Abstract

We present the results of research carried out for the first time, to the best of our knowledge, on the generation of terahertz radiation under the action of “single-color” and “dual-color” high-power femtosecond laser pulses on liquefied gas–liquid nitrogen. Our experimental results supported by careful theoretical interpretation showed clearly that under femtosecond laser radiation, liquid and air emit terahertz waves in a very different way. We assumed that the mobility of ions and electrons in liquid can play an essential role, forming a quasi-static electric field by means of ambipolar diffusion mechanism.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Flat liquid jet as a highly efficient source of terahertz radiation

Anton N. Tcypkin, Evgenia A. Ponomareva, Sergey E. Putilin, Semen V. Smirnov, Sviatoslav A. Shtumpf, Maksim V. Melnik, Yiwen E, Sergei A. Kozlov, and Xi-Cheng Zhang
Opt. Express 27(11) 15485-15494 (2019)

Terahertz wave generation in nitrogen gas using shaped optical pulses

Masashi Yamaguchi and Jayashis Das
J. Opt. Soc. Am. B 26(9) A90-A94 (2009)

Terahertz emission from a femtosecond laser focus in a two-color scheme

Alexey V. Balakin, Alexander V. Borodin, Igor A. Kotelnikov, and Alexander P. Shkurinov
J. Opt. Soc. Am. B 27(1) 16-26 (2010)

References

  • View by:
  • |
  • |
  • |

  1. X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16–18 (2017).
    [Crossref]
  2. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007).
    [Crossref]
  3. A. V. Balakin, A. V. Borodin, I. A. Kotelnikov, and A. P. Shkurinov, “Terahertz emission from a femtosecond laser focus in a two-color scheme,” J. Opt. Soc. Am. B 27, 16–26 (2010).
    [Crossref]
  4. M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, “Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses,” Appl. Phys. Lett. 101, 161104 (2012).
    [Crossref]
  5. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210–1212 (2000).
    [Crossref]
  6. N. Bloembergen and Y. R. Shen, “Optical nonlinearities in a plasma,” Phys. Rev. 145, 390 (1966).
    [Crossref]
  7. A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38, 1906–1908 (2013).
    [Crossref]
  8. Q. Jin, Y. E, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
    [Crossref]
  9. Q. Jin, J. Dai, Y. E, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
    [Crossref]
  10. T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of a free-flowing water film,” IEEE Trans. Terahertz Sci. Technol. 4, 425–431 (2014).
    [Crossref]
  11. A. V. Balakin, S. V. Garnov, V. A. Makarov, N. A. Kuzechkin, P. A. Obraztsov, P. M. Solyankin, A. P. Shkurinov, and Y. Zhu, ““Terhune-like” transformation of the terahertz polarization ellipse “mutually induced” by three-wave joint propagation in liquid,” Opt. Lett. 43, 4406–4409 (2018).
    [Crossref]
  12. I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
    [Crossref]
  13. Y. E, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
    [Crossref]
  14. H. Kildal and S. R. J. Brueck, “Orientational and electronic contributions to the third order susceptibilities of cryogenic liquids,” J. Chem. Phys. 73, 4851–4958 (1980).
    [Crossref]
  15. J. Samios, U. Mittag, and T. Dorfmuller, “The far infrared absorption spectrum of liquid nitrogen,” Molecular Physics 56, 541–556 (1985).
    [Crossref]
  16. A. Siegman, Lasers (University Science Books, 1986).
  17. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
    [Crossref]
  18. N. V. Vvedenskii, A. I. Korytin, V. A. Kostin, A. A. Murzanev, A. A. Silaev, and A. N. Stepanov, “Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse,” Phys. Rev. Lett. 112, 055004 (2014).
    [Crossref]
  19. V. A. Kostin, I. D. Laryushin, A. A. Silaev, and N. V. Vvedenskii, “Ionization-induced multiwave mixing: terahertz generation with two-color laser pulses of various frequency ratios,” Phys. Rev. Lett. 117, 035003 (2016).
    [Crossref]
  20. W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, “Strong terahertz pulse generation by chirped laser pulses in tenuous gases,” Opt. Express 16, 16999–17006 (2008).
    [Crossref]
  21. C. F. Barnett and M. F. A. Harrison, Applied Atomic Collision Physics: Plasmas (Academic Press, Inc., 1984), Vol. 2.
  22. A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
    [Crossref]
  23. K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
    [Crossref]
  24. A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
    [Crossref]
  25. N. A. Panov, O. G. Kosareva, V. A. Andreeva, A. B. Savel’ev, D. S. Uryupina, R. V. Volkov, V. A. Makarov, and A. P. Shkurinov, “Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament,” JETP Lett. 93, 638–641 (2011).
    [Crossref]
  26. W. Schottky, “Diffusionstheorie der positiven säule,” Phys. Zeits 25, 635 (1924).
  27. L. D. Landau and E. M. Lifshitz, Physical Kinetics: Course of Theoretical Physics (Pergamon, 1984), Vol. X.
  28. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 1992).
  29. W.-F. Sun, Y.-S. Zhou, X.-K. Wang, and Y. Zhang, “External electric field control of THz pulse generation in ambient air,” Opt. Express 16, 16573–16580 (2008).
    [Crossref]

2018 (3)

Q. Jin, J. Dai, Y. E, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

A. V. Balakin, S. V. Garnov, V. A. Makarov, N. A. Kuzechkin, P. A. Obraztsov, P. M. Solyankin, A. P. Shkurinov, and Y. Zhu, ““Terhune-like” transformation of the terahertz polarization ellipse “mutually induced” by three-wave joint propagation in liquid,” Opt. Lett. 43, 4406–4409 (2018).
[Crossref]

Y. E, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

2017 (5)

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Q. Jin, Y. E, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16–18 (2017).
[Crossref]

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
[Crossref]

2016 (1)

V. A. Kostin, I. D. Laryushin, A. A. Silaev, and N. V. Vvedenskii, “Ionization-induced multiwave mixing: terahertz generation with two-color laser pulses of various frequency ratios,” Phys. Rev. Lett. 117, 035003 (2016).
[Crossref]

2014 (2)

T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of a free-flowing water film,” IEEE Trans. Terahertz Sci. Technol. 4, 425–431 (2014).
[Crossref]

N. V. Vvedenskii, A. I. Korytin, V. A. Kostin, A. A. Murzanev, A. A. Silaev, and A. N. Stepanov, “Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse,” Phys. Rev. Lett. 112, 055004 (2014).
[Crossref]

2013 (1)

2012 (1)

M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, “Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses,” Appl. Phys. Lett. 101, 161104 (2012).
[Crossref]

2011 (1)

N. A. Panov, O. G. Kosareva, V. A. Andreeva, A. B. Savel’ev, D. S. Uryupina, R. V. Volkov, V. A. Makarov, and A. P. Shkurinov, “Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament,” JETP Lett. 93, 638–641 (2011).
[Crossref]

2010 (1)

2008 (4)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

W.-F. Sun, Y.-S. Zhou, X.-K. Wang, and Y. Zhang, “External electric field control of THz pulse generation in ambient air,” Opt. Express 16, 16573–16580 (2008).
[Crossref]

W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, “Strong terahertz pulse generation by chirped laser pulses in tenuous gases,” Opt. Express 16, 16999–17006 (2008).
[Crossref]

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[Crossref]

2007 (1)

2000 (1)

1985 (1)

J. Samios, U. Mittag, and T. Dorfmuller, “The far infrared absorption spectrum of liquid nitrogen,” Molecular Physics 56, 541–556 (1985).
[Crossref]

1980 (1)

H. Kildal and S. R. J. Brueck, “Orientational and electronic contributions to the third order susceptibilities of cryogenic liquids,” J. Chem. Phys. 73, 4851–4958 (1980).
[Crossref]

1966 (1)

N. Bloembergen and Y. R. Shen, “Optical nonlinearities in a plasma,” Phys. Rev. 145, 390 (1966).
[Crossref]

1924 (1)

W. Schottky, “Diffusionstheorie der positiven säule,” Phys. Zeits 25, 635 (1924).

Andreeva, V. A.

A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38, 1906–1908 (2013).
[Crossref]

N. A. Panov, O. G. Kosareva, V. A. Andreeva, A. B. Savel’ev, D. S. Uryupina, R. V. Volkov, V. A. Makarov, and A. P. Shkurinov, “Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament,” JETP Lett. 93, 638–641 (2011).
[Crossref]

Balakin, A. V.

A. V. Balakin, S. V. Garnov, V. A. Makarov, N. A. Kuzechkin, P. A. Obraztsov, P. M. Solyankin, A. P. Shkurinov, and Y. Zhu, ““Terhune-like” transformation of the terahertz polarization ellipse “mutually induced” by three-wave joint propagation in liquid,” Opt. Lett. 43, 4406–4409 (2018).
[Crossref]

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

A. V. Balakin, A. V. Borodin, I. A. Kotelnikov, and A. P. Shkurinov, “Terahertz emission from a femtosecond laser focus in a two-color scheme,” J. Opt. Soc. Am. B 27, 16–26 (2010).
[Crossref]

Barnett, C. F.

C. F. Barnett and M. F. A. Harrison, Applied Atomic Collision Physics: Plasmas (Academic Press, Inc., 1984), Vol. 2.

Bloembergen, N.

N. Bloembergen and Y. R. Shen, “Optical nonlinearities in a plasma,” Phys. Rev. 145, 390 (1966).
[Crossref]

Borodin, A. V.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 1992).

Brueck, S. R. J.

H. Kildal and S. R. J. Brueck, “Orientational and electronic contributions to the third order susceptibilities of cryogenic liquids,” J. Chem. Phys. 73, 4851–4958 (1980).
[Crossref]

Chen, M.

Chin, S. L.

Cook, D. J.

Couairon, A.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Dai, J.

Q. Jin, J. Dai, Y. E, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

Q. Jin, Y. E, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Dey, I.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Dorfmuller, T.

J. Samios, U. Mittag, and T. Dorfmuller, “The far infrared absorption spectrum of liquid nitrogen,” Molecular Physics 56, 541–556 (1985).
[Crossref]

Dzhidzhoev, M. S.

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

E, Y.

Y. E, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

Q. Jin, J. Dai, Y. E, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

Q. Jin, Y. E, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Esaulkov, M. N.

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38, 1906–1908 (2013).
[Crossref]

Fedorov, V. Y.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Garnov, S. V.

Glownia, J. H.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007).
[Crossref]

Gordienko, V. M.

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

Harrison, M. F. A.

C. F. Barnett and M. F. A. Harrison, Applied Atomic Collision Physics: Plasmas (Academic Press, Inc., 1984), Vol. 2.

Hashida, M.

K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
[Crossref]

Hochstrasser, R. M.

Houard, A.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[Crossref]

Inoue, S.

K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
[Crossref]

Ivanov, K. A.

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

Jana, K.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Jepsen, P. U.

T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of a free-flowing water film,” IEEE Trans. Terahertz Sci. Technol. 4, 425–431 (2014).
[Crossref]

Jin, Q.

Y. E, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

Q. Jin, J. Dai, Y. E, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

Q. Jin, Y. E, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Kildal, H.

H. Kildal and S. R. J. Brueck, “Orientational and electronic contributions to the third order susceptibilities of cryogenic liquids,” J. Chem. Phys. 73, 4851–4958 (1980).
[Crossref]

Kim, K. Y.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007).
[Crossref]

Klarskov, P.

T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of a free-flowing water film,” IEEE Trans. Terahertz Sci. Technol. 4, 425–431 (2014).
[Crossref]

Korytin, A. I.

N. V. Vvedenskii, A. I. Korytin, V. A. Kostin, A. A. Murzanev, A. A. Silaev, and A. N. Stepanov, “Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse,” Phys. Rev. Lett. 112, 055004 (2014).
[Crossref]

Kosareva, O. G.

A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38, 1906–1908 (2013).
[Crossref]

N. A. Panov, O. G. Kosareva, V. A. Andreeva, A. B. Savel’ev, D. S. Uryupina, R. V. Volkov, V. A. Makarov, and A. P. Shkurinov, “Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament,” JETP Lett. 93, 638–641 (2011).
[Crossref]

Kostin, V. A.

V. A. Kostin, I. D. Laryushin, A. A. Silaev, and N. V. Vvedenskii, “Ionization-induced multiwave mixing: terahertz generation with two-color laser pulses of various frequency ratios,” Phys. Rev. Lett. 117, 035003 (2016).
[Crossref]

N. V. Vvedenskii, A. I. Korytin, V. A. Kostin, A. A. Murzanev, A. A. Silaev, and A. N. Stepanov, “Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse,” Phys. Rev. Lett. 112, 055004 (2014).
[Crossref]

Kotelnikov, I. A.

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

A. V. Balakin, A. V. Borodin, I. A. Kotelnikov, and A. P. Shkurinov, “Terahertz emission from a femtosecond laser focus in a two-color scheme,” J. Opt. Soc. Am. B 27, 16–26 (2010).
[Crossref]

Koulouklidis, A. D.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Kumar, G. R.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Kuzechkin, N. A.

A. V. Balakin, S. V. Garnov, V. A. Makarov, N. A. Kuzechkin, P. A. Obraztsov, P. M. Solyankin, A. P. Shkurinov, and Y. Zhu, ““Terhune-like” transformation of the terahertz polarization ellipse “mutually induced” by three-wave joint propagation in liquid,” Opt. Lett. 43, 4406–4409 (2018).
[Crossref]

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

Lad, A. D.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Physical Kinetics: Course of Theoretical Physics (Pergamon, 1984), Vol. X.

Laryushin, I. D.

V. A. Kostin, I. D. Laryushin, A. A. Silaev, and N. V. Vvedenskii, “Ionization-induced multiwave mixing: terahertz generation with two-color laser pulses of various frequency ratios,” Phys. Rev. Lett. 117, 035003 (2016).
[Crossref]

Li, C.

Li, D.

K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
[Crossref]

Li, M.

M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, “Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses,” Appl. Phys. Lett. 101, 161104 (2012).
[Crossref]

Li, W.

M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, “Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses,” Appl. Phys. Lett. 101, 161104 (2012).
[Crossref]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Physical Kinetics: Course of Theoretical Physics (Pergamon, 1984), Vol. X.

Liu, Y.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[Crossref]

Lu, P.

M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, “Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses,” Appl. Phys. Lett. 101, 161104 (2012).
[Crossref]

Makarov, V. A.

Mima, K.

Mittag, U.

J. Samios, U. Mittag, and T. Dorfmuller, “The far infrared absorption spectrum of liquid nitrogen,” Molecular Physics 56, 541–556 (1985).
[Crossref]

Mondal, A.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Mori, K.

K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
[Crossref]

Murzanev, A. A.

N. V. Vvedenskii, A. I. Korytin, V. A. Kostin, A. A. Murzanev, A. A. Silaev, and A. N. Stepanov, “Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse,” Phys. Rev. Lett. 112, 055004 (2014).
[Crossref]

Mysyrowicz, A.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[Crossref]

Nagashima, T.

K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
[Crossref]

Nakamiya, Y.

K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
[Crossref]

Obraztsov, P. A.

Ozheredov, I. A.

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

Pan, H.

M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, “Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses,” Appl. Phys. Lett. 101, 161104 (2012).
[Crossref]

Panchenko, V. Y.

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

Panov, N. A.

A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38, 1906–1908 (2013).
[Crossref]

N. A. Panov, O. G. Kosareva, V. A. Andreeva, A. B. Savel’ev, D. S. Uryupina, R. V. Volkov, V. A. Makarov, and A. P. Shkurinov, “Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament,” JETP Lett. 93, 638–641 (2011).
[Crossref]

Prade, B.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[Crossref]

Rodriguez, G.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007).
[Crossref]

Sakabe, S.

K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
[Crossref]

Samios, J.

J. Samios, U. Mittag, and T. Dorfmuller, “The far infrared absorption spectrum of liquid nitrogen,” Molecular Physics 56, 541–556 (1985).
[Crossref]

Sarkar, D.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Savel’ev, A. B.

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

N. A. Panov, O. G. Kosareva, V. A. Andreeva, A. B. Savel’ev, D. S. Uryupina, R. V. Volkov, V. A. Makarov, and A. P. Shkurinov, “Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament,” JETP Lett. 93, 638–641 (2011).
[Crossref]

Schottky, W.

W. Schottky, “Diffusionstheorie der positiven säule,” Phys. Zeits 25, 635 (1924).

Shaikh, M.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Shen, Y. R.

N. Bloembergen and Y. R. Shen, “Optical nonlinearities in a plasma,” Phys. Rev. 145, 390 (1966).
[Crossref]

Sheng, Z.-M.

Shi, Y.

M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, “Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses,” Appl. Phys. Lett. 101, 161104 (2012).
[Crossref]

Shkurinov, A.

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16–18 (2017).
[Crossref]

Shkurinov, A. P.

A. V. Balakin, S. V. Garnov, V. A. Makarov, N. A. Kuzechkin, P. A. Obraztsov, P. M. Solyankin, A. P. Shkurinov, and Y. Zhu, ““Terhune-like” transformation of the terahertz polarization ellipse “mutually induced” by three-wave joint propagation in liquid,” Opt. Lett. 43, 4406–4409 (2018).
[Crossref]

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38, 1906–1908 (2013).
[Crossref]

N. A. Panov, O. G. Kosareva, V. A. Andreeva, A. B. Savel’ev, D. S. Uryupina, R. V. Volkov, V. A. Makarov, and A. P. Shkurinov, “Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament,” JETP Lett. 93, 638–641 (2011).
[Crossref]

A. V. Balakin, A. V. Borodin, I. A. Kotelnikov, and A. P. Shkurinov, “Terahertz emission from a femtosecond laser focus in a two-color scheme,” J. Opt. Soc. Am. B 27, 16–26 (2010).
[Crossref]

Siegman, A.

A. Siegman, Lasers (University Science Books, 1986).

Silaev, A. A.

V. A. Kostin, I. D. Laryushin, A. A. Silaev, and N. V. Vvedenskii, “Ionization-induced multiwave mixing: terahertz generation with two-color laser pulses of various frequency ratios,” Phys. Rev. Lett. 117, 035003 (2016).
[Crossref]

N. V. Vvedenskii, A. I. Korytin, V. A. Kostin, A. A. Murzanev, A. A. Silaev, and A. N. Stepanov, “Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse,” Phys. Rev. Lett. 112, 055004 (2014).
[Crossref]

Smirnov, M. B.

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

Solyankin, P. M.

A. V. Balakin, S. V. Garnov, V. A. Makarov, N. A. Kuzechkin, P. A. Obraztsov, P. M. Solyankin, A. P. Shkurinov, and Y. Zhu, ““Terhune-like” transformation of the terahertz polarization ellipse “mutually induced” by three-wave joint propagation in liquid,” Opt. Lett. 43, 4406–4409 (2018).
[Crossref]

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

Stepanov, A. N.

N. V. Vvedenskii, A. I. Korytin, V. A. Kostin, A. A. Murzanev, A. A. Silaev, and A. N. Stepanov, “Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse,” Phys. Rev. Lett. 112, 055004 (2014).
[Crossref]

Sun, W.-F.

Taylor, A. J.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007).
[Crossref]

Tcypkin, A.

Y. E, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

Teramoto, K.

K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
[Crossref]

Tikhonchuk, V. T.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[Crossref]

Tzortzakis, S.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Uryupina, D. S.

N. A. Panov, O. G. Kosareva, V. A. Andreeva, A. B. Savel’ev, D. S. Uryupina, R. V. Volkov, V. A. Makarov, and A. P. Shkurinov, “Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament,” JETP Lett. 93, 638–641 (2011).
[Crossref]

Volkov, R. V.

N. A. Panov, O. G. Kosareva, V. A. Andreeva, A. B. Savel’ev, D. S. Uryupina, R. V. Volkov, V. A. Makarov, and A. P. Shkurinov, “Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament,” JETP Lett. 93, 638–641 (2011).
[Crossref]

Vvedenskii, N. V.

V. A. Kostin, I. D. Laryushin, A. A. Silaev, and N. V. Vvedenskii, “Ionization-induced multiwave mixing: terahertz generation with two-color laser pulses of various frequency ratios,” Phys. Rev. Lett. 117, 035003 (2016).
[Crossref]

N. V. Vvedenskii, A. I. Korytin, V. A. Kostin, A. A. Murzanev, A. A. Silaev, and A. N. Stepanov, “Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse,” Phys. Rev. Lett. 112, 055004 (2014).
[Crossref]

Wang, T.

T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of a free-flowing water film,” IEEE Trans. Terahertz Sci. Technol. 4, 425–431 (2014).
[Crossref]

Wang, W.-M.

Wang, X.-K.

Williams, K.

Q. Jin, Y. E, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Wu, H.-C.

Zeng, H.

M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, “Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses,” Appl. Phys. Lett. 101, 161104 (2012).
[Crossref]

Zhang, J.

Zhang, X.-C.

Q. Jin, J. Dai, Y. E, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

Y. E, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

Q. Jin, Y. E, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16–18 (2017).
[Crossref]

A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38, 1906–1908 (2013).
[Crossref]

Zhang, Y.

Zhou, Y.-S.

Zhu, Y.

Zhvaniya, I. A.

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

Appl. Phys. Lett. (5)

M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, “Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses,” Appl. Phys. Lett. 101, 161104 (2012).
[Crossref]

Q. Jin, Y. E, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Q. Jin, J. Dai, Y. E, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

Y. E, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111, 241107 (2017).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

A. V. Balakin, M. S. Dzhidzhoev, V. M. Gordienko, M. N. Esaulkov, I. A. Zhvaniya, K. A. Ivanov, I. A. Kotelnikov, N. A. Kuzechkin, I. A. Ozheredov, V. Y. Panchenko, A. B. Savel’ev, M. B. Smirnov, P. M. Solyankin, and A. P. Shkurinov, “Interaction of high-intensity femtosecond radiation with gas cluster beam: effect of pulse duration on joint terahertz and X-ray emission,” IEEE Trans. Terahertz Sci. Technol. 7, 70–79 (2017).
[Crossref]

T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of a free-flowing water film,” IEEE Trans. Terahertz Sci. Technol. 4, 425–431 (2014).
[Crossref]

J. Chem. Phys. (1)

H. Kildal and S. R. J. Brueck, “Orientational and electronic contributions to the third order susceptibilities of cryogenic liquids,” J. Chem. Phys. 73, 4851–4958 (1980).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

N. A. Panov, O. G. Kosareva, V. A. Andreeva, A. B. Savel’ev, D. S. Uryupina, R. V. Volkov, V. A. Makarov, and A. P. Shkurinov, “Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament,” JETP Lett. 93, 638–641 (2011).
[Crossref]

Molecular Physics (1)

J. Samios, U. Mittag, and T. Dorfmuller, “The far infrared absorption spectrum of liquid nitrogen,” Molecular Physics 56, 541–556 (1985).
[Crossref]

Nat. Commun. (1)

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Nat. Photonics (2)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16–18 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. (1)

N. Bloembergen and Y. R. Shen, “Optical nonlinearities in a plasma,” Phys. Rev. 145, 390 (1966).
[Crossref]

Phys. Rev. Lett. (3)

N. V. Vvedenskii, A. I. Korytin, V. A. Kostin, A. A. Murzanev, A. A. Silaev, and A. N. Stepanov, “Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse,” Phys. Rev. Lett. 112, 055004 (2014).
[Crossref]

V. A. Kostin, I. D. Laryushin, A. A. Silaev, and N. V. Vvedenskii, “Ionization-induced multiwave mixing: terahertz generation with two-color laser pulses of various frequency ratios,” Phys. Rev. Lett. 117, 035003 (2016).
[Crossref]

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[Crossref]

Phys. Zeits (1)

W. Schottky, “Diffusionstheorie der positiven säule,” Phys. Zeits 25, 635 (1924).

Other (4)

L. D. Landau and E. M. Lifshitz, Physical Kinetics: Course of Theoretical Physics (Pergamon, 1984), Vol. X.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 1992).

C. F. Barnett and M. F. A. Harrison, Applied Atomic Collision Physics: Plasmas (Academic Press, Inc., 1984), Vol. 2.

A. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. M–dielectric mirror; MM–metallic mirror; BS–beam splitter; λ/2–half-wave phase plate; L–lens; PM–off-axis parabolic mirror; BBO–β-barium borate crystal.
Fig. 2.
Fig. 2. Terahertz yield via the time delay between the laser pulses. (a) Single-color interaction in air (red circles) and in LN (black circles). (b) LN: single-color (black) and dual-color (blue) schemes. (c) Air: single-color (black) and dual-color (blue) schemes. Each curve is fitted by a simple Gaussian peak to get FWHM value.
Fig. 3.
Fig. 3. Dependence of terahertz pulse power on the beam waist position h in relation to the surface level of LN. Zero position of the abscissa axis corresponds to the surface of LN. Peak amplitude of the terahertz pulse power is measured in two beams’ dual-color regime [blue dots in Fig. 2(b)].
Fig. 4.
Fig. 4. Radiated terahertz energy versus laser pulse energy: solid squares with error bars show experimental data, and solid line stands for theoretical model. (a) Focal spot located in the air; (b) focal spot located in the liquid nitrogen.
Fig. 5.
Fig. 5. Diagram of terahertz generation from “liquid” plasma under irradiation by a double-pulse beam.
Fig. 6.
Fig. 6. Schematic representation of the ambipolar field effect on the terahertz yield. (a) Field formation by the first pulse and probing by the second one; (b) total terahertz yield from two pulses with variable delay. τ corresponds to the optical pulse duration, while τ1 and τ2 correspond to the characteristic times of ambipolar field formation and decay.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Ex=Eωcos(ωt)+E2ωcos(2ωt+ϕ),Ey=0,Ez=0,
net=(nfne)w(E),
w(E)=4ωaEaEexp(2Ea3E12EEa),
dvdt=emE.
Vx(t0)=vω2[μsin(2ωt0+ϕ)2sin(ωt0)].
tJ(t)=eV(t)tne(t)eV(t)nfw[E(t)],
E=Tenene.
Pi(3)(ωq)=χijkl(3)(ωq;ωm,ωn,ωr)Ej(ωm)Ek(ωn)El(ωr),
χijkl(3)=Aδijδkl+Bδikδjl+Cδilδjk.
A=B=C=(mnr)bnfe4/me3G(ωq)G(ωm)G(ωn)G(ωr),
χ(3)e4nfme3ω06d2,
Pi(3)(Ω)=χijkl(3)(Ω;2ω,ω,ω)Ej*(2ω)Ek(ω)El(ω)+χijkl(3)(Ω;0,ω,ω)Ej(0)Ek(ω)El*(ω)+χijkl(3)(Ω;0,2ω,2ω)Ej(0)Ek(2ω)El*(2ω),
χijkl(3)(Ω,Ω,nω,nω)χijkl(3)(Ω,2ω,ω,ω)nω2Ω21,