Abstract

Mid-infrared pulsed lasers operating around the 3 μm wavelength regime are important for a wide range of applications including sensing, spectroscopy, imaging, etc. Despite the recent advances in technology, the lack of a nonlinear optical modulator operating in the mid-infrared regime remains a significant challenge. Here, we report the third-order nonlinear optical response of gold nanorods (GNRs) ranging from 800 nm to the mid-infrared regime (2810 nm) enabled by their size and overlapping behavior-dependent longitudinal surface plasmon resonance. In addition, we demonstrate a wavelength-tunable Er3+-doped fluoride fiber laser modulated by GNRs, which can deliver pulsed laser output, with the pulse duration down to 533 ns, tunable wavelength ranging from 2760.2 to 2810.0 nm, and spectral 3 dB bandwidth of about 1 nm. The experimental results not only validate the GNRs’ robust mid-infrared nonlinear optical response, but also manifest their application potential in high-performance broadband optoelectronic devices.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm

Hongyu Luo, Zhe Kang, Ying Gao, Hanlin Peng, Jianfeng Li, Guanshi Qin, and Yong Liu
Opt. Express 27(4) 4886-4896 (2019)

Tailoring optical nonlinearities of LiNbO3 crystals by plasmonic silver nanoparticles for broadband saturable absorbers

Chi Pang, Rang Li, Yuxia Zhang, Ziqi Li, Ningning Dong, Liang Wu, Haohai Yu, Jun Wang, Feng Ren, and Feng Chen
Opt. Express 26(24) 31276-31289 (2018)

Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan
Opt. Express 23(9) 11183-11194 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  2. C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
    [Crossref]
  3. Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
    [Crossref]
  4. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Graphene Q-switching of a 3  μm Er: ZBLAN fiber laser,” in Advanced Solid-State Lasers Congress (2013), paper AF2A.9.
  5. Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er3+: ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
    [Crossref]
  6. C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8  μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
    [Crossref]
  7. P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
    [Crossref]
  8. M. Q. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. H. Gao, C. Kränkel, and G. Huber, “Watt-level passively Q-switched Er: Lu2 O3 laser at 2.84  μm using MoS2,” Opt. Lett. 41, 540–543 (2016).
    [Crossref]
  9. P. H. Tang, Z. P. Qin, J. Liu, C. J. Zhao, G. Q. Xie, S. C. Wen, and L. J. Qian, “Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 40, 4855–4858 (2015).
    [Crossref]
  10. J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
    [Crossref]
  11. Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
    [Crossref]
  12. K. Yin, B. Zhang, L. Li, T. Jiang, and X. F. Zhou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2  μm,” Photon. Res. 3, 72–76 (2015).
    [Crossref]
  13. W. Q. Yang, J. Hou, B. Zhang, R. Song, and Z. J. Hou, “Semiconductor saturable absorber mirror passively Q-switched fiber laser near 2  μm,” Appl. Opt. 51, 5664–5667 (2012).
    [Crossref]
  14. Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
    [Crossref]
  15. Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9, 19100–19107 (2018).
    [Crossref]
  16. D. Li, H. Xue, Y. D. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. F. Li, J. Riikonen, F. W. Ye, Q. Dai, Z. Y. Ren, J. T. Bai, T. Hasan, H. Lipsanen, and Z. P. Sun, “Active synchronization and modulation of fiber lasers with a graphene electro-optic modulator,” Opt. Lett. 43, 3497–3500 (2018).
    [Crossref]
  17. X. T. Kong, B. Bai, and Q. Dai, “Graphene plasmon propagation on corrugated silicon substrates,” Opt. Lett. 40, 1–4 (2015).
    [Crossref]
  18. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
    [Crossref]
  19. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 6, 107–111 (2010).
    [Crossref]
  20. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [Crossref]
  21. H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17, 6447–6451 (2005).
    [Crossref]
  22. L. Vigderman, B. P. Khanal, and E. R. Zubarev, “Functional gold nanorods: synthesis, self‐assembly, and sensing applications,” Adv. Mater. 24, 4811–4841 (2012).
    [Crossref]
  23. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [Crossref]
  24. K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
    [Crossref]
  25. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
    [Crossref]
  26. J. O. Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
    [Crossref]
  27. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time,” Phys. Rev. B 61, 6086–6090 (2006).
    [Crossref]
  28. Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
    [Crossref]
  29. T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
    [Crossref]
  30. H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photon. J. 7, 4, 14501210 (2015).
    [Crossref]
  31. H. Zhang and J. Liu, “Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1  μm region,” Opt. Lett. 41, 1150–1152 (2016).
    [Crossref]
  32. S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
    [Crossref]
  33. D. D. Wu, J. Ping, Z. P. Cai, J. Weng, Z. Q. Luo, N. Chen, and H. Y. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
    [Crossref]
  34. X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
    [Crossref]
  35. Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3, 1986–1991 (2013).
    [Crossref]
  36. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
    [Crossref]
  37. X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
    [Crossref]
  38. K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118, 5918–5926 (2014).
    [Crossref]
  39. J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
    [Crossref]
  40. J. Fontana, N. Charipar, S. R. Flom, J. Naciri, A. Piqué, and B. R. Ratna, “Rise of the charge transfer plasmon: programmable concatenation of conductively linked gold nanorod dimers,” ACS Photon. 3, 904–911 (2016).
    [Crossref]
  41. G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
    [Crossref]
  42. L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
    [Crossref]
  43. K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
    [Crossref]
  44. P. Pramod and K. G. Thomas, “Plasmon coupling in dimers of Au nanorods,” Adv. Mater. 20, 4300–4305 (2008).
    [Crossref]
  45. M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
    [Crossref]
  46. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  47. J. Liu, P. Tang, Y. Chen, C. Zhao, D. Shen, S. Wen, and D. Fan, “Highly efficient tunable mid-infrared optical parametric oscillator pumped by a wavelength locked, Q-switched Er: YAG laser,” Opt. Express 23, 20812–20819 (2015).
    [Crossref]
  48. P. H. Tang, J. Liu, B. Huang, C. W. Xu, C. J. Zhao, and S. C. Wen, “Stable and wavelength-locked Q-switched narrow-linewidth Er: YAG laser at 1645  nm,” Opt. Express 23, 11037–11042 (2015).
    [Crossref]

2018 (2)

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9, 19100–19107 (2018).
[Crossref]

D. Li, H. Xue, Y. D. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. F. Li, J. Riikonen, F. W. Ye, Q. Dai, Z. Y. Ren, J. T. Bai, T. Hasan, H. Lipsanen, and Z. P. Sun, “Active synchronization and modulation of fiber lasers with a graphene electro-optic modulator,” Opt. Lett. 43, 3497–3500 (2018).
[Crossref]

2017 (3)

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

2016 (7)

J. Fontana, N. Charipar, S. R. Flom, J. Naciri, A. Piqué, and B. R. Ratna, “Rise of the charge transfer plasmon: programmable concatenation of conductively linked gold nanorod dimers,” ACS Photon. 3, 904–911 (2016).
[Crossref]

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

M. Q. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. H. Gao, C. Kränkel, and G. Huber, “Watt-level passively Q-switched Er: Lu2 O3 laser at 2.84  μm using MoS2,” Opt. Lett. 41, 540–543 (2016).
[Crossref]

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

H. Zhang and J. Liu, “Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1  μm region,” Opt. Lett. 41, 1150–1152 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

2015 (12)

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

D. D. Wu, J. Ping, Z. P. Cai, J. Weng, Z. Q. Luo, N. Chen, and H. Y. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
[Crossref]

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photon. J. 7, 4, 14501210 (2015).
[Crossref]

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

K. Yin, B. Zhang, L. Li, T. Jiang, and X. F. Zhou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2  μm,” Photon. Res. 3, 72–76 (2015).
[Crossref]

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

X. T. Kong, B. Bai, and Q. Dai, “Graphene plasmon propagation on corrugated silicon substrates,” Opt. Lett. 40, 1–4 (2015).
[Crossref]

P. H. Tang, Z. P. Qin, J. Liu, C. J. Zhao, G. Q. Xie, S. C. Wen, and L. J. Qian, “Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 40, 4855–4858 (2015).
[Crossref]

Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er3+: ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

J. Liu, P. Tang, Y. Chen, C. Zhao, D. Shen, S. Wen, and D. Fan, “Highly efficient tunable mid-infrared optical parametric oscillator pumped by a wavelength locked, Q-switched Er: YAG laser,” Opt. Express 23, 20812–20819 (2015).
[Crossref]

P. H. Tang, J. Liu, B. Huang, C. W. Xu, C. J. Zhao, and S. C. Wen, “Stable and wavelength-locked Q-switched narrow-linewidth Er: YAG laser at 1645  nm,” Opt. Express 23, 11037–11042 (2015).
[Crossref]

2014 (3)

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118, 5918–5926 (2014).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

2013 (3)

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3, 1986–1991 (2013).
[Crossref]

K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
[Crossref]

2012 (8)

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

J. O. Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

L. Vigderman, B. P. Khanal, and E. R. Zubarev, “Functional gold nanorods: synthesis, self‐assembly, and sensing applications,” Adv. Mater. 24, 4811–4841 (2012).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8  μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

W. Q. Yang, J. Hou, B. Zhang, R. Song, and Z. J. Hou, “Semiconductor saturable absorber mirror passively Q-switched fiber laser near 2  μm,” Appl. Opt. 51, 5664–5667 (2012).
[Crossref]

2010 (1)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 6, 107–111 (2010).
[Crossref]

2009 (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

2008 (1)

P. Pramod and K. G. Thomas, “Plasmon coupling in dimers of Au nanorods,” Adv. Mater. 20, 4300–4305 (2008).
[Crossref]

2006 (3)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time,” Phys. Rev. B 61, 6086–6090 (2006).
[Crossref]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

2005 (1)

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17, 6447–6451 (2005).
[Crossref]

2003 (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Ahmed, A.

K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
[Crossref]

Aizpurua, J.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Aksimsek, S.

Altantzis, T.

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref]

Aristov, A.

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Baev, A.

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

Bai, B.

Bai, J. T.

Bals, S.

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

Baltar, H. T. M. C. M.

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

Banska, J. O.

J. O. Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Bao, Q. L.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Bares, L.

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

Barnard, J. S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Baumberg, J. J.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref]

Bi, G.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

Biswas, S.

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118, 5918–5926 (2014).
[Crossref]

Burda, C.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time,” Phys. Rev. B 61, 6086–6090 (2006).
[Crossref]

Caglayan, H.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Cai, Z. P.

Charipar, N.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

J. Fontana, N. Charipar, S. R. Flom, J. Naciri, A. Piqué, and B. R. Ratna, “Rise of the charge transfer plasmon: programmable concatenation of conductively linked gold nanorod dimers,” ACS Photon. 3, 904–911 (2016).
[Crossref]

Che, J.

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

Chekurov, N.

Chen, J.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Chen, N.

Chen, Y.

Cheng, C. H.

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Chi, Y. C.

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Chu, H. C.

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17, 6447–6451 (2005).
[Crossref]

Chung, S.

K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
[Crossref]

Dai, Q.

de Araújo, C. B.

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

Doan-Nguyen, V.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Dunkelberger, A.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

Elim, H. I.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

El-Sayed, M. A.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time,” Phys. Rev. B 61, 6086–6090 (2006).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

Engheta, N.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Fan, D.

Fan, M. Q.

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Feng, Y.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Flom, S. R.

J. Fontana, N. Charipar, S. R. Flom, J. Naciri, A. Piqué, and B. R. Ratna, “Rise of the charge transfer plasmon: programmable concatenation of conductively linked gold nanorod dimers,” ACS Photon. 3, 904–911 (2016).
[Crossref]

Fontana, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

J. Fontana, N. Charipar, S. R. Flom, J. Naciri, A. Piqué, and B. R. Ratna, “Rise of the charge transfer plasmon: programmable concatenation of conductively linked gold nanorod dimers,” ACS Photon. 3, 904–911 (2016).
[Crossref]

Gao, X. H.

Gomes, A. S. L.

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

González-Izquierdo, J.

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

González-Rubio, G.

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

Gordel, M.

J. O. Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Gordon, R.

K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
[Crossref]

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 6, 107–111 (2010).
[Crossref]

Guerrero-Martínez, A.

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

Guo, Q. B.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

Guo, X. Y.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Hasan, T.

Hashida, M.

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Graphene Q-switching of a 3  μm Er: ZBLAN fiber laser,” in Advanced Solid-State Lasers Congress (2013), paper AF2A.9.

He, J. H.

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

He, J. L.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9, 19100–19107 (2018).
[Crossref]

He, Y. L.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 6, 107–111 (2010).
[Crossref]

Herrmann, L. O.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Hou, J.

Hou, Z. J.

Hsiao, M.

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

Huang, B.

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

P. H. Tang, J. Liu, B. Huang, C. W. Xu, C. J. Zhao, and S. C. Wen, “Stable and wavelength-locked Q-switched narrow-linewidth Er: YAG laser at 1645  nm,” Opt. Express 23, 11037–11042 (2015).
[Crossref]

Huang, H. T.

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photon. J. 7, 4, 14501210 (2015).
[Crossref]

Huang, M. H.

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17, 6447–6451 (2005).
[Crossref]

Huber, G.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Ji, W.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

Jia, Z. X.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3, 1986–1991 (2013).
[Crossref]

Jiang, T.

K. Yin, B. Zhang, L. Li, T. Jiang, and X. F. Zhou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2  μm,” Photon. Res. 3, 72–76 (2015).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Jin, L.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Kabashin, A. V.

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

Kagan, C. R.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Kanel, S.

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118, 5918–5926 (2014).
[Crossref]

Kang, J.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

Kang, Y.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Kang, Z.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3, 1986–1991 (2013).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Kasera, S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Khanal, B. P.

L. Vigderman, B. P. Khanal, and E. R. Zubarev, “Functional gold nanorods: synthesis, self‐assembly, and sensing applications,” Adv. Mater. 24, 4811–4841 (2012).
[Crossref]

Kim, W.

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Kolkowski, R.

J. O. Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Kong, X. T.

Kränkel, C.

Kumacheva, E.

K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
[Crossref]

Kuo, C. L.

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17, 6447–6451 (2005).
[Crossref]

Kuo, T. J.

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17, 6447–6451 (2005).
[Crossref]

Lee, C. K.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9, 19100–19107 (2018).
[Crossref]

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lee, J. Y.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

Lee, P.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9, 19100–19107 (2018).
[Crossref]

Lee, S. T.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Li, C. F.

Li, D.

Li, G. Q.

Li, J. F.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Li, L.

Li, M.

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photon. J. 7, 4, 14501210 (2015).
[Crossref]

Li, T.

Liang, L.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Lieto, A. D.

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Lin, G. R.

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, S. H.

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, Y. H.

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Link, S.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time,” Phys. Rev. B 61, 6086–6090 (2006).
[Crossref]

Lipsanen, H.

Liu, H.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9, 19100–19107 (2018).
[Crossref]

Liu, J.

Liu, J. F.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Liu, K.

K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
[Crossref]

Liu, L.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3, 1986–1991 (2013).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Liu, M.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Liu, X.

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photon. J. 7, 4, 14501210 (2015).
[Crossref]

Liu, X. F.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Liu, Y.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Liu, Z. K.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Liz-Marzán, L. M.

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

Lu, K. Y.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Luo, A. P.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Luo, H. Y.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Luo, Z. C.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Luo, Z. Q.

Lv, X. J.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Ma, H. Y.

Ma, W. L.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Maldonado, M.

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

Matczyszyn, K.

J. O. Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Maximova, K.

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

Meng, Y. F.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Mi, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

Miao, L. L.

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Mohamed, M. B.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time,” Phys. Rev. B 61, 6086–6090 (2006).
[Crossref]

Mu, H. R.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Murakami, M.

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Graphene Q-switching of a 3  μm Er: ZBLAN fiber laser,” in Advanced Solid-State Lasers Congress (2013), paper AF2A.9.

Murray, C. B.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Naciri, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

J. Fontana, N. Charipar, S. R. Flom, J. Naciri, A. Piqué, and B. R. Ratna, “Rise of the charge transfer plasmon: programmable concatenation of conductively linked gold nanorod dimers,” ACS Photon. 3, 904–911 (2016).
[Crossref]

Nepal, D.

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118, 5918–5926 (2014).
[Crossref]

Nie, Z.

K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
[Crossref]

Nikoobakht, B.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time,” Phys. Rev. B 61, 6086–6090 (2006).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

Nita, R.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

Norwood, R. A.

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8  μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref]

Owrustsky, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

Park, K.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118, 5918–5926 (2014).
[Crossref]

Pena-Rodríguez, O.

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

Peyghambarian, N.

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8  μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Ping, J.

Piqué, A.

J. Fontana, N. Charipar, S. R. Flom, J. Naciri, A. Piqué, and B. R. Ratna, “Rise of the charge transfer plasmon: programmable concatenation of conductively linked gold nanorod dimers,” ACS Photon. 3, 904–911 (2016).
[Crossref]

Podolskiy, V. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 6, 107–111 (2010).
[Crossref]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 6, 107–111 (2010).
[Crossref]

Pramod, P.

P. Pramod and K. G. Thomas, “Plasmon coupling in dimers of Au nanorods,” Adv. Mater. 20, 4300–4305 (2008).
[Crossref]

Prasad, P. N.

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

Qian, L. J.

Qin, G. S.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3, 1986–1991 (2013).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Qin, W. P.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3, 1986–1991 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Qin, Z. P.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

P. H. Tang, Z. P. Qin, J. Liu, C. J. Zhao, G. Q. Xie, S. C. Wen, and L. J. Qian, “Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 40, 4855–4858 (2015).
[Crossref]

Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er3+: ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

Qique, A.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

Qiu, J. R.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

Ratna, B.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

Ratna, B. R.

J. Fontana, N. Charipar, S. R. Flom, J. Naciri, A. Piqué, and B. R. Ratna, “Rise of the charge transfer plasmon: programmable concatenation of conductively linked gold nanorod dimers,” ACS Photon. 3, 904–911 (2016).
[Crossref]

Ren, Z. Y.

Riikonen, J.

Rivera, A.

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

Rozhin, A. G.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Sakabe, S.

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Graphene Q-switching of a 3  μm Er: ZBLAN fiber laser,” in Advanced Solid-State Lasers Congress (2013), paper AF2A.9.

Samoc, M.

J. O. Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Sang, Y. H.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9, 19100–19107 (2018).
[Crossref]

Scherman, O. A.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Sentis, M.

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Shen, D.

Shen, D. Y.

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photon. J. 7, 4, 14501210 (2015).
[Crossref]

Shi, Y.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Shimizu, S.

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Graphene Q-switching of a 3  μm Er: ZBLAN fiber laser,” in Advanced Solid-State Lasers Congress (2013), paper AF2A.9.

Song, R.

Sugikawa, K.

K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
[Crossref]

Sum, T. C.

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Sun, Z. P.

Tang, D. Y.

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photon. J. 7, 4, 14501210 (2015).
[Crossref]

Tang, P.

Tang, P. H.

Tang, R.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Tardajos, G.

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

Thomas, K. G.

P. Pramod and K. G. Thomas, “Plasmon coupling in dimers of Au nanorods,” Adv. Mater. 20, 4300–4305 (2008).
[Crossref]

Tian, Q.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Tokita, S.

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Graphene Q-switching of a 3  μm Er: ZBLAN fiber laser,” in Advanced Solid-State Lasers Congress (2013), paper AF2A.9.

Tonelli, M.

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Tseng, W. H.

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Tserkezis, C.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Turistyn, S. K.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Vaia, R.

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

Vaia, R. A.

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118, 5918–5926 (2014).
[Crossref]

Valev, V. K.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Vigderman, L.

L. Vigderman, B. P. Khanal, and E. R. Zubarev, “Functional gold nanorods: synthesis, self‐assembly, and sensing applications,” Adv. Mater. 24, 4811–4841 (2012).
[Crossref]

Wang, F. Q.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Wang, L.

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photon. J. 7, 4, 14501210 (2015).
[Crossref]

Wang, Q. K.

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

Wang, R. B.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Wang, S. X.

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Wang, W. W.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Wang, X. D.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Wang, Y. D.

Wang, Y. J.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Wang, Y. R.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9, 19100–19107 (2018).
[Crossref]

Wang, Y. Z.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Wang, Z. T.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Wei, C.

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8  μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Wen, S.

Wen, S. C.

Weng, J.

Wiederrechat, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 6, 107–111 (2010).
[Crossref]

Wu, C. I.

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Wu, C. L.

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Wu, D. D.

Wu, G.

K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
[Crossref]

Wu, H. Y.

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17, 6447–6451 (2005).
[Crossref]

Wu, M.

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 6, 107–111 (2010).
[Crossref]

Xiao, S.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Xie, G. Q.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

P. H. Tang, Z. P. Qin, J. Liu, C. J. Zhao, G. Q. Xie, S. C. Wen, and L. J. Qian, “Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 40, 4855–4858 (2015).
[Crossref]

Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er3+: ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

Xin, J.

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Xing, G.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Xiong, Q. H.

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Xiu, F. X.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Xu, C. W.

Xu, H. Y.

Xu, W. C.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Xu, Y.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3, 1986–1991 (2013).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Xu, Y. B.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Xue, H.

Yang, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

Yang, R. Y.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Yang, W. Q.

Yao, Y. H.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

Ye, F. W.

Ye, X.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Yin, K.

Yu, H. H.

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Yuan, P.

Yuan, X. F.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 6, 107–111 (2010).
[Crossref]

Zhang, B.

Zhang, B. T.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9, 19100–19107 (2018).
[Crossref]

Zhang, C.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Zhang, H.

Zhang, H. J.

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Zhang, L.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Zhang, R.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Zhang, S. A.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

Zhang, Y. X.

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Zhao, C.

Zhao, C. J.

Zhao, D.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3, 1986–1991 (2013).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Zhao, S. Z.

Zheng, C.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

Zhou, K. M.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Zhou, X. F.

Zhu, C. H.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Zhu, S. N.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Zhu, X. S.

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8  μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Zhu, X. X.

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Zubarev, E. R.

L. Vigderman, B. P. Khanal, and E. R. Zubarev, “Functional gold nanorods: synthesis, self‐assembly, and sensing applications,” Adv. Mater. 24, 4811–4841 (2012).
[Crossref]

ACS Nano (3)

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10, 9463–9469 (2016).
[Crossref]

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).
[Crossref]

K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, and E. Kumacheva, “In situ plasmonic counter for polymerization of chains of gold nanorods in solution,” ACS Nano 7, 5901–5910 (2013).
[Crossref]

ACS Photon. (2)

J. Fontana, N. Charipar, S. R. Flom, J. Naciri, A. Piqué, and B. R. Ratna, “Rise of the charge transfer plasmon: programmable concatenation of conductively linked gold nanorod dimers,” ACS Photon. 3, 904–911 (2016).
[Crossref]

Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Adv. Mater. (3)

Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, and W. L. Ma, “Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

L. Vigderman, B. P. Khanal, and E. R. Zubarev, “Functional gold nanorods: synthesis, self‐assembly, and sensing applications,” Adv. Mater. 24, 4811–4841 (2012).
[Crossref]

P. Pramod and K. G. Thomas, “Plasmon coupling in dimers of Au nanorods,” Adv. Mater. 20, 4300–4305 (2008).
[Crossref]

Adv. Opt. Mater. (1)

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5, 1700335 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, and Q. H. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Chem. Mater. (2)

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17, 6447–6451 (2005).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

IEEE Photon. J. (1)

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photon. J. 7, 4, 14501210 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8  μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

J. Appl. Phys. (1)

M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, and P. N. Prasad, “Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film,” J. Appl. Phys. 121, 143103 (2017).
[Crossref]

J. Phys. Chem. C (2)

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118, 5918–5926 (2014).
[Crossref]

J. O. Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Laser Phys. Lett. (2)

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Nano Lett. (1)

G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods,” Nano Lett. 15, 8282–8288 (2015).
[Crossref]

Nanoscale (1)

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9, 19100–19107 (2018).
[Crossref]

Nanotechnology (1)

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

Nat. Commun. (2)

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Nat. Nanotechnol. (1)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 6, 107–111 (2010).
[Crossref]

Nat. Photonics (3)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. B (1)

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time,” Phys. Rev. B 61, 6086–6090 (2006).
[Crossref]

Phys. Rev. Lett. (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref]

Other (1)

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Graphene Q-switching of a 3  μm Er: ZBLAN fiber laser,” in Advanced Solid-State Lasers Congress (2013), paper AF2A.9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) TEM image and (b) aspect ratio distribution of GNRs. The inset of (a) shows the photograph of the GNR solution.
Fig. 2.
Fig. 2. (a) Absorption spectrum of GNRs from 400 to 3200 nm. (b) The FDTD simulation results of the absorption cross section of one, two, three, and four GNRs concatenated.
Fig. 3.
Fig. 3. Nonlinear saturable absorption measurements of GNRs at 780 nm, 1560 nm, 1930 nm, and 2700  nm.
Fig. 4.
Fig. 4. Experiment schematic of a tunable passively Q-switched Er3+:ZBLAN fiber laser using gold nanorods as the saturable absorber.
Fig. 5.
Fig. 5. (a) Output spectrum of the Q-switched Er3+:ZBLAN fiber laser operating at 2786 nm. (b) Output power and pulse energy as a function of incident pump power. (c) Repetition rate and pulse width as a function of incident pump power. (d) Radio-frequency spectrum.
Fig. 6.
Fig. 6. Q-switched pulse train at different output powers and the typical single pulse profile from the Er3+:ZBLAN fiber laser.
Fig. 7.
Fig. 7. Output characteristics of the tunable passively Q-switched Er3+:ZBLAN fiber laser: (a) output spectrum of tunable passively Q-switched Er3+:ZBLAN fiber laser; (b) output power as a function of wavelength with an incident pump power of 5.6 W.

Tables (1)

Tables Icon

Table 1. Comparison of Output Characteristics of Passively Q-switched Er3+:ZBLAN Fiber Lasers Using Various Saturable Absorbers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(z)=1Δα×eI/Isαns.