Abstract

We experimentally demonstrate a scheme to deterministically excite a three-dimensionally oriented electric dipole in a single Au nanosphere by using a tightly focused radially polarized beam whose focal field possesses polarization states along three-dimensional (3D) orientations owing to the spatial overlap between longitudinal and radial electric field components. Experiment observations indicate that the orientation of an excited dipole moment gradually changes from out-of-plane to in-plane when the nanosphere is moved away from the beam center, which is reconfirmed by full-wave simulations. Moreover, rigorous calculation based on Mie theory reveals that a reduced effective ambient permittivity accompanies the rotation of the dipole moment, leading to a blue-shifted and narrowed resonance peak. We envision that our results could find applications in detecting the 3D orientation of isolated molecules and benefit the fine manipulation of light–matter interactions at the single-molecule level.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Radial breathing modes coupling in plasmonic molecules

Fajun Xiao, Guanglin Wang, Wuyun Shang, Weiren Zhu, Lei Han, Ting Mei, Malin Premaratne, and Jianlin Zhao
Opt. Express 27(4) 5116-5124 (2019)

Exciting a chiral dipole moment in an achiral nanostructure

Jörg S. Eismann, Martin Neugebauer, and Peter Banzer
Optica 5(8) 954-959 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Premaratne and M. I. Stockman, “Theory and technology of SPASERs,” Adv. Opt. Photon. 9, 79–128 (2017).
    [Crossref]
  2. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
    [Crossref]
  3. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
    [Crossref]
  4. V. Giannini, A. I. Fernandezdominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
    [Crossref]
  5. R. Pala, J. S. White, E. S. Barnard, J. S. Q. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
    [Crossref]
  6. X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
    [Crossref]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  8. Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20  nm to 220  nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
    [Crossref]
  9. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
    [Crossref]
  10. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
    [Crossref]
  11. J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, and P. O. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
    [Crossref]
  12. C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
    [Crossref]
  13. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
    [Crossref]
  14. R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
    [Crossref]
  15. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
    [Crossref]
  16. I. Chung, K. T. Shimizu, and M. G. Bawendi, “Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy,” Proc. Natl. Acad. Sci. USA 100, 405–408 (2003).
    [Crossref]
  17. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
    [Crossref]
  18. M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012).
    [Crossref]
  19. S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399, 126–130 (1999).
    [Crossref]
  20. C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
    [Crossref]
  21. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [Crossref]
  22. T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3, 191–202 (2012).
    [Crossref]
  23. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
    [Crossref]
  24. G. Li, Y. Zhang, and D. Y. Lei, “Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy,” Nanoscale 8, 7119–7126 (2016).
    [Crossref]
  25. X. Wang, Y. Li, J. Chen, C. Guo, J. Ding, and H. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
    [Crossref]
  26. S. Liu, P. Li, T. Peng, and J. Zhao, “Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer,” Opt. Express 20, 21715–21721 (2012).
    [Crossref]
  27. H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
    [Crossref]
  28. S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
    [Crossref]
  29. A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
    [Crossref]
  30. F. Xiao, Y. Ren, W. Shang, W. Zhu, L. Han, H. Lu, T. Mei, M. Premaratne, and Z. Jianlin, “Sub-10 nm particle trapping enabled by a plasmonic dark mode,” Opt. Lett. 43, 3413–3416 (2018).
    [Crossref]
  31. J. Sanchoparramon and D. Jelovina, “Boosting Fano resonances in single layered concentric core-shell particles,” Nanoscale 6, 13555–13564 (2014).
    [Crossref]
  32. S. Person, M. Jain, Z. J. Lapin, J. J. Saenz, G. W. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
    [Crossref]
  33. F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photon. Res. 6, 157–161 (2018).
    [Crossref]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  35. V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
    [Crossref]
  36. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83, 4625–4627 (2003).
    [Crossref]

2018 (2)

2017 (1)

2016 (3)

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

G. Li, Y. Zhang, and D. Y. Lei, “Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy,” Nanoscale 8, 7119–7126 (2016).
[Crossref]

2014 (3)

J. Sanchoparramon and D. Jelovina, “Boosting Fano resonances in single layered concentric core-shell particles,” Nanoscale 6, 13555–13564 (2014).
[Crossref]

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20  nm to 220  nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

2013 (3)

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref]

S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
[Crossref]

S. Person, M. Jain, Z. J. Lapin, J. J. Saenz, G. W. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

2012 (5)

S. Liu, P. Li, T. Peng, and J. Zhao, “Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer,” Opt. Express 20, 21715–21721 (2012).
[Crossref]

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3, 191–202 (2012).
[Crossref]

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012).
[Crossref]

C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
[Crossref]

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

2011 (1)

V. Giannini, A. I. Fernandezdominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

2010 (2)

J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, and P. O. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[Crossref]

X. Wang, Y. Li, J. Chen, C. Guo, J. Ding, and H. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
[Crossref]

2009 (3)

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[Crossref]

R. Pala, J. S. White, E. S. Barnard, J. S. Q. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

2008 (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[Crossref]

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

2006 (1)

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

2005 (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

2004 (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[Crossref]

2003 (2)

I. Chung, K. T. Shimizu, and M. G. Bawendi, “Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy,” Proc. Natl. Acad. Sci. USA 100, 405–408 (2003).
[Crossref]

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83, 4625–4627 (2003).
[Crossref]

2000 (1)

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref]

1999 (2)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399, 126–130 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Bachelier, G.

J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, and P. O. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[Crossref]

Barnard, E. S.

R. Pala, J. S. White, E. S. Barnard, J. S. Q. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Baumberg, J. J.

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Bawendi, M. G.

I. Chung, K. T. Shimizu, and M. G. Bawendi, “Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy,” Proc. Natl. Acad. Sci. USA 100, 405–408 (2003).
[Crossref]

S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399, 126–130 (1999).
[Crossref]

Benichou, E.

J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, and P. O. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[Crossref]

Benz, F.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Braun, K.

S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
[Crossref]

Brevet, P. O.

J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, and P. O. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[Crossref]

Brongersma, M. L.

R. Pala, J. S. White, E. S. Barnard, J. S. Q. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Butet, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, and P. O. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[Crossref]

Carnegie, C.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

Chen, H.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3, 191–202 (2012).
[Crossref]

Chen, J.

Chen, Y. L.

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref]

Chikkaraddy, R.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Chilkoti, A.

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chung, I.

I. Chung, K. T. Shimizu, and M. G. Bawendi, “Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy,” Proc. Natl. Acad. Sci. USA 100, 405–408 (2003).
[Crossref]

Ciraci, C.

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

De Abajo, F. J. G.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

De Nijs, B.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Demetriadou, A.

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

Ding, J.

Dreismann, A.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

Duboisset, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, and P. O. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[Crossref]

Empedocles, S. A.

S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399, 126–130 (1999).
[Crossref]

Esteban, R.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

Esumi, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83, 4625–4627 (2003).
[Crossref]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

Felderer, K.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[Crossref]

Fernandezdominguez, A. I.

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

V. Giannini, A. I. Fernandezdominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Fox, P. T.

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Frey, H. G.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[Crossref]

Fujii, F.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012).
[Crossref]

Funston, A. M.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Giannini, V.

V. Giannini, A. I. Fernandezdominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Giessen, H.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
[Crossref]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

Grajower, M.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Guckenberger, R.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[Crossref]

Guo, C.

Hakanson, U.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

Halas, N. J.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Han, L.

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref]

Heck, S. C.

V. Giannini, A. I. Fernandezdominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Hentschel, M.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
[Crossref]

Hess, O.

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Hill, R. T.

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

Hughes, S.

C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
[Crossref]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

Iwane, A. H.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012).
[Crossref]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

Jager, R.

S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
[Crossref]

Jager, S.

S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
[Crossref]

Jain, M.

S. Person, M. Jain, Z. J. Lapin, J. J. Saenz, G. W. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

Jelovina, D.

J. Sanchoparramon and D. Jelovina, “Boosting Fano resonances in single layered concentric core-shell particles,” Nanoscale 6, 13555–13564 (2014).
[Crossref]

Jiang, R.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3, 191–202 (2012).
[Crossref]

Jianlin, Z.

Jin, T.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jonin, C.

J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, and P. O. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[Crossref]

Kern, A. M.

S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
[Crossref]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

Knight, M. W.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

Komori, Y.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012).
[Crossref]

Kristensen, P. T.

C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
[Crossref]

Kuhn, S.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

Kuwata, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83, 4625–4627 (2003).
[Crossref]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

Lapin, Z. J.

S. Person, M. Jain, Z. J. Lapin, J. J. Saenz, G. W. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

Lassiter, J. B.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

Lei, D. Y.

G. Li, Y. Zhang, and D. Y. Lei, “Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy,” Nanoscale 8, 7119–7126 (2016).
[Crossref]

Lerman, G. M.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Levy, U.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Li, G.

G. Li, Y. Zhang, and D. Y. Lei, “Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy,” Nanoscale 8, 7119–7126 (2016).
[Crossref]

Li, P.

Li, Q.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3, 191–202 (2012).
[Crossref]

Li, Y.

Liu, J. S. Q.

R. Pala, J. S. White, E. S. Barnard, J. S. Q. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Liu, R. S.

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref]

Liu, S.

Lizmarzan, L. M.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Lu, H.

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Maier, S. A.

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

V. Giannini, A. I. Fernandezdominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Mei, T.

Meixner, A. J.

S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
[Crossref]

Ming, T.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3, 191–202 (2012).
[Crossref]

Miyano, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83, 4625–4627 (2003).
[Crossref]

Mock, J. J.

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Mulvaney, P.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Neuhauser, R.

S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399, 126–130 (1999).
[Crossref]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Nordlander, P.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

Novo, C.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Novotny, L.

S. Person, M. Jain, Z. J. Lapin, J. J. Saenz, G. W. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[Crossref]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref]

Ohadi, H.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

Ohmachi, M.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

Pala, R.

R. Pala, J. S. White, E. S. Barnard, J. S. Q. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Palomba, S.

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[Crossref]

Pastorizasantos, I.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Pendry, J. B.

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Peng, T.

Person, S.

S. Person, M. Jain, Z. J. Lapin, J. J. Saenz, G. W. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

Premaratne, M.

Ren, Y.

Rodriguezfernandez, J.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Rogobete, L.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

Rosta, E.

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Ruan, Q.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20  nm to 220  nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

Russierantoine, I.

J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, and P. O. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[Crossref]

Saenz, J. J.

S. Person, M. Jain, Z. J. Lapin, J. J. Saenz, G. W. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

Sanchoparramon, J.

J. Sanchoparramon and D. Jelovina, “Boosting Fano resonances in single layered concentric core-shell particles,” Nanoscale 6, 13555–13564 (2014).
[Crossref]

Sandoghdar, V.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Scherman, O. A.

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Schmidt, M. K.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shang, W.

Shao, L.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20  nm to 220  nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

Sheppard, C. J. R.

H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[Crossref]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[Crossref]

Shimizu, K. T.

I. Chung, K. T. Shimizu, and M. G. Bawendi, “Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy,” Proc. Natl. Acad. Sci. USA 100, 405–408 (2003).
[Crossref]

Shu, Y.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20  nm to 220  nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Sick, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref]

Smith, D. R.

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Stockman, M. I.

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

Tamaru, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83, 4625–4627 (2003).
[Crossref]

Tsai, D. P.

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref]

Urzhumov, Y. A.

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Van Vlack, C.

C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
[Crossref]

Wang, H.

X. Wang, Y. Li, J. Chen, C. Guo, J. Ding, and H. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
[Crossref]

H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[Crossref]

Wang, J.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20  nm to 220  nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3, 191–202 (2012).
[Crossref]

Wang, X.

White, J. S.

R. Pala, J. S. White, E. S. Barnard, J. S. Q. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Wicks, G. W.

S. Person, M. Jain, Z. J. Lapin, J. J. Saenz, G. W. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

Witt, S.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[Crossref]

Wu, H.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20  nm to 220  nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

Wu, Y.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

Xiao, F.

Yanagida, T.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012).
[Crossref]

Yanai, A.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Zhang, D.

S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
[Crossref]

Zhang, X. M.

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref]

Zhang, Y.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

G. Li, Y. Zhang, and D. Y. Lei, “Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy,” Nanoscale 8, 7119–7126 (2016).
[Crossref]

Zhao, J.

Zhu, W.

ACS Nano (1)

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Adv. Mater. (1)

R. Pala, J. S. White, E. S. Barnard, J. S. Q. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Adv. Opt. Mater. (1)

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20  nm to 220  nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83, 4625–4627 (2003).
[Crossref]

Chem. Rev. (2)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

V. Giannini, A. I. Fernandezdominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

J. Phys. Chem. Lett. (1)

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3, 191–202 (2012).
[Crossref]

Nano Lett. (6)

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

S. Jager, A. M. Kern, M. Hentschel, R. Jager, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13, 3566–3570 (2013).
[Crossref]

S. Person, M. Jain, Z. J. Lapin, J. J. Saenz, G. W. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[Crossref]

J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, and P. O. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[Crossref]

Nanoscale (2)

J. Sanchoparramon and D. Jelovina, “Boosting Fano resonances in single layered concentric core-shell particles,” Nanoscale 6, 13555–13564 (2014).
[Crossref]

G. Li, Y. Zhang, and D. Y. Lei, “Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy,” Nanoscale 8, 7119–7126 (2016).
[Crossref]

Nat. Mater. (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Nat. Photonics (1)

H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[Crossref]

Nature (2)

R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. T. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399, 126–130 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
[Crossref]

Phys. Rev. Lett. (3)

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[Crossref]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

I. Chung, K. T. Shimizu, and M. G. Bawendi, “Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy,” Proc. Natl. Acad. Sci. USA 100, 405–408 (2003).
[Crossref]

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012).
[Crossref]

Rep. Prog. Phys. (1)

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref]

Science (2)

C. Ciraci, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandezdominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. De Nijs, and R. Esteban, “Single-molecule optomechanics in “picocavities”,” Science 354, 726–729 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of electric dipole excitation in Au nanospheres with a backscattering configuration where the excitation is focused onto the sample via a 150 × objective and white light is focused through a 20 × objective as the side illumination of dark field setup. (b) Dark-field image of Au nanospheres with a radius of 80 nm and a typical zoom-in SEM image, where the scale bar is 100 nm.
Fig. 2.
Fig. 2. Intensity distributions of (a) linearly polarized Gaussian and (b) radially polarized beams at the wavelength of 633 nm, where the insets indicate the polarization states of the beams. Intensity profiles of the radially polarized beam after passing an analyzer orientated along (c) horizontal, (d) vertical, (e) diagonal, and (f) antidiagonal directions.
Fig. 3.
Fig. 3. (a) Scattering spectra of individual Au nanospheres excited by a linearly polarized Gaussian beam. From top to bottom, nanospheres have radii of 50 nm, 60 nm, 70 nm, 80 nm, and 90 nm. The left and right columns correspond to the experimental and simulation spectra, respectively. The SEM images of the corresponding Au nanospheres are shown in the middle column, where the scale bar is 100 nm. (b) Scattering spectra of Au nanospheres with different radii calculated from Mie theory, where the crossings represent the resonance wavelengths determined by experimental results in (a), and the inset is the charge distribution of the Au nanosphere ( r = 80    nm ). (c) Electric field enhancement maps of single Au nanospheres with radii from 50 nm to 90 nm (from left to right) at their resonance wavelengths.
Fig. 4.
Fig. 4. (a) Radially polarized beam-excited scattering spectra of individual Au nanospheres with radii of 50 nm, 60 nm, 70 nm, 80 nm, and 90 nm (from top to bottom). The left and right columns correspond to the experimental and simulation spectra, respectively. The middle column is the SEM images of the corresponding Au nanospheres, where the scale bar is 100 nm. (b) Scattering spectra calculated from Mie theory for Au nanospheres with different radii, where the crossings represent the resonance wavelengths determined by experimental results in (a), and the inset is the charge distribution of the Au nanosphere ( r = 80    nm ) excited by the radially polarized beam. (c) Electric field enhancement maps of single Au nanospheres with radii of 50 nm, 60 nm, 70 nm, 80 nm, and 90 nm (from left to right) at their resonance wavelengths.
Fig. 5.
Fig. 5. (a) Intensity distribution of the tightly focused radially polarized beam at the x z plane. The green arrows indicate the polarization states around the focal plane ( z = 0    nm ). (b) Evolutions of the scattering spectra of an Au nanosphere ( r = 80    nm ) as its location changes from x = 0 to 320 nm, denoted as the dots in (a). The left and right columns correspond to the experimental and simulation results, respectively. (c) Charge (upper panels) and electric field enhancement maps (lower panels) for the Au nanosphere at positions varying from x = 0 to 320 nm (from left to right columns). The green arrows denote the orientations of dipole moments. (d) Polarization distributions (green arrows) of the radially polarized beam at its focal plane.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ I meas ( λ ) I bkg ( λ ) I ext ( λ ) .
α = 1 0.1 ( ε + ε m ) k 2 r 2 ( 1 3 + ε m ε ε m ) 1 30 ( ε + 10 ε m ) k 2 r 2 i k 3 ε m 3 / 2 V 6 π V ,

Metrics