Abstract

In this work, we present a multi-channel nonreciprocal waveguide, which is composed of a gyrotropic-bounded dielectric on the bottom and a plasmonic material on the top. The Lorentz reciprocity in the time-invariant system is broken when applying an external static magnetic field on the gyrotropic material. The nonreciprocal emission from the dipole source located in the center of the waveguide is observed in extended waveband channels. The proposed heterostructure serves as a photonic dichroism once the dielectric is replaced by a nonlinear material. The associated second harmonic generated in the nonlinear process can be separated from the fundamental signal under proper magnetic field intensity. Our findings may provide significant guidance for designing nonreciprocal photonic devices with superiorities of a tunable waveband, multiple channels, and small footprint.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High-speed nonreciprocal magnetoplasmonic waveguide phase shifter

C. J. Firby and A. Y. Elezzabi
Optica 2(7) 598-606 (2015)

Nonreciprocal waveguiding structures for THz region based on InSb

Pavel Kwiecien, Ivan Richter, Vladimír Kuzmiak, and Jiří Čtyroký
J. Opt. Soc. Am. A 34(6) 892-903 (2017)

Nonreciprocal dielectric-loaded plasmonic waveguides using magneto-optical effect of Fe

Terunori Kaihara and Hiromasa Shimizu
Opt. Express 25(2) 730-748 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Y. Yin and W. Wan, “Radiation from a dipole in the presence of a grounded arbitrary magnetized chiroferrite slab,” Int. J. Infrared Millim. Waves 15, 1263–1274 (1994).
    [Crossref]
  2. P. S. Epstein, “Theory of wave propagation in a gyromagnetic medium,” Rev. Mod. Phys. 28, 3–17 (1956).
    [Crossref]
  3. C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
    [Crossref]
  4. E. Cojocaru, “Modes in dielectric or ferrite gyrotropic slab and circular waveguides, longitudinally magnetized, with open and completely or partially filled wall,” J. Opt. Soc. Am. B 27, 1965–1977 (2010).
    [Crossref]
  5. F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21, 8614–8621 (2013).
    [Crossref]
  6. K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
    [Crossref]
  7. X. Lin, Z. J. Wang, F. Gao, B. L. Zhang, and H. S. Chen, “Atomically thin nonreciprocal optical isolation,” Sci. Rep. 4, 4190 (2014).
    [Crossref]
  8. T. S. Qiu, J. Wang, Y. F. Li, and S. B. Qu, “Circulator based on spoof surface plasmon polaritons,” IEEE Antennas Wireless Propag. Lett. 16, 821–824 (2017).
    [Crossref]
  9. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
    [Crossref]
  10. C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, and Y. F. Chen, “Photonic topological insulator with broken time-reversal symmetry,” Proc. Natl. Acad. Sci. USA 113, 4924–4928 (2016).
    [Crossref]
  11. F. R. Prudencio and M. G. Silveirinha, “Asymmetric Cherenkov emission in a topological plasmonic waveguide,” Phys. Rev. B 98, 115136 (2018).
    [Crossref]
  12. S. A. Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Truly unidirectional excitation and propagation of diffractionless surface plasmon-polaritons,” arXiv: 1811.00463 (2018).
  13. H. Hu, J. L. Zhang, S. A. Maier, and Y. Luo, “Enhancing third-harmonic generation with spatial nonlocality,” ACS Photon. 5, 592–598 (2018).
    [Crossref]
  14. S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
    [Crossref]
  15. J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
    [Crossref]
  16. L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
    [Crossref]
  17. Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
    [Crossref]
  18. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
    [Crossref]
  19. S. R. K. Rodriguez, “Classical and quantum distinctions between weak and strong coupling,” Eur. J. Phys. 37, 025802 (2016).
    [Crossref]
  20. S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, and W. S. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nat. Mater. 14, 807–811 (2015).
    [Crossref]
  21. A. K. Popov, I. S. Nefedov, and S. A. Myslivets, “Hyperbolic carbon nanoforest for phase matching of ordinary and backward electromagnetic waves: second harmonic generation,” ACS Photon. 4, 1240–1244 (2017).
    [Crossref]
  22. G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
    [Crossref]
  23. L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, “Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials,” Adv. Sci. 5, 1800661 (2018).
    [Crossref]
  24. X. P. Hu, P. Xu, and S. N. Zhu, “Engineered quasi-phase-matching for laser techniques,” Photon. Res. 1, 171–185 (2013).
    [Crossref]
  25. A. Eroglu, Wave Propagation and Radiation in Gyrotropic and Anisotropic Media (Springer, 2010), p. 31.
  26. J. X. Huang, H. Hu, Z. W. Wang, W. Y. Li, J. Cang, J. Q. Shen, and H. Ye, “Analysis of light-emission enhancement of low-efficiency quantum dots by plasmonic nano-particle,” Opt. Express 24, 8555–8573 (2016).
    [Crossref]
  27. J. Tao, Q. J. Wang, J. J. Zhang, and Y. Luo, “Reverse surface-polariton Cherenkov radiation,” Sci. Rep. 6, 30704 (2016).
    [Crossref]
  28. L. Carletti, A. Locatelli, O. Stepanenko, G. Leo, and C. De Angelis, “Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas,” Opt. Express 23, 26544–26550 (2015).
    [Crossref]
  29. M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
    [Crossref]
  30. S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
    [Crossref]
  31. J. R. Maack, N. A. Mortensen, and M. Wubs, “Size-dependent nonlocal effects in plasmonic semiconductor particles,” Europhys. Lett. 119, 17003 (2017).
    [Crossref]
  32. M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
    [Crossref]
  33. L. Marrucci, “Spin gives direction,” Nat. Phys. 11, 9–10 (2015).
    [Crossref]
  34. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
    [Crossref]
  35. D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photon. Rev. 12, 1800130 (2018).
    [Crossref]
  36. R. Shi, D. L. Gao, H. Hu, Y. Q. Wang, and L. Gao, “Enhanced broadband spin Hall effects by core-shell nanoparticles,” Opt. Express 27, 4808–4817 (2019).
    [Crossref]

2019 (1)

2018 (4)

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photon. Rev. 12, 1800130 (2018).
[Crossref]

L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, “Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials,” Adv. Sci. 5, 1800661 (2018).
[Crossref]

F. R. Prudencio and M. G. Silveirinha, “Asymmetric Cherenkov emission in a topological plasmonic waveguide,” Phys. Rev. B 98, 115136 (2018).
[Crossref]

H. Hu, J. L. Zhang, S. A. Maier, and Y. Luo, “Enhancing third-harmonic generation with spatial nonlocality,” ACS Photon. 5, 592–598 (2018).
[Crossref]

2017 (6)

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

T. S. Qiu, J. Wang, Y. F. Li, and S. B. Qu, “Circulator based on spoof surface plasmon polaritons,” IEEE Antennas Wireless Propag. Lett. 16, 821–824 (2017).
[Crossref]

A. K. Popov, I. S. Nefedov, and S. A. Myslivets, “Hyperbolic carbon nanoforest for phase matching of ordinary and backward electromagnetic waves: second harmonic generation,” ACS Photon. 4, 1240–1244 (2017).
[Crossref]

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

J. R. Maack, N. A. Mortensen, and M. Wubs, “Size-dependent nonlocal effects in plasmonic semiconductor particles,” Europhys. Lett. 119, 17003 (2017).
[Crossref]

2016 (4)

J. X. Huang, H. Hu, Z. W. Wang, W. Y. Li, J. Cang, J. Q. Shen, and H. Ye, “Analysis of light-emission enhancement of low-efficiency quantum dots by plasmonic nano-particle,” Opt. Express 24, 8555–8573 (2016).
[Crossref]

J. Tao, Q. J. Wang, J. J. Zhang, and Y. Luo, “Reverse surface-polariton Cherenkov radiation,” Sci. Rep. 6, 30704 (2016).
[Crossref]

S. R. K. Rodriguez, “Classical and quantum distinctions between weak and strong coupling,” Eur. J. Phys. 37, 025802 (2016).
[Crossref]

C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, and Y. F. Chen, “Photonic topological insulator with broken time-reversal symmetry,” Proc. Natl. Acad. Sci. USA 113, 4924–4928 (2016).
[Crossref]

2015 (5)

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, and W. S. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nat. Mater. 14, 807–811 (2015).
[Crossref]

L. Carletti, A. Locatelli, O. Stepanenko, G. Leo, and C. De Angelis, “Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas,” Opt. Express 23, 26544–26550 (2015).
[Crossref]

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

L. Marrucci, “Spin gives direction,” Nat. Phys. 11, 9–10 (2015).
[Crossref]

2014 (1)

X. Lin, Z. J. Wang, F. Gao, B. L. Zhang, and H. S. Chen, “Atomically thin nonreciprocal optical isolation,” Sci. Rep. 4, 4190 (2014).
[Crossref]

2013 (3)

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21, 8614–8621 (2013).
[Crossref]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

X. P. Hu, P. Xu, and S. N. Zhu, “Engineered quasi-phase-matching for laser techniques,” Photon. Res. 1, 171–185 (2013).
[Crossref]

2012 (1)

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

2010 (1)

2009 (1)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

2008 (1)

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

2007 (2)

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

1994 (1)

W. Y. Yin and W. Wan, “Radiation from a dipole in the presence of a grounded arbitrary magnetized chiroferrite slab,” Int. J. Infrared Millim. Waves 15, 1263–1274 (1994).
[Crossref]

1956 (1)

P. S. Epstein, “Theory of wave propagation in a gyromagnetic medium,” Rev. Mod. Phys. 28, 3–17 (1956).
[Crossref]

Altug, H.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Ang, S. S.

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

Antezza, M.

S. A. Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Truly unidirectional excitation and propagation of diffractionless surface plasmon-polaritons,” arXiv: 1811.00463 (2018).

Baselli, M.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Biagioni, P.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Bianco, F.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Birowosuto, M. D.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Boyd, R. W.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Brongersma, M. L.

S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, and W. S. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nat. Mater. 14, 807–811 (2015).
[Crossref]

Cai, W. S.

S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, and W. S. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nat. Mater. 14, 807–811 (2015).
[Crossref]

Cang, J.

Carletti, L.

Cazzanelli, M.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Celebrano, M.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Cerullo, G.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Chang, S. J.

Cheah, K. W.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Chen, H. S.

X. Lin, Z. J. Wang, F. Gao, B. L. Zhang, and H. S. Chen, “Atomically thin nonreciprocal optical isolation,” Sci. Rep. 4, 4190 (2014).
[Crossref]

Chen, S.

Chen, S. M.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Chen, X. L.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Chen, Y.

C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, and Y. F. Chen, “Photonic topological insulator with broken time-reversal symmetry,” Proc. Natl. Acad. Sci. USA 113, 4924–4928 (2016).
[Crossref]

Chen, Y. F.

C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, and Y. F. Chen, “Photonic topological insulator with broken time-reversal symmetry,” Proc. Natl. Acad. Sci. USA 113, 4924–4928 (2016).
[Crossref]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

Ciccacci, F.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Cojocaru, E.

Cui, T. J.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

Cui, Y. H.

S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, and W. S. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nat. Mater. 14, 807–811 (2015).
[Crossref]

Dang, C.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

De Angelis, C.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

L. Carletti, A. Locatelli, O. Stepanenko, G. Leo, and C. De Angelis, “Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas,” Opt. Express 23, 26544–26550 (2015).
[Crossref]

Degoli, E.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Deng, X.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Duo, L.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Epstein, P. S.

P. S. Epstein, “Theory of wave propagation in a gyromagnetic medium,” Rev. Mod. Phys. 28, 3–17 (1956).
[Crossref]

Eroglu, A.

A. Eroglu, Wave Propagation and Radiation in Gyrotropic and Anisotropic Media (Springer, 2010), p. 31.

Fan, F.

Fan, S. H.

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

Feng, L.

C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, and Y. F. Chen, “Photonic topological insulator with broken time-reversal symmetry,” Proc. Natl. Acad. Sci. USA 113, 4924–4928 (2016).
[Crossref]

Fernandez-Dominguez, A. I.

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

Finazzi, M.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Gangaraj, S. A.

S. A. Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Truly unidirectional excitation and propagation of diffractionless surface plasmon-polaritons,” arXiv: 1811.00463 (2018).

Gao, D.

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photon. Rev. 12, 1800130 (2018).
[Crossref]

Gao, D. L.

Gao, F.

X. Lin, Z. J. Wang, F. Gao, B. L. Zhang, and H. S. Chen, “Atomically thin nonreciprocal optical isolation,” Sci. Rep. 4, 4190 (2014).
[Crossref]

Gao, L.

R. Shi, D. L. Gao, H. Hu, Y. Q. Wang, and L. Gao, “Enhanced broadband spin Hall effects by core-shell nanoparticles,” Opt. Express 27, 4808–4817 (2019).
[Crossref]

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photon. Rev. 12, 1800130 (2018).
[Crossref]

Ghulinyan, M.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Ginzburg, P.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Grossmann, S.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Gu, C. Q.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Hanham, S. M.

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

Hanson, G. W.

S. A. Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Truly unidirectional excitation and propagation of diffractionless surface plasmon-polaritons,” arXiv: 1811.00463 (2018).

He, C.

C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, and Y. F. Chen, “Photonic topological insulator with broken time-reversal symmetry,” Proc. Natl. Acad. Sci. USA 113, 4924–4928 (2016).
[Crossref]

Hecht, B.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Hettiarachchi, C.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Hou, S.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Hu, H.

Hu, X. P.

Huang, J. X.

Huang, S. Y.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

Kang, L.

S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, and W. S. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nat. Mater. 14, 807–811 (2015).
[Crossref]

Klein, N.

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]

Lan, S. F.

S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, and W. S. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nat. Mater. 14, 807–811 (2015).
[Crossref]

Leo, G.

Li, G. X.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Li, K. F.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Li, L. W.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Li, W. D.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Li, W. Y.

Li, Y. F.

T. S. Qiu, J. Wang, Y. F. Li, and S. B. Qu, “Circulator based on spoof surface plasmon polaritons,” IEEE Antennas Wireless Propag. Lett. 16, 821–824 (2017).
[Crossref]

Li, Z.

L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, “Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials,” Adv. Sci. 5, 1800661 (2018).
[Crossref]

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Lim, K. P.

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

Lin, X.

X. Lin, Z. J. Wang, F. Gao, B. L. Zhang, and H. S. Chen, “Atomically thin nonreciprocal optical isolation,” Sci. Rep. 4, 4190 (2014).
[Crossref]

Liu, L. L.

L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, “Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials,” Adv. Sci. 5, 1800661 (2018).
[Crossref]

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Liu, X. P.

C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, and Y. F. Chen, “Photonic topological insulator with broken time-reversal symmetry,” Proc. Natl. Acad. Sci. USA 113, 4924–4928 (2016).
[Crossref]

Liu, Y. J.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Locatelli, A.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

L. Carletti, A. Locatelli, O. Stepanenko, G. Leo, and C. De Angelis, “Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas,” Opt. Express 23, 26544–26550 (2015).
[Crossref]

Lu, M. H.

C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, and Y. F. Chen, “Photonic topological insulator with broken time-reversal symmetry,” Proc. Natl. Acad. Sci. USA 113, 4924–4928 (2016).
[Crossref]

Luo, Y.

H. Hu, J. L. Zhang, S. A. Maier, and Y. Luo, “Enhancing third-harmonic generation with spatial nonlocality,” ACS Photon. 5, 592–598 (2018).
[Crossref]

L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, “Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials,” Adv. Sci. 5, 1800661 (2018).
[Crossref]

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

J. Tao, Q. J. Wang, J. J. Zhang, and Y. Luo, “Reverse surface-polariton Cherenkov radiation,” Sci. Rep. 6, 30704 (2016).
[Crossref]

Luppi, E.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Maack, J. R.

J. R. Maack, N. A. Mortensen, and M. Wubs, “Size-dependent nonlocal effects in plasmonic semiconductor particles,” Europhys. Lett. 119, 17003 (2017).
[Crossref]

Maier, S. A.

H. Hu, J. L. Zhang, S. A. Maier, and Y. Luo, “Enhancing third-harmonic generation with spatial nonlocality,” ACS Photon. 5, 592–598 (2018).
[Crossref]

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

Marino, G.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Marrucci, L.

L. Marrucci, “Spin gives direction,” Nat. Phys. 11, 9–10 (2015).
[Crossref]

Martínez, A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Miroshnichenko, A. E.

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photon. Rev. 12, 1800130 (2018).
[Crossref]

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]

Modotto, D.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Monticone, F.

S. A. Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Truly unidirectional excitation and propagation of diffractionless surface plasmon-polaritons,” arXiv: 1811.00463 (2018).

Mortensen, N. A.

J. R. Maack, N. A. Mortensen, and M. Wubs, “Size-dependent nonlocal effects in plasmonic semiconductor particles,” Europhys. Lett. 119, 17003 (2017).
[Crossref]

Myslivets, S. A.

A. K. Popov, I. S. Nefedov, and S. A. Myslivets, “Hyperbolic carbon nanoforest for phase matching of ordinary and backward electromagnetic waves: second harmonic generation,” ACS Photon. 4, 1240–1244 (2017).
[Crossref]

Nefedov, I. S.

A. K. Popov, I. S. Nefedov, and S. A. Myslivets, “Hyperbolic carbon nanoforest for phase matching of ordinary and backward electromagnetic waves: second harmonic generation,” ACS Photon. 4, 1240–1244 (2017).
[Crossref]

Ngo, C. Y.

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

O’Connor, D.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Osellame, R.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Ossicini, S.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Pan, B. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

Pavesi, L.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Pendry, J. B.

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

Pigozzo, F. M.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Popov, A. K.

A. K. Popov, I. S. Nefedov, and S. A. Myslivets, “Hyperbolic carbon nanoforest for phase matching of ordinary and backward electromagnetic waves: second harmonic generation,” ACS Photon. 4, 1240–1244 (2017).
[Crossref]

Prudencio, F. R.

F. R. Prudencio and M. G. Silveirinha, “Asymmetric Cherenkov emission in a topological plasmonic waveguide,” Phys. Rev. B 98, 115136 (2018).
[Crossref]

Pucker, G.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Pun, E. Y. B.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Qing, Q.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Qiu, C. W.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Qiu, T. S.

T. S. Qiu, J. Wang, Y. F. Li, and S. B. Qu, “Circulator based on spoof surface plasmon polaritons,” IEEE Antennas Wireless Propag. Lett. 16, 821–824 (2017).
[Crossref]

Qu, S. B.

T. S. Qiu, J. Wang, Y. F. Li, and S. B. Qu, “Circulator based on spoof surface plasmon polaritons,” IEEE Antennas Wireless Propag. Lett. 16, 821–824 (2017).
[Crossref]

Ren, J.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

Rodrigues, S. P.

S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, and W. S. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nat. Mater. 14, 807–811 (2015).
[Crossref]

Rodriguez, S. R. K.

S. R. K. Rodriguez, “Classical and quantum distinctions between weak and strong coupling,” Eur. J. Phys. 37, 025802 (2016).
[Crossref]

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Schlickriede, C.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Schoen, D. T.

S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, and W. S. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nat. Mater. 14, 807–811 (2015).
[Crossref]

Schulz, S. A.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Shastri, K.

S. A. Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Truly unidirectional excitation and propagation of diffractionless surface plasmon-polaritons,” arXiv: 1811.00463 (2018).

Shen, J. Q.

Shen, L.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Shi, R.

R. Shi, D. L. Gao, H. Hu, Y. Q. Wang, and L. Gao, “Enhanced broadband spin Hall effects by core-shell nanoparticles,” Opt. Express 27, 4808–4817 (2019).
[Crossref]

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photon. Rev. 12, 1800130 (2018).
[Crossref]

Shum, P.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Silveirinha, M. G.

F. R. Prudencio and M. G. Silveirinha, “Asymmetric Cherenkov emission in a topological plasmonic waveguide,” Phys. Rev. B 98, 115136 (2018).
[Crossref]

S. A. Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Truly unidirectional excitation and propagation of diffractionless surface plasmon-polaritons,” arXiv: 1811.00463 (2018).

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

Stepanenko, O.

Sun, H. Y.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Sun, X. C.

C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, and Y. F. Chen, “Photonic topological insulator with broken time-reversal symmetry,” Proc. Natl. Acad. Sci. USA 113, 4924–4928 (2016).
[Crossref]

Tao, J.

J. Tao, Q. J. Wang, J. J. Zhang, and Y. Luo, “Reverse surface-polariton Cherenkov radiation,” Sci. Rep. 6, 30704 (2016).
[Crossref]

Teng, J. H.

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

Teo, E. H. T.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Tjahjana, L.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Tobing, L. Y. M.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Upham, J.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Vakakis, A. F.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Veniard, V.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Veronis, G.

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

Wabnitz, S.

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

Wan, W.

W. Y. Yin and W. Wan, “Radiation from a dipole in the presence of a grounded arbitrary magnetized chiroferrite slab,” Int. J. Infrared Millim. Waves 15, 1263–1274 (1994).
[Crossref]

Wang, H.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Wang, J.

T. S. Qiu, J. Wang, Y. F. Li, and S. B. Qu, “Circulator based on spoof surface plasmon polaritons,” IEEE Antennas Wireless Propag. Lett. 16, 821–824 (2017).
[Crossref]

Wang, Q. J.

J. Tao, Q. J. Wang, J. J. Zhang, and Y. Luo, “Reverse surface-polariton Cherenkov radiation,” Sci. Rep. 6, 30704 (2016).
[Crossref]

Wang, X. H.

Wang, Y. Q.

Wang, Z.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

Wang, Z. J.

X. Lin, Z. J. Wang, F. Gao, B. L. Zhang, and H. S. Chen, “Atomically thin nonreciprocal optical isolation,” Sci. Rep. 4, 4190 (2014).
[Crossref]

Wang, Z. W.

Wu, L.

L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, “Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials,” Adv. Sci. 5, 1800661 (2018).
[Crossref]

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Wu, X. F.

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Wubs, M.

J. R. Maack, N. A. Mortensen, and M. Wubs, “Size-dependent nonlocal effects in plasmonic semiconductor particles,” Europhys. Lett. 119, 17003 (2017).
[Crossref]

Wurtz, G. A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Xie, A.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Xie, Z.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Xu, B. Z.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Xu, P.

Xu, Z. J.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Yao, H. Y.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Ye, H.

Yeo, T. S.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Yin, J. Y.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

Yin, W. Y.

W. Y. Yin and W. Wan, “Radiation from a dipole in the presence of a grounded arbitrary magnetized chiroferrite slab,” Int. J. Infrared Millim. Waves 15, 1263–1274 (1994).
[Crossref]

Yoon, S. F.

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

Yu, J.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Yu, Z. F.

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

Zayats, A. V.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Zentgraf, T.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Zhang, B. L.

L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, “Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials,” Adv. Sci. 5, 1800661 (2018).
[Crossref]

X. Lin, Z. J. Wang, F. Gao, B. L. Zhang, and H. S. Chen, “Atomically thin nonreciprocal optical isolation,” Sci. Rep. 4, 4190 (2014).
[Crossref]

Zhang, D.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Zhang, H. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

Zhang, J. J.

L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, “Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials,” Adv. Sci. 5, 1800661 (2018).
[Crossref]

J. Tao, Q. J. Wang, J. J. Zhang, and Y. Luo, “Reverse surface-polariton Cherenkov radiation,” Sci. Rep. 6, 30704 (2016).
[Crossref]

Zhang, J. L.

H. Hu, J. L. Zhang, S. A. Maier, and Y. Luo, “Enhancing third-harmonic generation with spatial nonlocality,” ACS Photon. 5, 592–598 (2018).
[Crossref]

Zhang, S.

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Zheng, X.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Zhou, J.

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

Zhou, Y. J.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Zhu, S. N.

Zouhdi, S.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

ACS Photon. (2)

H. Hu, J. L. Zhang, S. A. Maier, and Y. Luo, “Enhancing third-harmonic generation with spatial nonlocality,” ACS Photon. 5, 592–598 (2018).
[Crossref]

A. K. Popov, I. S. Nefedov, and S. A. Myslivets, “Hyperbolic carbon nanoforest for phase matching of ordinary and backward electromagnetic waves: second harmonic generation,” ACS Photon. 4, 1240–1244 (2017).
[Crossref]

Adv. Mater. (1)

S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, Op226–Op230 (2012).
[Crossref]

Adv. Sci. (1)

L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, “Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials,” Adv. Sci. 5, 1800661 (2018).
[Crossref]

Eur. J. Phys. (1)

S. R. K. Rodriguez, “Classical and quantum distinctions between weak and strong coupling,” Eur. J. Phys. 37, 025802 (2016).
[Crossref]

Europhys. Lett. (1)

J. R. Maack, N. A. Mortensen, and M. Wubs, “Size-dependent nonlocal effects in plasmonic semiconductor particles,” Europhys. Lett. 119, 17003 (2017).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

T. S. Qiu, J. Wang, Y. F. Li, and S. B. Qu, “Circulator based on spoof surface plasmon polaritons,” IEEE Antennas Wireless Propag. Lett. 16, 821–824 (2017).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microwave Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Int. J. Infrared Millim. Waves (1)

W. Y. Yin and W. Wan, “Radiation from a dipole in the presence of a grounded arbitrary magnetized chiroferrite slab,” Int. J. Infrared Millim. Waves 15, 1263–1274 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photon. Rev. 12, 1800130 (2018).
[Crossref]

Nano Lett. (1)

G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation,” Nano Lett. 17, 7974–7979 (2017).
[Crossref]

Nat. Mater. (1)

S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, and W. S. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nat. Mater. 14, 807–811 (2015).
[Crossref]

Nat. Nanotechnol. (1)

M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Nat. Phys. (1)

L. Marrucci, “Spin gives direction,” Nat. Phys. 11, 9–10 (2015).
[Crossref]

Nature (1)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

Opt. Express (4)

Photon. Res. (1)

Phys. Rev. B (3)

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]

F. R. Prudencio and M. G. Silveirinha, “Asymmetric Cherenkov emission in a topological plasmonic waveguide,” Phys. Rev. B 98, 115136 (2018).
[Crossref]

Phys. Rev. Lett. (1)

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, and Y. F. Chen, “Photonic topological insulator with broken time-reversal symmetry,” Proc. Natl. Acad. Sci. USA 113, 4924–4928 (2016).
[Crossref]

Rev. Mod. Phys. (1)

P. S. Epstein, “Theory of wave propagation in a gyromagnetic medium,” Rev. Mod. Phys. 28, 3–17 (1956).
[Crossref]

Sci. Rep. (3)

X. Lin, Z. J. Wang, F. Gao, B. L. Zhang, and H. S. Chen, “Atomically thin nonreciprocal optical isolation,” Sci. Rep. 4, 4190 (2014).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

J. Tao, Q. J. Wang, J. J. Zhang, and Y. Luo, “Reverse surface-polariton Cherenkov radiation,” Sci. Rep. 6, 30704 (2016).
[Crossref]

Science (2)

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Other (4)

S. A. Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Truly unidirectional excitation and propagation of diffractionless surface plasmon-polaritons,” arXiv: 1811.00463 (2018).

S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, and H. Wang, “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.
[Crossref]

M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, and L. Pavesi, “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.
[Crossref]

A. Eroglu, Wave Propagation and Radiation in Gyrotropic and Anisotropic Media (Springer, 2010), p. 31.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of the multi-channel nonreciprocal waveguide, which is composed of a plasmonic material, a dielectric, and a gyrotropic material. A static magnetic field B=Bz^ with the polarization along the z direction is applied to the gyrotropic material. A dipole with x-oriented dipole momentum is located in the center of the transparent dielectric with a thickness of 2d=50  nm. (b) Dispersion relation of the proposed waveguide when the cyclotron frequency ωc=0 (zero magnetic field). The insets are the Ex-field distribution of the odd mode and even mode, respectively.
Fig. 2.
Fig. 2. (a) Dispersion relation of the multi-channel nonreciprocal waveguide when the cyclotron frequency ωc=0.5ωp1 (non-zero magnetic field). There are four non-reciprocal channels, as highlighted in different colors. (bi)–(biv) Field distributions in the four non-reciprocal channels. In each nonreciprocal channel, photons from the dipole are emitted in a nonreciprocal manner.
Fig. 3.
Fig. 3. Calculated directionality of each nonreciprocal channel. D1 is the forward directionality (blue line), and D2 is the backward directionality (red line). Different channels are highlighted in different colors as in Fig. 2(a).
Fig. 4.
Fig. 4. Two schemes to separate the fundamental signal and the second harmonic using the multi-channel nonreciprocal waveguide. (ai) Schematic diagram of the first scheme: the fundamental signal in channel 1 is routed backward [see (aii)], while the second harmonic in channel 2 is routed forward [see (aiii)]. (bi) Schematic diagram of the second scheme: the fundamental signal in channel 2 is routed forward [see (bii)], while the second harmonic in channel 4 is routed backward [see (biii)].
Fig. 5.
Fig. 5. Calculated power density of the fundamental signal (blue line) and the second harmonic (red line) at L=1  μm away from the dipole source in (a) the first scheme and (b) the second scheme, as indicated in Fig. 4. The arrows represent the propagation direction of the corresponding EM modes.
Fig. 6.
Fig. 6. (a) Dispersion relations of a realistic structure, where both the plasmonic material and the gyrotropic material are doped InSb, and the dielectric is replaced by the strained Si. The QD is embedded in the Si slab. A static magnetic field is applied on the InSb in the bottom layer, shown as the inset. For comparison, dispersion relations are plotted for the system under the static magnetic field B=0  T, B=0.27  T, and B=0.54  T, respectively. (b), (c) Field distributions in the fundamental frequency and in the second-harmonic frequency bands under the static magnetic field B=0.54  T, respectively.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ε¯¯=ϵ1[εtiεg0iεgεt000εa],
εm=ϵ2[1ωp22ω(ω+iγ2)].
Hzf={dkxCTM+eikymyeikxxy>ddkx(BTM+eikydy+BTMeikydy)eikxxd<y<ddkxCTMeikygyeikxxy<d,
Exf=1ωε0{dkxSmCTM+eikymyeikxxy>ddkxSd(BTM+eikydyBTMeikydy)eikxxd<y<ddkx(SgCTMeikygyeikxx)y<d.
e4ikydd=(Sg+Sd)(Sm+Sd)(SmSd)(SgSd).
Hzs=dkxAeikyd|y|eikxx,
Exs=1ωε0dkxSd[sgn(y)Aeikyd|y|]eikxx.
Hzt=Hzf+Hzs,
Ext=Exf+Exs,
BTM+=(SdSm)(SgSd)e2ikydd(SdSg)(Sm+Sd)(SmSd)(SgSd)e2ikydd(Sg+Sd)(Sm+Sd)e2ikyddA,
BTM=(SdSm)(SgSd)e2ikydd(SdSm)(Sg+Sd)(SmSd)(SgSd)e2ikydd(Sg+Sd)(Sm+Sd)e2ikyddA,
CTM+=BTM+ei(kydkym)d+BTMei(kyd+kym)d+Aei(kydkym)d,
CTM=BTM+ei(kyd+kyg)d+BTMei(kydkyg)d+Aei(kydkyg)d.
D1=PL(ω)PL(ω)+PL(ω),
D2=PL(ω)PL(ω)+PL(ω),