Abstract

GaAs-based microdisk lasers with an active region representing a dense array of indium-rich islands (InGaAs quantum well-dots) were studied using direct small-signal modulation. We demonstrate that using dense arrays of InGaAs quantum well-dots enables uncooled high-frequency applications with a GHz-range bandwidth for microdisk lasers. A maximum 3 dB modulation frequency of 5.9 GHz was found in the microdisk with a radius of 13.5 μm operating without a heatsink for cooling. A modulation current efficiency factor of 1.5  GHz/mA1/2 was estimated.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient injection microdisk lasers based on quantum well-dots

Eduard Moiseev, Natalia Kryzhanovskaya, Mikhail Maximov, Fedor Zubov, Alexey Nadtochiy, Marina Kulagina, Yurii Zadiranov, Nikolay Kalyuzhnyy, Sergey Mintairov, and Alexey Zhukov
Opt. Lett. 43(19) 4554-4557 (2018)

Room-temperature low-threshold current-injection InGaAs quantum-dot microdisk lasers with single-mode emission

Ming-Hua Mao, Hao-Che Chien, Jay-Zway Hong, and Chih-Yi Cheng
Opt. Express 19(15) 14145-14151 (2011)

Transient behaviors of current-injection quantum-dot microdisk lasers

Ming-Hua Mao and Hao-Che Chien
Opt. Express 20(3) 3302-3310 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
    [Crossref]
  2. A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbuk-Ek, D. L. Coblentz, and S. J. Perton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28, 1010–1012 (1992).
    [Crossref]
  3. J. Hofrichter, O. Raz, S. Keyvaninia, T. de Vries, H. J. S. Dorren, T. Morf, and B. J. Offrein, “High-speed direct-modulation of InP microdisk lasers,” in 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), Paper We.1.B.5.
  4. X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
    [Crossref]
  5. L.-X. Zou, Y.-Z. Huang, B.-W. Liu, X.-M. Lv, X.-W. Ma, Y.-D. Yang, J.-L. Xiao, and Y. Du, “Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers,” Opt. Express 23, 2879–2888 (2015).
    [Crossref]
  6. A. K. Sokol and R. P. Sarzala, “Comparative analysis of thermal problems in GaAs- and InP-based 1.3-μm VECSELs,” Opt. Appl. 43, 325–341 (2013).
    [Crossref]
  7. N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
    [Crossref]
  8. T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.
  9. M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
    [Crossref]
  10. L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82, 319–321 (2003).
    [Crossref]
  11. M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
    [Crossref]
  12. N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
    [Crossref]
  13. A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, and H. Riechert, “Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots,” Phys. Rev. B 70, 205311 (2004).
    [Crossref]
  14. D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
    [Crossref]
  15. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
    [Crossref]
  16. N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
    [Crossref]
  17. Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6, 776–781 (2018).
    [Crossref]
  18. M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
    [Crossref]
  19. F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
    [Crossref]
  20. D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
    [Crossref]
  21. A. E. Zhukov, M. V. Maximov, N. Y. Gordeev, A. V. Savelyev, D. A. Livshits, and A. R. Kovsh, “Quantum dot lasers with controllable spectral and modal characteristics,” Semicond. Sci. Technol. 26, 014004 (2011).
    [Crossref]
  22. S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “GaAs quantum well-dots solar cells with spectral response extended to 1100  nm,” Electron. Lett. 51, 1602–1604 (2015).
    [Crossref]
  23. S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, and A. E. Zhukov, “InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells,” Semicond. Sci. Technol. 32, 015006 (2017).
    [Crossref]
  24. S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications,” Nanotechnology 26, 385202 (2015).
    [Crossref]
  25. E. Moiseev, N. Kryzhanovskaya, M. Maximov, F. Zubov, A. Nadtochiy, M. Kulagina, Y. Zadiranov, N. Kalyuzhnyy, S. Mintairov, and A. Zhukov, “Highly efficient injection microdisk lasers based on quantum well-dots,” Opt. Lett. 43, 4554–4557 (2018).
    [Crossref]
  26. P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
    [Crossref]
  27. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).
  28. X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
    [Crossref]
  29. H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
    [Crossref]
  30. E. Kapon, ed., Semiconductor Lasers: Fundamentals (Academic, 1999).
  31. P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 426–438 (2000).
    [Crossref]
  32. M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
    [Crossref]
  33. A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. 43, 287–294 (2007).
    [Crossref]
  34. A. N. AL-Omari, I. K. AL-Kofahi, and K. L. Lear, “Fabrication, performance and parasitic parameter extraction of 850  nm high-speed vertical-cavity lasers,” Semicond. Sci. Technol. 24, 095024 (2009).
    [Crossref]
  35. Q. H. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China: Phys. Mech. Astron. 62, 074231 (2019).
    [Crossref]

2019 (1)

Q. H. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China: Phys. Mech. Astron. 62, 074231 (2019).
[Crossref]

2018 (3)

2017 (2)

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, and A. E. Zhukov, “InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells,” Semicond. Sci. Technol. 32, 015006 (2017).
[Crossref]

2016 (1)

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

2015 (4)

L.-X. Zou, Y.-Z. Huang, B.-W. Liu, X.-M. Lv, X.-W. Ma, Y.-D. Yang, J.-L. Xiao, and Y. Du, “Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers,” Opt. Express 23, 2879–2888 (2015).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications,” Nanotechnology 26, 385202 (2015).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “GaAs quantum well-dots solar cells with spectral response extended to 1100  nm,” Electron. Lett. 51, 1602–1604 (2015).
[Crossref]

2014 (2)

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
[Crossref]

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

2013 (2)

A. K. Sokol and R. P. Sarzala, “Comparative analysis of thermal problems in GaAs- and InP-based 1.3-μm VECSELs,” Opt. Appl. 43, 325–341 (2013).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

2012 (1)

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

2011 (1)

A. E. Zhukov, M. V. Maximov, N. Y. Gordeev, A. V. Savelyev, D. A. Livshits, and A. R. Kovsh, “Quantum dot lasers with controllable spectral and modal characteristics,” Semicond. Sci. Technol. 26, 014004 (2011).
[Crossref]

2010 (1)

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

2009 (1)

A. N. AL-Omari, I. K. AL-Kofahi, and K. L. Lear, “Fabrication, performance and parasitic parameter extraction of 850  nm high-speed vertical-cavity lasers,” Semicond. Sci. Technol. 24, 095024 (2009).
[Crossref]

2008 (2)

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
[Crossref]

2007 (2)

M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
[Crossref]

A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. 43, 287–294 (2007).
[Crossref]

2005 (1)

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
[Crossref]

2004 (2)

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
[Crossref]

A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, and H. Riechert, “Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots,” Phys. Rev. B 70, 205311 (2004).
[Crossref]

2003 (2)

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[Crossref]

L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82, 319–321 (2003).
[Crossref]

2000 (1)

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 426–438 (2000).
[Crossref]

1992 (1)

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbuk-Ek, D. L. Coblentz, and S. J. Perton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28, 1010–1012 (1992).
[Crossref]

1961 (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Akiyama, T.

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
[Crossref]

Albert, F.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

AL-Kofahi, I. K.

A. N. AL-Omari, I. K. AL-Kofahi, and K. L. Lear, “Fabrication, performance and parasitic parameter extraction of 850  nm high-speed vertical-cavity lasers,” Semicond. Sci. Technol. 24, 095024 (2009).
[Crossref]

Alloing, B.

A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, and H. Riechert, “Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots,” Phys. Rev. B 70, 205311 (2004).
[Crossref]

AL-Omari, A. N.

A. N. AL-Omari, I. K. AL-Kofahi, and K. L. Lear, “Fabrication, performance and parasitic parameter extraction of 850  nm high-speed vertical-cavity lasers,” Semicond. Sci. Technol. 24, 095024 (2009).
[Crossref]

Arakawa, Y.

M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
[Crossref]

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
[Crossref]

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

Bazin, M.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

Bhattacharya, P.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 426–438 (2000).
[Crossref]

Bimberg, D.

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[Crossref]

Blokhin, S. A.

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

Bobrov, M. A.

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

Bogdanov, A. A.

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Bond, W. L.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Bowers, J. E.

Chen, J. X.

A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, and H. Riechert, “Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots,” Phys. Rev. B 70, 205311 (2004).
[Crossref]

Chen, S.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

Claudon, J.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

Coblentz, D. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbuk-Ek, D. L. Coblentz, and S. J. Perton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28, 1010–1012 (1992).
[Crossref]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).

Cong, D.-Y.

D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
[Crossref]

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).

Dagens, B.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

de Vries, T.

J. Hofrichter, O. Raz, S. Keyvaninia, T. de Vries, H. J. S. Dorren, T. Morf, and B. J. Offrein, “High-speed direct-modulation of InP microdisk lasers,” in 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), Paper We.1.B.5.

Dorren, H. J. S.

J. Hofrichter, O. Raz, S. Keyvaninia, T. de Vries, H. J. S. Dorren, T. Morf, and B. J. Offrein, “High-speed direct-modulation of InP microdisk lasers,” in 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), Paper We.1.B.5.

Du, Y.

L.-X. Zou, Y.-Z. Huang, B.-W. Liu, X.-M. Lv, X.-W. Ma, Y.-D. Yang, J.-L. Xiao, and Y. Du, “Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers,” Opt. Express 23, 2879–2888 (2015).
[Crossref]

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Ebe, H.

M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
[Crossref]

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
[Crossref]

Fiore, A.

A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. 43, 287–294 (2007).
[Crossref]

A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, and H. Riechert, “Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots,” Phys. Rev. B 70, 205311 (2004).
[Crossref]

Fischer, M.

D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
[Crossref]

Forchel, A.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Geelhaar, L.

A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, and H. Riechert, “Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots,” Phys. Rev. B 70, 205311 (2004).
[Crossref]

Gerard, J.-M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

Gilbert, K.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

Gordeev, N. Y.

A. E. Zhukov, M. V. Maximov, N. Y. Gordeev, A. V. Savelyev, D. A. Livshits, and A. R. Kovsh, “Quantum dot lasers with controllable spectral and modal characteristics,” Semicond. Sci. Technol. 26, 014004 (2011).
[Crossref]

Gossard, A. C.

Grillot, F.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

Grosse, P.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

Hatori, N.

M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
[Crossref]

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
[Crossref]

Hofling, S.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

Hofrichter, J.

J. Hofrichter, O. Raz, S. Keyvaninia, T. de Vries, H. J. S. Dorren, T. Morf, and B. J. Offrein, “High-speed direct-modulation of InP microdisk lasers,” in 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), Paper We.1.B.5.

Hu, E.

L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82, 319–321 (2003).
[Crossref]

Hu, E. L.

Huang, D.

Huang, Y. Z.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Huang, Y.-Z.

Inoue, D.

Ishida, M.

M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
[Crossref]

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
[Crossref]

Jaffrennou, P.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

Jung, D.

Kageyama, T.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

Kaiser, W.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Kalyuzhnyy, N.

Kalyuzhnyy, N. A.

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, and A. E. Zhukov, “InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells,” Semicond. Sci. Technol. 32, 015006 (2017).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “GaAs quantum well-dots solar cells with spectral response extended to 1100  nm,” Electron. Lett. 51, 1602–1604 (2015).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications,” Nanotechnology 26, 385202 (2015).
[Crossref]

Kamp, M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

Karpov, D. V.

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Kennedy, M. J.

Keyvaninia, S.

J. Hofrichter, O. Raz, S. Keyvaninia, T. de Vries, H. J. S. Dorren, T. Morf, and B. J. Offrein, “High-speed direct-modulation of InP microdisk lasers,” in 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), Paper We.1.B.5.

Klotzkin, D.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 426–438 (2000).
[Crossref]

Kovsh, A.

D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
[Crossref]

Kovsh, A. R.

A. E. Zhukov, M. V. Maximov, N. Y. Gordeev, A. V. Savelyev, D. A. Livshits, and A. R. Kovsh, “Quantum dot lasers with controllable spectral and modal characteristics,” Semicond. Sci. Technol. 26, 014004 (2011).
[Crossref]

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[Crossref]

Krestnikov, I.

D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
[Crossref]

Krishna, S.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 426–438 (2000).
[Crossref]

Kryzhanovskaya, N.

Kryzhanovskaya, N. V.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Kudashova, Y. V.

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

Kulagina, M.

Kulagina, M. M.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

Langer, F.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

Lantratov, V. M.

S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications,” Nanotechnology 26, 385202 (2015).
[Crossref]

Lau, K. M.

Laukkanen, J.

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Lear, K. L.

A. N. AL-Omari, I. K. AL-Kofahi, and K. L. Lear, “Fabrication, performance and parasitic parameter extraction of 850  nm high-speed vertical-cavity lasers,” Semicond. Sci. Technol. 24, 095024 (2009).
[Crossref]

Ledentsov, N. N.

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[Crossref]

Lester, L. F.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
[Crossref]

Levi, A. F. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbuk-Ek, D. L. Coblentz, and S. J. Perton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28, 1010–1012 (1992).
[Crossref]

Li, Q.

Liang, D.

Liao, M.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

Lipovskii, A. A.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Liu, A. Y.

Liu, B. W.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
[Crossref]

Liu, B.-W.

Liu, H.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

Livshits, D. A.

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

A. E. Zhukov, M. V. Maximov, N. Y. Gordeev, A. V. Savelyev, D. A. Livshits, and A. R. Kovsh, “Quantum dot lasers with controllable spectral and modal characteristics,” Semicond. Sci. Technol. 26, 014004 (2011).
[Crossref]

Long, H.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Lv, X. M.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Lv, X.-M.

Ma, X.-W.

Maeda, Y.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

Malik, N. S.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

Markus, A.

A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. 43, 287–294 (2007).
[Crossref]

Martinez, A.

D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
[Crossref]

Masanovic, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).

Maximov, M.

Maximov, M. V.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, and A. E. Zhukov, “InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells,” Semicond. Sci. Technol. 32, 015006 (2017).
[Crossref]

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “GaAs quantum well-dots solar cells with spectral response extended to 1100  nm,” Electron. Lett. 51, 1602–1604 (2015).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications,” Nanotechnology 26, 385202 (2015).
[Crossref]

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

A. E. Zhukov, M. V. Maximov, N. Y. Gordeev, A. V. Savelyev, D. A. Livshits, and A. R. Kovsh, “Quantum dot lasers with controllable spectral and modal characteristics,” Semicond. Sci. Technol. 26, 014004 (2011).
[Crossref]

McCall, S. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbuk-Ek, D. L. Coblentz, and S. J. Perton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28, 1010–1012 (1992).
[Crossref]

Merghem, K.

D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
[Crossref]

Mikhrin, S. S.

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[Crossref]

Mintairov, S.

Mintairov, S. A.

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, and A. E. Zhukov, “InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells,” Semicond. Sci. Technol. 32, 015006 (2017).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications,” Nanotechnology 26, 385202 (2015).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “GaAs quantum well-dots solar cells with spectral response extended to 1100  nm,” Electron. Lett. 51, 1602–1604 (2015).
[Crossref]

Mochida, R.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

Moiseev, E.

Moiseev, E. I.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Mokhov, D. V.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

Morf, T.

J. Hofrichter, O. Raz, S. Keyvaninia, T. de Vries, H. J. S. Dorren, T. Morf, and B. J. Offrein, “High-speed direct-modulation of InP microdisk lasers,” in 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), Paper We.1.B.5.

Morozov, I. A.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

Munsch, M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

Nadtochiy, A.

Nadtochiy, A. M.

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, and A. E. Zhukov, “InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells,” Semicond. Sci. Technol. 32, 015006 (2017).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “GaAs quantum well-dots solar cells with spectral response extended to 1100  nm,” Electron. Lett. 51, 1602–1604 (2015).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications,” Nanotechnology 26, 385202 (2015).
[Crossref]

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Nakata, Y.

M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
[Crossref]

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
[Crossref]

Nishi, K.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

Norman, J.

Norman, J. C.

Offrein, B. J.

J. Hofrichter, O. Raz, S. Keyvaninia, T. de Vries, H. J. S. Dorren, T. Morf, and B. J. Offrein, “High-speed direct-modulation of InP microdisk lasers,” in 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), Paper We.1.B.5.

Otsubo, K.

M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
[Crossref]

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
[Crossref]

Ouyang, D.

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[Crossref]

Paranthoen, C.

A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, and H. Riechert, “Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots,” Phys. Rev. B 70, 205311 (2004).
[Crossref]

Perton, S. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbuk-Ek, D. L. Coblentz, and S. J. Perton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28, 1010–1012 (1992).
[Crossref]

Pieczarka, M. M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

Polubavkina, Y. S.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

Provost, J.-G.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
[Crossref]

Qasaimeh, O.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 426–438 (2000).
[Crossref]

Ramdane, A.

D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
[Crossref]

Raz, O.

J. Hofrichter, O. Raz, S. Keyvaninia, T. de Vries, H. J. S. Dorren, T. Morf, and B. J. Offrein, “High-speed direct-modulation of InP microdisk lasers,” in 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), Paper We.1.B.5.

Reitzenstein, S.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

Riechert, H.

A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, and H. Riechert, “Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots,” Phys. Rev. B 70, 205311 (2004).
[Crossref]

Rossetti, M.

A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, and H. Riechert, “Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots,” Phys. Rev. B 70, 205311 (2004).
[Crossref]

Rouvimov, S.

S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications,” Nanotechnology 26, 385202 (2015).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “GaAs quantum well-dots solar cells with spectral response extended to 1100  nm,” Electron. Lett. 51, 1602–1604 (2015).
[Crossref]

Sadrieva, Z. F.

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Sarzala, R. P.

A. K. Sokol and R. P. Sarzala, “Comparative analysis of thermal problems in GaAs- and InP-based 1.3-μm VECSELs,” Opt. Appl. 43, 325–341 (2013).
[Crossref]

Savelyev, A. V.

A. E. Zhukov, M. V. Maximov, N. Y. Gordeev, A. V. Savelyev, D. A. Livshits, and A. R. Kovsh, “Quantum dot lasers with controllable spectral and modal characteristics,” Semicond. Sci. Technol. 26, 014004 (2011).
[Crossref]

Schlereth, T.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

Shang, C.

Shostak, I. I.

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Slusher, R. E.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbuk-Ek, D. L. Coblentz, and S. J. Perton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28, 1010–1012 (1992).
[Crossref]

Sokol, A. K.

A. K. Sokol and R. P. Sarzala, “Comparative analysis of thermal problems in GaAs- and InP-based 1.3-μm VECSELs,” Opt. Appl. 43, 325–341 (2013).
[Crossref]

Song, Q. H.

Q. H. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China: Phys. Mech. Astron. 62, 074231 (2019).
[Crossref]

Su, H.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
[Crossref]

Sugawara, M.

M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
[Crossref]

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
[Crossref]

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

Takemasa, K.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

Tanaka, Y.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

Tanbuk-Ek, T.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbuk-Ek, D. L. Coblentz, and S. J. Perton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28, 1010–1012 (1992).
[Crossref]

Tang, M.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

Tommila, J.

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Torres, A.

Troshkov, S. I.

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

Ustinov, V. M.

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[Crossref]

Wan, Y.

Worschech, L.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

Wu, J.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

Xiao, J. L.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
[Crossref]

Xiao, J.-L.

Yamaguchi, M.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

Yamamoto, T.

M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
[Crossref]

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

Yang, Y. D.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
[Crossref]

Yang, Y.-D.

Zadiranov, Y.

Zadiranov, Y. M.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

Zhang, C.

Zhang, L.

L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82, 319–321 (2003).
[Crossref]

Zhang, Z.

Zhou, W.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 426–438 (2000).
[Crossref]

Zhu, D.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 426–438 (2000).
[Crossref]

Zhukov, A.

Zhukov, A. E.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, and A. E. Zhukov, “InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells,” Semicond. Sci. Technol. 32, 015006 (2017).
[Crossref]

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “GaAs quantum well-dots solar cells with spectral response extended to 1100  nm,” Electron. Lett. 51, 1602–1604 (2015).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications,” Nanotechnology 26, 385202 (2015).
[Crossref]

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

A. E. Zhukov, M. V. Maximov, N. Y. Gordeev, A. V. Savelyev, D. A. Livshits, and A. R. Kovsh, “Quantum dot lasers with controllable spectral and modal characteristics,” Semicond. Sci. Technol. 26, 014004 (2011).
[Crossref]

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[Crossref]

Zou, L. X.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Zou, L.-X.

Zubov, F.

Zubov, F. I.

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

Appl. Phys. Lett. (6)

L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82, 319–321 (2003).
[Crossref]

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett. 100, 031111 (2012).
[Crossref]

D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm,” Appl. Phys. Lett. 92, 191109 (2008).
[Crossref]

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[Crossref]

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104, 161101 (2014).
[Crossref]

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett. 85, 4145–4147 (2004).
[Crossref]

Electron. Lett. (4)

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “GaAs quantum well-dots solar cells with spectral response extended to 1100  nm,” Electron. Lett. 51, 1602–1604 (2015).
[Crossref]

N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, “Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser,” Electron. Lett. 51, 1354–1355 (2015).
[Crossref]

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbuk-Ek, D. L. Coblentz, and S. J. Perton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28, 1010–1012 (1992).
[Crossref]

M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C,” Electron. Lett. 43, 219–221 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. 43, 287–294 (2007).
[Crossref]

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 426–438 (2000).
[Crossref]

J. Phys. D (1)

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
[Crossref]

Laser Photon. Rev. (1)

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Laser Phys. Lett. (1)

N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, “Elevated temperature lasing from injection microdisk lasers on silicon,” Laser Phys. Lett. 15, 015802 (2018).
[Crossref]

Nanoscale Res. Lett. (1)

M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, and J. Tommila, “Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots,” Nanoscale Res. Lett. 9, 657 (2014).
[Crossref]

Nanotechnology (1)

S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, “Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications,” Nanotechnology 26, 385202 (2015).
[Crossref]

Opt. Appl. (1)

A. K. Sokol and R. P. Sarzala, “Comparative analysis of thermal problems in GaAs- and InP-based 1.3-μm VECSELs,” Opt. Appl. 43, 325–341 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Photon. Res. (1)

Phys. Rev. (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Phys. Rev. B (1)

A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, and H. Riechert, “Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots,” Phys. Rev. B 70, 205311 (2004).
[Crossref]

Sci. China: Phys. Mech. Astron. (1)

Q. H. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China: Phys. Mech. Astron. 62, 074231 (2019).
[Crossref]

Semicond. Sci. Technol. (4)

A. N. AL-Omari, I. K. AL-Kofahi, and K. L. Lear, “Fabrication, performance and parasitic parameter extraction of 850  nm high-speed vertical-cavity lasers,” Semicond. Sci. Technol. 24, 095024 (2009).
[Crossref]

S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, and A. E. Zhukov, “InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells,” Semicond. Sci. Technol. 32, 015006 (2017).
[Crossref]

A. E. Zhukov, M. V. Maximov, N. Y. Gordeev, A. V. Savelyev, D. A. Livshits, and A. R. Kovsh, “Quantum dot lasers with controllable spectral and modal characteristics,” Semicond. Sci. Technol. 26, 014004 (2011).
[Crossref]

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[Crossref]

Semiconductors (1)

N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, and A. E. Zhukov, “Microdisk injection lasers for the 1.27-μm spectral range,” Semiconductors 50, 390–393 (2016).
[Crossref]

Other (4)

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

J. Hofrichter, O. Raz, S. Keyvaninia, T. de Vries, H. J. S. Dorren, T. Morf, and B. J. Offrein, “High-speed direct-modulation of InP microdisk lasers,” in 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), Paper We.1.B.5.

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).

E. Kapon, ed., Semiconductor Lasers: Fundamentals (Academic, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Scanning electron microscopy (SEM) image of microdisk laser and transmission electron microscopy (TEM) images of the active region cross section.
Fig. 2.
Fig. 2. Emission spectra below (dotted line) and above (solid line) the lasing threshold; inset: mode linewidth versus normalized current.
Fig. 3.
Fig. 3. Integrated intensity of the dominant mode (circles) and total emitted power (triangles) as functions of current and current voltage characteristic (squares) of a microdisk laser. Arrow denotes the lasing threshold.
Fig. 4.
Fig. 4. Experimental (symbols) and fitted (curve) small signal modulation responses at different bias currents.
Fig. 5.
Fig. 5. Experimental data at 3 dB bandwidth (solid symbols) and relaxation oscillation frequency (open symbols) against the squared root of the injection current.
Fig. 6.
Fig. 6. Squared relaxation oscillation frequency against the lasing power. Line is a guide for the eye.
Fig. 7.
Fig. 7. Experimental (symbols) and fitted (curve) damping factor versus squared relaxation oscillation frequency.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H(f)=fR2fR2f2+j·fγ/(2π)11+j·f/fC,

Metrics