupuis, “Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector,” Appl. Phys. Express 9, 111002 (2016).
[Crossref]

Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, and R. Siddharth, “Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs,” Appl. Phys. Express 9, 052102 (2016).
[Crossref]

B. H. Le, S. Zhao, N. H. Tran, T. Szkopek, and Z. Mi, “On the Fermi-level pinning of InN grown surfaces,” Appl. Phys. Express 8, 061001 (2015).
[Crossref]

Appl. Phys. Lett. (37)

S. Zhao, X. Liu, Y. Wu, and Z. Mi, “An electrically pumped 239  nm AlGaN nanowire laser operating at room temperature,” Appl. Phys. Lett. 109, 191106 (2016).
[Crossref]

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97, 151109 (2010).
[Crossref]

E. Miyai and S. Noda, “Phase-shift effect on a two-dimensional surface-emitting photonic-crystal laser,” Appl. Phys. Lett. 86, 111113 (2005).
[Crossref]

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[Crossref]

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[Crossref]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, and S. Rajan, “Interband tunneling for hole injection in III-nitride ultraviolet emitters,” Appl. Phys. Lett. 106, 141103 (2015).
[Crossref]

Y. Taniyasu and M. Kasu, “Origin of exciton emissions from an AlN p-n junction light-emitting diode,” Appl. Phys. Lett. 98, 131910 (2011).
[Crossref]

R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Appl. Phys. Lett. 98, 211110 (2011).
[Crossref]

M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys,” Appl. Phys. Lett. 86, 092108 (2005).
[Crossref]

T. Kinoshita, T. Obata, H. Yanagi, and S.-I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013).
[Crossref]

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041–3043 (2003).
[Crossref]

M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys,” Appl. Phys. Lett. 94, 091903 (2009).
[Crossref]

A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, and H. Jiang, “Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy,” Appl. Phys. Lett. 106, 213105 (2015).
[Crossref]

P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett. 74, 3681–3683 (1999).
[Crossref]

F. Shahedipour and B. W. Wessels, “Investigation of the formation of the 2.8  eV luminescence band in p-type GaN:Mg,” Appl. Phys. Lett. 76, 3011–3013 (2000).
[Crossref]

W.-J. Liu, X.-L. Hu, L.-Y. Ying, J.-Y. Zhang, and B.-P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104, 251116 (2014).
[Crossref]

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 96, 211122 (2010).
[Crossref]

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. D. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108, 141101 (2016).
[Crossref]

A. T. M. G. Sarwar, B. J. May, J. I. Deitz, T. J. Grassman, D. W. McComb, and R. C. Myers, “Tunnel junction enhanced nanowire ultraviolet light emitting diodes,” Appl. Phys. Lett. 107, 101103 (2015).
[Crossref]

Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, and S. Rajan, “Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions,” Appl. Phys. Lett. 109, 121102 (2016).
[Crossref]

S. Zhao, S. M. Sadaf, S. Vanka, Y. Wang, R. Rashid, and Z. Mi, “Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242  nm,” Appl. Phys. Lett. 109, 201106 (2016).
[Crossref]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[Crossref]

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103, 031109 (2013).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105, 051113 (2014).
[Crossref]

P. S. Ramanujam and R. H. Berg, “Photodimerization in dipeptides for high capacity optical digital storage,” Appl. Phys. Lett. 85, 1665–1667 (2004).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336  nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93, 241106 (2008).
[Crossref]

M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, “Correlation between optical and electrical properties of Mg-doped AlN epilayers,” Appl. Phys. Lett. 89, 152120 (2006).
[Crossref]

S. Zhao, X. Liu, S. Y. Woo, J. Kang, G. A. Botton, and Z. Mi, “An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band,” Appl. Phys. Lett. 107, 043101 (2015).
[Crossref]

N. H. Tran, B. H. Le, S. Zhao, and Z. Mi, “On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures,” Appl. Phys. Lett. 110, 032102 (2017).
[Crossref]

H. Kawanishi, M. Senuma, M. Yamamoto, E. Niikura, and T. Nukui, “Extremely weak surface emission from (0001) c-plane AlGaN multiple quantum well structure in deep-ultraviolet spectral region,” Appl. Phys. Lett. 89, 081121 (2006).
[Crossref]

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92, 113514 (2008).
[Crossref]

X. Liu, S. Zhao, B. H. Le, and Z. Mi, “Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes,” Appl. Phys. Lett. 111, 101103 (2017).
[Crossref]

R. Wang, X. Liu, I. Shih, and Z. Mi, “High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si,” Appl. Phys. Lett. 106, 261104 (2015).
[Crossref]

Q. Wang, H. P. T. Nguyen, K. Cui, and Z. Mi, “High efficiency ultraviolet emission from AlxGa1-xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy,” Appl. Phys. Lett. 101, 043115 (2012).
[Crossref]

Cryst. Growth Des. (1)

M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, and K. A. Bertness, “Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy,” Cryst. Growth Des. 16, 596–604 (2016).
[Crossref]

Electron. Lett. (1)

M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6  kHz) spectral linewidth,” Electron. Lett. 29, 1696–1697 (1993).
[Crossref]

IEEE Electron. Dev. Lett. (2)

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, “N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 37, 713–716 (2016).
[Crossref]

S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, and U. K. Mishra, “N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz,” IEEE Electron. Dev. Lett. 38, 359–362 (2017).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

H. Benisty, J. Danglot, A. Talneau, S. Enoch, J. M. Pottage, and A. David, “Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures,” IEEE J. Quantum Electron. 44, 777–789 (2008).
[Crossref]

IEEE Photon. J. (1)

X. Liu, K. Mashooq, T. Szkopek, and Z. Mi, “Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal,” IEEE Photon. J. 10, 4501211 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (3)

F. M. D. Sopra, H. P. Zappe, M. Moser, R. Hovel, H. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett. 11, 1533–1535 (1999).
[Crossref]

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 13, 269–271 (2001).
[Crossref]

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, and J. J. Coleman, “Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[Crossref]

IEEE Trans. Electron. Devices (1)

B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, “Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Trans. Electron. Devices 65, 45–50 (2018).
[Crossref]

J. Appl. Phys. (2)

W. R. Frei, H. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
[Crossref]

C. H. Henry, R. A. Logan, and F. R. Merritt, “Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers,” J. Appl. Phys. 51, 3042–3050 (1980).
[Crossref]

J. Cryst. Growth (8)

K. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, and Y. Kawakami, “Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates,” J. Cryst. Growth 425, 316–321 (2015).
[Crossref]

Y. Wu, Y. Wang, K. Sun, and Z. Mi, “Molecular beam epitaxy and characterization of AlGaN nanowire ultraviolet light emitting diodes on Al coated Si (001) substrate,” J. Cryst. Growth 507, 65–69 (2019).
[Crossref]

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287, 522–527 (2006).
[Crossref]

A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, “Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks,” J. Cryst. Growth 325, 89–92 (2011).
[Crossref]

H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, “Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using templates,” J. Cryst. Growth 310, 5093–5097 (2008).
[Crossref]

J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, “Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates,” J. Cryst. Growth 272, 180–185 (2004).
[Crossref]

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311, 2063–2068 (2009).
[Crossref]

A. A. Allerman, M. H. Crawford, M. A. Miller, and S. R. Lee, “Growth and characterization of Mg-doped AlGaN-AlN short-period superlattices for deep-UV optoelectronic devices,” J. Cryst. Growth 312, 756–761 (2010).
[Crossref]

J. Electron. Mater. (1)

A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, and D. F. Feezell, “Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices,” J. Electron. Mater. 44, 1255–1262 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Res. (1)

K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “Selective-area growth of III-V nanowires and their applications,” J. Mater. Res. 26, 2127–2141 (2011).
[Crossref]

J. Phys. Condens. Matter (1)

K. Laaksonen, M. G. Ganchenkova, and R. M. Nieminen, “Vacancies in wurtzite GaN and AlN,” J. Phys. Condens. Matter 21, 015803 (2008).
[Crossref]

J. Phys. D (2)

R. J. E. Taylor, D. M. Williams, J. R. Orchard, D. T. D. Childs, S. Khamas, and R. A. Hogg, “Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers,” J. Phys. D 46, 264005 (2013).
[Crossref]

T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010).
[Crossref]

Laser Photon. Rev. (1)

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photon. Rev. 3, 262–286 (2009).
[Crossref]

Lasers Surg. Med. (1)

B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med. 21, 149–158 (1997).
[Crossref]

Nano Lett. (9)

S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, and Z. Mi, “An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band,” Nano Lett. 17, 1212–1218 (2017).
[Crossref]

S. M. Sadaf, Y. H. Ra, T. Szkopek, and Z. Mi, “Monolithically integrated metal/semiconductor tunnel junction nanowire light-emitting diodes,” Nano Lett. 16, 1076–1080 (2016).
[Crossref]

S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, and Z. Mi, “Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers,” Nano Lett. 15, 7801–7807 (2015).
[Crossref]

D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, “AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics,” Nano Lett. 17, 3738–3743 (2017).
[Crossref]

S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, and R. C. Myers, “Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes,” Nano Lett. 13, 3029–3035 (2013).
[Crossref]

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
[Crossref]

S. Zhao, M. Djavid, and Z. Mi, “Surface emitting, high efficiency near-vacuum ultraviolet light source with aluminum nitride nanowires monolithically grown on silicon,” Nano Lett. 15, 7006–7009 (2015).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN nanowires,” Nano Lett. 13, 5509–5513 (2013).
[Crossref]

S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, and Z. Mi, “Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes,” Nano Lett. 15, 6696–6701 (2015).
[Crossref]

Nanoscale (1)

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9, 7805–7813 (2017).
[Crossref]

Nanotechnology (5)

T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, “Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer,” Nanotechnology 22, 095603 (2011).
[Crossref]

Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, and Z. Mi, “Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes,” Nanotechnology 24, 345201 (2013).
[Crossref]

A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, and B. Daudin, “Growth, structural and optical properties of AlGaN nanowires in the whole composition range,” Nanotechnology 24, 115704 (2013).
[Crossref]

S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, and C. M. Park, “Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy,” Nanotechnology 17, 4640–4643 (2006).
[Crossref]

F. K. Thomas, D. C. Santino, A. T. M. Sarwar, J. P. Patrick, F. K. Robert, and C. M. Roberto, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
[Crossref]

Nat. Nanotechnol. (2)

J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10, 140–144 (2015).
[Crossref]

Nat. Photonics (3)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2, 551–554 (2008).
[Crossref]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Nature (1)

Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[Crossref]

New J. Phys. (1)

A. Urban, J. Malindretos, J. H. Klein-Wiele, P. Simon, and A. Rizzi, “Ga-polar GaN nanocolumn arrays with semipolar faceted tips,” New J. Phys. 15, 053045 (2013).
[Crossref]

Opt. Express (10)

T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express 17, 20440–20447 (2009).
[Crossref]

C.-Y. Cho, J.-B. Lee, S.-J. Lee, S.-H. Han, T.-Y. Park, J. W. Kim, Y. C. Kim, and S.-J. Park, “Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO2,” Opt. Express 18, 1462–1468 (2010).
[Crossref]

S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19, 11963–11968 (2011).
[Crossref]

M.-H. Lo, Y.-J. Cheng, M.-C. Liu, H.-C. Kuo, and S. C. Wang, “Lasing at exciton transition in optically pumped gallium nitride nanopillars,” Opt. Express 19, 17960–17965 (2011).
[Crossref]

Y. Liang, C. Peng, K. Ishizaki, S. Iwahashi, K. Sakai, Y. Tanaka, K. Kitamura, and S. Noda, “Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization,” Opt. Express 21, 565–580 (2013).
[Crossref]

R. Merlin and S. Young, “Photonic crystals as topological high-Q resonators,” Opt. Express 22, 18579–18587 (2014).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[Crossref]

X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, and Z. Mi, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics,” Opt. Express 25, 30494–30502 (2017).
[Crossref]

B. H. Le, X. Liu, N. H. Tran, S. Zhao, and Z. Mi, “An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser,” Opt. Express 27, 5843–5850 (2019).
[Crossref]

Phys. Rev. A (1)

S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6p 2Po1/2 level of Yb+,” Phys. Rev. A 80, 022502 (2009).
[Crossref]

Phys. Rev. B (6)

U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, “Hole conductivity and compensation in epitaxial GaN:Mg layers,” Phys. Rev. B 62, 10867–10872 (2000).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[Crossref]

K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, and B. Daudin, “Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111),” Phys. Rev. B 84, 245302 (2011).
[Crossref]

C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, and L. Wirtz, “Coupling of excitons and defect states in boron-nitride nanostructures,” Phys. Rev. B 83, 144115 (2011).
[Crossref]

W. Orellana and H. Chacham, “Stability of native defects in hexagonal and cubic boron nitride,” Phys. Rev. B 63, 125205 (2001).
[Crossref]

Phys. Status Solidi (RRL) (1)

A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of AlxGa1-xN nanowires,” Phys. Status Solidi (RRL) 7, 868–873 (2013).
[Crossref]

Phys. Status Solidi A (3)

J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, and K. H. Ploog, “AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization,” Phys. Status Solidi A 192, 60–66 (2002).
[Crossref]

H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A 206, 1176–1182 (2009).
[Crossref]

C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes,” Phys. Status Solidi A 208, 1594–1596 (2011).
[Crossref]

Phys. Status Solidi C (2)

H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “226-273  nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire,” Phys. Status Solidi C 5, 2969–2971 (2008).
[Crossref]

H. J. Chu, T. W. Yeh, L. Stewart, and P. D. Dapkus, “Wurtzite InP nanowire arrays grown by selective area MOCVD,” Phys. Status Solidi C 7, 2494–2497 (2010).
[Crossref]

Proc. SPIE (3)

M. Charlton, M. Zoorob, and T. Lee, “Photonic quasi-crystal LEDs: design, modelling, and optimisation,” Proc. SPIE 6486, 64860R (2007).
[Crossref]

C. Wiesmann, K. Bergenek, N. Linder, and U. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

D. K. Serkland, G. A. Keeler, K. M. Geib, and G. M. Peake, “Narrow linewidth VCSELs for high-resolution spectroscopy,” Proc. SPIE 7229, 722907 (2009).
[Crossref]

Prog. Quantum Electron. (2)

H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, and H.-C. Kuo, “Progress and prospects of GaN-based VCSEL from near UV to green emission,” Prog. Quantum Electron. 57, 1–19 (2018).
[Crossref]

S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “III-Nitride nanowire optoelectronics,” Prog. Quantum Electron. 44, 14–68 (2015).
[Crossref]

Sci. Rep. (2)

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[Crossref]

J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, “Multi-colour nanowire photonic crystal laser pixels,” Sci. Rep. 3, 2982 (2013).
[Crossref]

Science (3)

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

Semicond. Sci. Technol. (3)

J. D. Robert and M. S. Brian, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29, 084006 (2014).
[Crossref]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
[Crossref]

A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol. 29, 084005 (2014).
[Crossref]

Solid State Commun. (1)

V. Wang, R. J. Liu, H. P. He, C. M. Yang, and L. Ma, “Hybrid functional with semi-empirical van der Waals study of native defects in hexagonal BN,” Solid State Commun. 177, 74–79 (2014).
[Crossref]

Water Res. (2)

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

K. G. Lindenauer and J. L. Darby, “Ultraviolet disinfection of wastewater: effect of dose on subsequent photoreactivation,” Water Res. 28, 805–817 (1994).
[Crossref]

Other (5)

P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, and D. A. Howe, “Miniature trapped-ion frequency standard with 171Yb+,” in Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (IEEE, 2015), pp. 752–757.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley, 2004).

T. F. Krauss, “Photonic crystals for integrated optics,” in AIP Conference Proceedings (IOP Publishing, 2001), pp. 89–98.

S. L. Chuang, Physics of Photonic Devices (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Schematic of an AlGaN nanocrystal. (b) Top view of a photonic crystal structure. (c) Schematic for the scattering process in the photonic crystal structure. (d) Light-extraction efficiency (LEE) for the planar structure and the photonic crystal structure with a = 160    nm and d = 95    nm [61].
Fig. 2.
Fig. 2. (a) Photonic band structure of a photonic crystal with a lattice constant of 207 nm and a diameter of 144 nm. The inset is the top view showing the arrangement of nanocrystals. (b) The electric field distribution of the band-edge mode in the entire device.
Fig. 3.
Fig. 3. Variation of (a) threshold current density and (b) linewidth at an injection current of 5 × I th with the device lateral dimension ( L ).
Fig. 4.
Fig. 4. Far-field radiation pattern calculated for a photonic nanocrystal laser structure with a lattice constant of 207 nm and a diameter of 144 nm.
Fig. 5.
Fig. 5. (a) Schematic of the selective-area epitaxy process. (b) A typical SEM image of AlGaN nanocrystals grown by selective-area epitaxy. (c) Normalized PL spectra for AlGaN nanocrystals with Al content across nearly the entire compositional range [33].
Fig. 6.
Fig. 6. SEM images of (a) 0.5 μm GaN grown on Si wafer and (b) N-polar GaN nanocrystals grown on Si.
Fig. 7.
Fig. 7. (a) PL emission spectra of AlN and AlN:Mg nanostructures measured at room temperature. (b) Schematic illustration of the Mg impurity band of AlN nanostructures due to high Mg concentration and the reduced activation energy for a portion of Mg acceptors.
Fig. 8.
Fig. 8. (a) I-V characteristics of a 300    μm × 300    μm LED device at room temperature. Inset: schematic of the fabricated LED structure. (b) Room temperature EL spectra of the LED device for various injection currents [35].
Fig. 9.
Fig. 9. (a) EL spectra of the Al tunnel junction AlGaN UV LED under CW biasing condition. Inset: EL spectrum in the logarithmic scale. (b) Variations of output power with injection current for Al tunnel junction AlGaN UV LED and standard p-i-n AlGaN UV LED. Inset: an optical image of the device under an injection current of 8    A / cm 2 [31].
Fig. 10.
Fig. 10. (a) Emission spectra for an AlGaN laser operating at 262 nm at 77 K under various injection current densities. (b) Variation of output with injection current. Blue circles represent the lasing peak. Black squares represent the background emission in the boxed area in (a) with a linewidth of 0.3 nm. The inset plots the data for the lasing peak in the logarithmic scale. Variations of (c) linewidth and (d) peak wavelength of the lasing peak at 262 nm with injection current density [30].
Fig. 11.
Fig. 11. (a) Emission spectra of an AlGaN laser device operating at 239 nm in CW biasing condition under different injection currents. (b) Variation of output with injection current for the lasing peak (red filled circles) and a non-lasing cavity mode (black open circles) from the boxed region in (a). The inset plots the data for the lasing peak in the logarithmic scale. (c) Variations of linewidth with the injection current [142].

Tables (1)

Tables Icon

Table 1. Definition of Various Parameters Used in the Rate Equations

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

d N d t = J q d R r R nr N ph g c n ,
d N ph d t = Γ o N ph g c n N ph α c n .
g th = α / Γ o .
α = 2 π a Q .
Δ ν = R sp ( 1 + f α 2 ) 4 π N ph V m ,
N ph V m = 1 exp [ ( ω Δ E F ) / k T ] 1 ,
R sp = α v g exp [ ( Δ E F ω ) / k T ] ,
α = d N ph N ph d x ,
v g = d x / d t ,
Q = d N ph N ph d t .
R sp = ω Q [ 1 + ( N ph V m ) 1 ] .
R sp ω / Q .
N ph V m = τ ph q ( I I th ) ,
τ ph = Q / ω .
Δ ν = ω 2 ( 1 + f α 2 ) 4 π Q 2 q ( I I th ) .

Metrics