Abstract

A black phosphorus (BP) functionalized optical fiber sensor based on a microfiber coil resonator (MCR) for Pb2+ ion detection in an aquatic environment is presented and experimentally demonstrated. The MCR-BP sensor is manufactured by winding a tapered microfiber on a hollow rod composed of a low-refractive-index polycarbonate (PC) resin with the BP deposited on the internal wall of the rod. Based on the propagation properties of the MCR, the chemical interaction between the Pb2+ ions and the BP alters the refractive index of the ambient environment and thus results in a detectable shift in the transmission spectrum. The resonance wavelength moves towards longer wavelengths with an increasing concentration of Pb2+ ions, and the sensor has an ultra-high detection resolution of 0.0285 ppb (parts per billion). The temperature dependence is 106.95 pm/°C due to the strong thermo-optic and thermal-expansion effect of the low-refractive-index PC resin. In addition, the sensor shows good stability over a period of 15 days. The local pH also influences the sensor, with the resonance wavelength shift increasing as pH approaches a value of 7 but then decreasing as the pH value increases further due to the effect of the BP layer by H+ and OH ions. The sensor shows the potential for high-resolution detection of Pb2+ ions in a liquid environment with the particular advantages of having a simple structure, ease of fabrication, low cost, low loss, and simple interrogation.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High-sensitivity salinity sensor based on optical microfiber coil resonator

Y. Yin, S. Li, J. Ren, G. Farrell, E. Lewis, and P. Wang
Opt. Express 26(26) 34633-34640 (2018)

Teflon-coated microfiber resonator with weak temperature dependence

Ye Chen, Fei Xu, and Yan-qing Lu
Opt. Express 19(23) 22923-22928 (2011)

Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser

Zhi-Chao Luo, Meng Liu, Zhi-Nan Guo, Xiao-Fang Jiang, Ai-Ping Luo, Chu-Jun Zhao, Xue-Feng Yu, Wen-Cheng Xu, and Han Zhang
Opt. Express 23(15) 20030-20039 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J. 124, 104–110 (2016).
    [Crossref]
  2. K. Jomova and M. Morovič, “Effect of heavy metal treatment on molecular changes in root tips of Lupinus luteus L,” Czech J. Food Sci. 27, S386–S389 (2009).
    [Crossref]
  3. B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sens. Actuators B 259, 364–371 (2018).
    [Crossref]
  4. H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
    [Crossref]
  5. Y. Lu, X. Li, G. Wang, and W. Tang, “A highly sensitive and selective optical sensor for Pb2+ by using conjugated polymers and label-free oligonucleotides,” Biosens. Bioelectron. 39, 231–235 (2013).
    [Crossref]
  6. C. Hou, Y. Xiong, N. Fu, C. C. Jacquot, T. C. Squier, and H. Cao, “Turn-on ratiometric fluorescent sensor for Pb2+ detection,” Tetrahedron Lett. 52, 2692–2696 (2011).
    [Crossref]
  7. R. Sedghi, S. Kazemi, and B. Heidari, “Novel selective and sensitive dual colorimetric sensor for mercury and lead ions derived from dithizone-polymeric nanocomposite hybrid,” Sens. Actuators B 245, 860–867 (2017).
    [Crossref]
  8. P. T. Martinhon, J. Carreño, C. R. Sousa, O. E. Barcia, and O. R. Mattos, “Electrochemical impedance spectroscopy of lead (II) ion-selective solid-state membranes,” Electrochim. Acta 51, 3022–3028 (2006).
    [Crossref]
  9. F. M. Pereira, D. M. Brum, F. G. Lepri, and R. J. Cassella, “Extraction induced by emulsion breaking as a tool for Ca and Mg determination in biodiesel by fast sequential flame atomic absorption spectrometry (FS-FAAS) using Co as internal standard,” Microchem. J. 117, 172–177 (2014).
    [Crossref]
  10. A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,” Sens. Actuators B 242, 679–686 (2017).
    [Crossref]
  11. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
    [Crossref]
  12. A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 805053 (2015).
    [Crossref]
  13. Y. Cao, X. Wang, T. Guo, Y. Ran, X. Feng, B.-O. Guan, and J. Yao, “High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,” Sens. Actuators B 245, 583–589 (2017).
    [Crossref]
  14. S. P. Usha, S. K. Mishra, and B. D. Gupta, “Fabrication and characterization of a SPR based fiber optic sensor for the detection of chlorine gas using silver and zinc oxide,” Materials 8, 2204–2216 (2015).
    [Crossref]
  15. Y. Wu, Y.-J. Rao, Y.-H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17, 18142–18147 (2009).
    [Crossref]
  16. S. Bagchi, R. Achla, and S. K. Mondal, “Electrospun polypyrrole-polyethylene oxide coated optical fiber sensor probe for detection of volatile compounds,” Sens. Actuators B 250, 52–60 (2017).
    [Crossref]
  17. R. Raghunandhan, L. Chen, H. Long, L. Leam, P. So, X. Ning, and C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B 233, 31–38 (2016).
    [Crossref]
  18. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, and J. S. Wilkinson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
    [Crossref]
  19. I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photon. Technol. Lett. 27, 2591–2594 (2015).
    [Crossref]
  20. B. Jiang, M. Xue, C. Zhao, D. Mao, K. Zhou, L. Zhang, and J. Zhao, “Refractometer probe based on a reflective carbon nanotube-modified microfiber Bragg grating,” Appl. Opt. 55, 7037–7041 (2016).
    [Crossref]
  21. P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48, 283–284 (2012).
    [Crossref]
  22. R. Wang and X. Qiao, “Intrinsic Fabry-Perot interferometeric sensor based on microfiber created by chemical etching,” Sensors 14, 16808–16815 (2014).
    [Crossref]
  23. Y. Ren, R. Zhang, C. Ti, and Y. Liu, “Tapered optical fiber loops and helices for integrated photonic device characterization and microfluidic roller coasters,” Optica 3, 1205–1208 (2016).
    [Crossref]
  24. Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23, 6662–6672 (2015).
    [Crossref]
  25. C.-J. Ma, L.-Y. Ren, Y.-P. Xu, Y.-L. Wang, H. Zhou, H.-W. Fu, and J. Wen, “Theoretical and experimental study of structural slow light in a microfiber coil resonator,” Appl. Opt. 54, 5619–5623 (2015).
    [Crossref]
  26. Y. Yin, J. Yu, Y. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36, 4887–4893 (2018).
    [Crossref]
  27. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
    [Crossref]
  28. Y. Yin, S. Li, J. Ren, G. Farrell, E. Lewis, and P. Wang, “High-sensitivity salinity sensor based on optical microfiber coil resonator,” Opt. Express 26, 34633–34640 (2018).
    [Crossref]
  29. S.-C. Yan, B.-C. Zheng, J.-H. Chen, F. Xu, and Y.-Q. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107, 053502 (2015).
    [Crossref]
  30. A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
    [Crossref]
  31. W. Lei, D. Portehault, R. Dimova, and M. Antonietti, “Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors,” J. Am. Chem. Soc. 133, 7121–7127 (2011).
    [Crossref]
  32. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  33. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
    [Crossref]
  34. Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
    [Crossref]
  35. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
    [Crossref]
  36. N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
    [Crossref]
  37. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1, 107–131 (2012).
    [Crossref]
  38. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  39. J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3, 301–306 (2009).
    [Crossref]
  40. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
    [Crossref]
  41. S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
    [Crossref]
  42. M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
    [Crossref]
  43. A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6, 4280–4291 (2015).
    [Crossref]
  44. S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
    [Crossref]
  45. R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
    [Crossref]
  46. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Van Der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
    [Crossref]
  47. N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9, 247–252 (2015).
    [Crossref]
  48. A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
    [Crossref]
  49. J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
    [Crossref]
  50. B. S. Boruah and R. Biswas, “Localized surface plasmon resonance based U-shaped optical fiber probe for the detection of Pb2+ in aqueous medium,” Sens. Actuators B 276, 89–94 (2018).
    [Crossref]
  51. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004).
    [Crossref]
  52. J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
    [Crossref]
  53. C. Liu, Z. Sun, L. Zhang, J. Lv, X. Yu, and X. Chen, “Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,” Sens. Actuators B 257, 1093–1098 (2018).
    [Crossref]
  54. Y.-C. Chang and D.-H. Chen, “Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions,” J. Colloid Interface Sci. 283, 446–451 (2005).
    [Crossref]
  55. N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, and N. Rodthongkum, “An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium,” Sens. Actuators B 207, 526–534 (2015).
    [Crossref]
  56. M. Á. G. Rico, M. Olivares-Marín, and E. P. Gil, “Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn (II), Cd (II) and Pb (II),” Talanta 80, 631–635 (2009).
    [Crossref]
  57. G. Liu, J. Chen, X. Hou, and W. Huang, “A highly-sensitive electrochemical sensor for the simultaneous detection of Cd2+ and Pb2+ using liquid phase-exfoliated graphene,” Anal. Methods 6, 5760–5765 (2014).
    [Crossref]
  58. P. Niu, C. Fernández-Sánchez, M. Gich, C. Ayora, and A. Roig, “Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes,” Electrochim. Acta 165, 155–161 (2015).
    [Crossref]
  59. H. Liu, H. Liu, G. Peng, and P. Chu, “Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings,” Opt. Commun. 219, 139–142 (2003).
    [Crossref]
  60. Y.-N. Zhang, L. Zhang, B. Han, P. Gao, Q. Wu, and A. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating,” Sens. Actuators B 272, 331–339 (2018).
    [Crossref]

2018 (8)

B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sens. Actuators B 259, 364–371 (2018).
[Crossref]

Y. Yin, J. Yu, Y. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36, 4887–4893 (2018).
[Crossref]

Y. Yin, S. Li, J. Ren, G. Farrell, E. Lewis, and P. Wang, “High-sensitivity salinity sensor based on optical microfiber coil resonator,” Opt. Express 26, 34633–34640 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

B. S. Boruah and R. Biswas, “Localized surface plasmon resonance based U-shaped optical fiber probe for the detection of Pb2+ in aqueous medium,” Sens. Actuators B 276, 89–94 (2018).
[Crossref]

C. Liu, Z. Sun, L. Zhang, J. Lv, X. Yu, and X. Chen, “Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,” Sens. Actuators B 257, 1093–1098 (2018).
[Crossref]

Y.-N. Zhang, L. Zhang, B. Han, P. Gao, Q. Wu, and A. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating,” Sens. Actuators B 272, 331–339 (2018).
[Crossref]

2017 (6)

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

R. Sedghi, S. Kazemi, and B. Heidari, “Novel selective and sensitive dual colorimetric sensor for mercury and lead ions derived from dithizone-polymeric nanocomposite hybrid,” Sens. Actuators B 245, 860–867 (2017).
[Crossref]

A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,” Sens. Actuators B 242, 679–686 (2017).
[Crossref]

Y. Cao, X. Wang, T. Guo, Y. Ran, X. Feng, B.-O. Guan, and J. Yao, “High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,” Sens. Actuators B 245, 583–589 (2017).
[Crossref]

S. Bagchi, R. Achla, and S. K. Mondal, “Electrospun polypyrrole-polyethylene oxide coated optical fiber sensor probe for detection of volatile compounds,” Sens. Actuators B 250, 52–60 (2017).
[Crossref]

2016 (6)

R. Raghunandhan, L. Chen, H. Long, L. Leam, P. So, X. Ning, and C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B 233, 31–38 (2016).
[Crossref]

S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J. 124, 104–110 (2016).
[Crossref]

Y. Ren, R. Zhang, C. Ti, and Y. Liu, “Tapered optical fiber loops and helices for integrated photonic device characterization and microfluidic roller coasters,” Optica 3, 1205–1208 (2016).
[Crossref]

B. Jiang, M. Xue, C. Zhao, D. Mao, K. Zhou, L. Zhang, and J. Zhao, “Refractometer probe based on a reflective carbon nanotube-modified microfiber Bragg grating,” Appl. Opt. 55, 7037–7041 (2016).
[Crossref]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
[Crossref]

2015 (14)

R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9, 247–252 (2015).
[Crossref]

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6, 4280–4291 (2015).
[Crossref]

N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, and N. Rodthongkum, “An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium,” Sens. Actuators B 207, 526–534 (2015).
[Crossref]

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

P. Niu, C. Fernández-Sánchez, M. Gich, C. Ayora, and A. Roig, “Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes,” Electrochim. Acta 165, 155–161 (2015).
[Crossref]

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photon. Technol. Lett. 27, 2591–2594 (2015).
[Crossref]

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23, 6662–6672 (2015).
[Crossref]

C.-J. Ma, L.-Y. Ren, Y.-P. Xu, Y.-L. Wang, H. Zhou, H.-W. Fu, and J. Wen, “Theoretical and experimental study of structural slow light in a microfiber coil resonator,” Appl. Opt. 54, 5619–5623 (2015).
[Crossref]

S.-C. Yan, B.-C. Zheng, J.-H. Chen, F. Xu, and Y.-Q. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107, 053502 (2015).
[Crossref]

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

S. P. Usha, S. K. Mishra, and B. D. Gupta, “Fabrication and characterization of a SPR based fiber optic sensor for the detection of chlorine gas using silver and zinc oxide,” Materials 8, 2204–2216 (2015).
[Crossref]

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 805053 (2015).
[Crossref]

2014 (6)

F. M. Pereira, D. M. Brum, F. G. Lepri, and R. J. Cassella, “Extraction induced by emulsion breaking as a tool for Ca and Mg determination in biodiesel by fast sequential flame atomic absorption spectrometry (FS-FAAS) using Co as internal standard,” Microchem. J. 117, 172–177 (2014).
[Crossref]

R. Wang and X. Qiao, “Intrinsic Fabry-Perot interferometeric sensor based on microfiber created by chemical etching,” Sensors 14, 16808–16815 (2014).
[Crossref]

G. Liu, J. Chen, X. Hou, and W. Huang, “A highly-sensitive electrochemical sensor for the simultaneous detection of Cd2+ and Pb2+ using liquid phase-exfoliated graphene,” Anal. Methods 6, 5760–5765 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Van Der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

2013 (1)

Y. Lu, X. Li, G. Wang, and W. Tang, “A highly sensitive and selective optical sensor for Pb2+ by using conjugated polymers and label-free oligonucleotides,” Biosens. Bioelectron. 39, 231–235 (2013).
[Crossref]

2012 (3)

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48, 283–284 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1, 107–131 (2012).
[Crossref]

2011 (4)

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

W. Lei, D. Portehault, R. Dimova, and M. Antonietti, “Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors,” J. Am. Chem. Soc. 133, 7121–7127 (2011).
[Crossref]

C. Hou, Y. Xiong, N. Fu, C. C. Jacquot, T. C. Squier, and H. Cao, “Turn-on ratiometric fluorescent sensor for Pb2+ detection,” Tetrahedron Lett. 52, 2692–2696 (2011).
[Crossref]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
[Crossref]

2009 (7)

Y. Wu, Y.-J. Rao, Y.-H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17, 18142–18147 (2009).
[Crossref]

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, and J. S. Wilkinson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
[Crossref]

K. Jomova and M. Morovič, “Effect of heavy metal treatment on molecular changes in root tips of Lupinus luteus L,” Czech J. Food Sci. 27, S386–S389 (2009).
[Crossref]

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3, 301–306 (2009).
[Crossref]

M. Á. G. Rico, M. Olivares-Marín, and E. P. Gil, “Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn (II), Cd (II) and Pb (II),” Talanta 80, 631–635 (2009).
[Crossref]

2008 (1)

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[Crossref]

2006 (1)

P. T. Martinhon, J. Carreño, C. R. Sousa, O. E. Barcia, and O. R. Mattos, “Electrochemical impedance spectroscopy of lead (II) ion-selective solid-state membranes,” Electrochim. Acta 51, 3022–3028 (2006).
[Crossref]

2005 (1)

Y.-C. Chang and D.-H. Chen, “Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions,” J. Colloid Interface Sci. 283, 446–451 (2005).
[Crossref]

2004 (1)

2003 (1)

H. Liu, H. Liu, G. Peng, and P. Chu, “Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings,” Opt. Commun. 219, 139–142 (2003).
[Crossref]

Abbas, A. N.

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

Achla, R.

S. Bagchi, R. Achla, and S. K. Mondal, “Electrospun polypyrrole-polyethylene oxide coated optical fiber sensor probe for detection of volatile compounds,” Sens. Actuators B 250, 52–60 (2017).
[Crossref]

Allen, M. J.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3, 301–306 (2009).
[Crossref]

Antonietti, M.

W. Lei, D. Portehault, R. Dimova, and M. Antonietti, “Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors,” J. Am. Chem. Soc. 133, 7121–7127 (2011).
[Crossref]

Aroonyadet, N.

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

Arregui, F. J.

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 805053 (2015).
[Crossref]

Ayora, C.

P. Niu, C. Fernández-Sánchez, M. Gich, C. Ayora, and A. Roig, “Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes,” Electrochim. Acta 165, 155–161 (2015).
[Crossref]

Bagchi, S.

S. Bagchi, R. Achla, and S. K. Mondal, “Electrospun polypyrrole-polyethylene oxide coated optical fiber sensor probe for detection of volatile compounds,” Sens. Actuators B 250, 52–60 (2017).
[Crossref]

Baik, S. S.

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

Bao, Q.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Barcia, O. E.

P. T. Martinhon, J. Carreño, C. R. Sousa, O. E. Barcia, and O. R. Mattos, “Electrochemical impedance spectroscopy of lead (II) ion-selective solid-state membranes,” Electrochim. Acta 51, 3022–3028 (2006).
[Crossref]

Barsoum, M. W.

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Biswas, R.

B. S. Boruah and R. Biswas, “Localized surface plasmon resonance based U-shaped optical fiber probe for the detection of Pb2+ in aqueous medium,” Sens. Actuators B 276, 89–94 (2018).
[Crossref]

Blanter, S. I.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Van Der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

Boruah, B. S.

B. S. Boruah and R. Biswas, “Localized surface plasmon resonance based U-shaped optical fiber probe for the detection of Pb2+ in aqueous medium,” Sens. Actuators B 276, 89–94 (2018).
[Crossref]

Brambilla, G.

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48, 283–284 (2012).
[Crossref]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
[Crossref]

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, and J. S. Wilkinson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
[Crossref]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[Crossref]

Brum, D. M.

F. M. Pereira, D. M. Brum, F. G. Lepri, and R. J. Cassella, “Extraction induced by emulsion breaking as a tool for Ca and Mg determination in biodiesel by fast sequential flame atomic absorption spectrometry (FS-FAAS) using Co as internal standard,” Microchem. J. 117, 172–177 (2014).
[Crossref]

Buscema, M.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Van Der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

Cao, H.

C. Hou, Y. Xiong, N. Fu, C. C. Jacquot, T. C. Squier, and H. Cao, “Turn-on ratiometric fluorescent sensor for Pb2+ detection,” Tetrahedron Lett. 52, 2692–2696 (2011).
[Crossref]

Cao, Y.

Y. Cao, X. Wang, T. Guo, Y. Ran, X. Feng, B.-O. Guan, and J. Yao, “High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,” Sens. Actuators B 245, 583–589 (2017).
[Crossref]

Carreño, J.

P. T. Martinhon, J. Carreño, C. R. Sousa, O. E. Barcia, and O. R. Mattos, “Electrochemical impedance spectroscopy of lead (II) ion-selective solid-state membranes,” Electrochim. Acta 51, 3022–3028 (2006).
[Crossref]

Cassella, R. J.

F. M. Pereira, D. M. Brum, F. G. Lepri, and R. J. Cassella, “Extraction induced by emulsion breaking as a tool for Ca and Mg determination in biodiesel by fast sequential flame atomic absorption spectrometry (FS-FAAS) using Co as internal standard,” Microchem. J. 117, 172–177 (2014).
[Crossref]

Castellanos-Gomez, A.

A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6, 4280–4291 (2015).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Van Der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

Chailapakul, O.

N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, and N. Rodthongkum, “An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium,” Sens. Actuators B 207, 526–534 (2015).
[Crossref]

Chan, C.

R. Raghunandhan, L. Chen, H. Long, L. Leam, P. So, X. Ning, and C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B 233, 31–38 (2016).
[Crossref]

Chang, Y.-C.

Y.-C. Chang and D.-H. Chen, “Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions,” J. Colloid Interface Sci. 283, 446–451 (2005).
[Crossref]

Chen, C.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9, 247–252 (2015).
[Crossref]

Chen, D.-H.

Y.-C. Chang and D.-H. Chen, “Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions,” J. Colloid Interface Sci. 283, 446–451 (2005).
[Crossref]

Chen, H.

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Chen, J.

G. Liu, J. Chen, X. Hou, and W. Huang, “A highly-sensitive electrochemical sensor for the simultaneous detection of Cd2+ and Pb2+ using liquid phase-exfoliated graphene,” Anal. Methods 6, 5760–5765 (2014).
[Crossref]

Chen, J.-H.

S.-C. Yan, B.-C. Zheng, J.-H. Chen, F. Xu, and Y.-Q. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107, 053502 (2015).
[Crossref]

Chen, L.

R. Raghunandhan, L. Chen, H. Long, L. Leam, P. So, X. Ning, and C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B 233, 31–38 (2016).
[Crossref]

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

Chen, P.

B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sens. Actuators B 259, 364–371 (2018).
[Crossref]

Chen, S.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Chen, X.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

C. Liu, Z. Sun, L. Zhang, J. Lv, X. Yu, and X. Chen, “Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,” Sens. Actuators B 257, 1093–1098 (2018).
[Crossref]

Chen, X. H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Chen, Y.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Chen, Y.-H.

Cheng, B.

B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sens. Actuators B 259, 364–371 (2018).
[Crossref]

Cheng, H.-M.

Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1, 107–131 (2012).
[Crossref]

Cho, S. Y.

S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
[Crossref]

Choi, H. J.

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

Chowdhuri, A. R.

A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,” Sens. Actuators B 242, 679–686 (2017).
[Crossref]

Chu, P.

H. Liu, H. Liu, G. Peng, and P. Chu, “Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings,” Opt. Commun. 219, 139–142 (2003).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Cong, S.

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

Denlinger, J.

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

Dhanabalan, S. C.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Dimova, R.

W. Lei, D. Portehault, R. Dimova, and M. Antonietti, “Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors,” J. Am. Chem. Soc. 133, 7121–7127 (2011).
[Crossref]

Ding, M.

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48, 283–284 (2012).
[Crossref]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
[Crossref]

Dong, X.

B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sens. Actuators B 259, 364–371 (2018).
[Crossref]

Farrell, G.

Feng, D.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Feng, X.

Y. Cao, X. Wang, T. Guo, Y. Ran, X. Feng, B.-O. Guan, and J. Yao, “High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,” Sens. Actuators B 245, 583–589 (2017).
[Crossref]

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, and J. S. Wilkinson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
[Crossref]

Fernández-Sánchez, C.

P. Niu, C. Fernández-Sánchez, M. Gich, C. Ayora, and A. Roig, “Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes,” Electrochim. Acta 165, 155–161 (2015).
[Crossref]

Fowler, J. D.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3, 301–306 (2009).
[Crossref]

Fu, H.-W.

Fu, N.

C. Hou, Y. Xiong, N. Fu, C. C. Jacquot, T. C. Squier, and H. Cao, “Turn-on ratiometric fluorescent sensor for Pb2+ detection,” Tetrahedron Lett. 52, 2692–2696 (2011).
[Crossref]

Gao, P.

Y.-N. Zhang, L. Zhang, B. Han, P. Gao, Q. Wu, and A. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating,” Sens. Actuators B 272, 331–339 (2018).
[Crossref]

Ge, Q.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Ge, Y.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Geim, A. K.

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[Crossref]

Gich, M.

P. Niu, C. Fernández-Sánchez, M. Gich, C. Ayora, and A. Roig, “Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes,” Electrochim. Acta 165, 155–161 (2015).
[Crossref]

Gil, E. P.

M. Á. G. Rico, M. Olivares-Marín, and E. P. Gil, “Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn (II), Cd (II) and Pb (II),” Talanta 80, 631–635 (2009).
[Crossref]

Goicoechea, J.

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 805053 (2015).
[Crossref]

Gong, Y.

Groenendijk, D. J.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Van Der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

Guan, A.

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Guan, B.-O.

Y. Cao, X. Wang, T. Guo, Y. Ran, X. Feng, B.-O. Guan, and J. Yao, “High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,” Sens. Actuators B 245, 583–589 (2017).
[Crossref]

Guo, T.

Y. Cao, X. Wang, T. Guo, Y. Ran, X. Feng, B.-O. Guan, and J. Yao, “High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,” Sens. Actuators B 245, 583–589 (2017).
[Crossref]

Guo, Z.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Gupta, B. D.

S. P. Usha, S. K. Mishra, and B. D. Gupta, “Fabrication and characterization of a SPR based fiber optic sensor for the detection of chlorine gas using silver and zinc oxide,” Materials 8, 2204–2216 (2015).
[Crossref]

Han, B.

Y.-N. Zhang, L. Zhang, B. Han, P. Gao, Q. Wu, and A. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating,” Sens. Actuators B 272, 331–339 (2018).
[Crossref]

Heidari, B.

R. Sedghi, S. Kazemi, and B. Heidari, “Novel selective and sensitive dual colorimetric sensor for mercury and lead ions derived from dithizone-polymeric nanocomposite hybrid,” Sens. Actuators B 245, 860–867 (2017).
[Crossref]

Hernández-Romano, I.

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photon. Technol. Lett. 27, 2591–2594 (2015).
[Crossref]

Horak, P.

Hou, C.

C. Hou, Y. Xiong, N. Fu, C. C. Jacquot, T. C. Squier, and H. Cao, “Turn-on ratiometric fluorescent sensor for Pb2+ detection,” Tetrahedron Lett. 52, 2692–2696 (2011).
[Crossref]

Hou, X.

G. Liu, J. Chen, X. Hou, and W. Huang, “A highly-sensitive electrochemical sensor for the simultaneous detection of Cd2+ and Pb2+ using liquid phase-exfoliated graphene,” Anal. Methods 6, 5760–5765 (2014).
[Crossref]

Huang, H.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

Huang, W.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

G. Liu, J. Chen, X. Hou, and W. Huang, “A highly-sensitive electrochemical sensor for the simultaneous detection of Cd2+ and Pb2+ using liquid phase-exfoliated graphene,” Anal. Methods 6, 5760–5765 (2014).
[Crossref]

Jacquot, C. C.

C. Hou, Y. Xiong, N. Fu, C. C. Jacquot, T. C. Squier, and H. Cao, “Turn-on ratiometric fluorescent sensor for Pb2+ detection,” Tetrahedron Lett. 52, 2692–2696 (2011).
[Crossref]

Jeong, T.

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

Jia, Y.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Jiang, B.

Jiang, Y.

Jomova, K.

K. Jomova and M. Morovič, “Effect of heavy metal treatment on molecular changes in root tips of Lupinus luteus L,” Czech J. Food Sci. 27, S386–S389 (2009).
[Crossref]

Jun, L.

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Jung, H.

S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
[Crossref]

Jung, H. T.

S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
[Crossref]

Jung, Y.

Junjie, N.

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kaner, R. B.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3, 301–306 (2009).
[Crossref]

Karmakar, P.

A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,” Sens. Actuators B 242, 679–686 (2017).
[Crossref]

Kazemi, S.

R. Sedghi, S. Kazemi, and B. Heidari, “Novel selective and sensitive dual colorimetric sensor for mercury and lead ions derived from dithizone-polymeric nanocomposite hybrid,” Sens. Actuators B 245, 860–867 (2017).
[Crossref]

Khurana, P.

S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J. 124, 104–110 (2016).
[Crossref]

Kim, J.

S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
[Crossref]

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

Kim, J. S.

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
[Crossref]

Kim, K. S.

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Koester, S. J.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9, 247–252 (2015).
[Crossref]

Koh, H. J.

S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
[Crossref]

Koizumi, F.

Köpf, M.

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

Koukharenko, E.

Kumar, A.

A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,” Sens. Actuators B 242, 679–686 (2017).
[Crossref]

Kumar, D.

S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J. 124, 104–110 (2016).
[Crossref]

Laha, D.

A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,” Sens. Actuators B 242, 679–686 (2017).
[Crossref]

Lars, H.

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Leam, L.

R. Raghunandhan, L. Chen, H. Long, L. Leam, P. So, X. Ning, and C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B 233, 31–38 (2016).
[Crossref]

Lee, Y.

S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
[Crossref]

Lei, W.

W. Lei, D. Portehault, R. Dimova, and M. Antonietti, “Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors,” J. Am. Chem. Soc. 133, 7121–7127 (2011).
[Crossref]

Lepri, F. G.

F. M. Pereira, D. M. Brum, F. G. Lepri, and R. J. Cassella, “Extraction induced by emulsion breaking as a tool for Ca and Mg determination in biodiesel by fast sequential flame atomic absorption spectrometry (FS-FAAS) using Co as internal standard,” Microchem. J. 117, 172–177 (2014).
[Crossref]

Lewis, E.

Li, B.

Li, F.

Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1, 107–131 (2012).
[Crossref]

Li, L.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Li, M.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9, 247–252 (2015).
[Crossref]

Li, Q.

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Li, S.

Li, X.

Y. Lu, X. Li, G. Wang, and W. Tang, “A highly sensitive and selective optical sensor for Pb2+ by using conjugated polymers and label-free oligonucleotides,” Biosens. Bioelectron. 39, 231–235 (2013).
[Crossref]

Li, Z.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

Liang, Z.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Liao, L.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Liu, B.

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

Liu, C.

C. Liu, Z. Sun, L. Zhang, J. Lv, X. Yu, and X. Chen, “Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,” Sens. Actuators B 257, 1093–1098 (2018).
[Crossref]

Liu, D.

Liu, F.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Liu, G.

G. Liu, J. Chen, X. Hou, and W. Huang, “A highly-sensitive electrochemical sensor for the simultaneous detection of Cd2+ and Pb2+ using liquid phase-exfoliated graphene,” Anal. Methods 6, 5760–5765 (2014).
[Crossref]

Liu, H.

H. Liu, H. Liu, G. Peng, and P. Chu, “Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings,” Opt. Commun. 219, 139–142 (2003).
[Crossref]

H. Liu, H. Liu, G. Peng, and P. Chu, “Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings,” Opt. Commun. 219, 139–142 (2003).
[Crossref]

Liu, J.

B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sens. Actuators B 259, 364–371 (2018).
[Crossref]

Liu, L.-P.

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

Liu, Y.

Liu, Z.

R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Long, H.

R. Raghunandhan, L. Chen, H. Long, L. Leam, P. So, X. Ning, and C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B 233, 31–38 (2016).
[Crossref]

Lu, L.

B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sens. Actuators B 259, 364–371 (2018).
[Crossref]

Lu, W.

Lu, Y.

Y. Lu, X. Li, G. Wang, and W. Tang, “A highly sensitive and selective optical sensor for Pb2+ by using conjugated polymers and label-free oligonucleotides,” Biosens. Bioelectron. 39, 231–235 (2013).
[Crossref]

Lu, Y.-Q.

S.-C. Yan, B.-C. Zheng, J.-H. Chen, F. Xu, and Y.-Q. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107, 053502 (2015).
[Crossref]

Luo, Y.

Lv, J.

C. Liu, Z. Sun, L. Zhang, J. Lv, X. Yu, and X. Chen, “Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,” Sens. Actuators B 257, 1093–1098 (2018).
[Crossref]

Ma, C.-J.

Ma, Y.

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

Mahto, T. K.

A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,” Sens. Actuators B 242, 679–686 (2017).
[Crossref]

Mao, D.

Martinhon, P. T.

P. T. Martinhon, J. Carreño, C. R. Sousa, O. E. Barcia, and O. R. Mattos, “Electrochemical impedance spectroscopy of lead (II) ion-selective solid-state membranes,” Electrochim. Acta 51, 3022–3028 (2006).
[Crossref]

Mattos, O. R.

P. T. Martinhon, J. Carreño, C. R. Sousa, O. E. Barcia, and O. R. Mattos, “Electrochemical impedance spectroscopy of lead (II) ion-selective solid-state membranes,” Electrochim. Acta 51, 3022–3028 (2006).
[Crossref]

Michael, N.

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Min, H.

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Mishra, S. K.

S. P. Usha, S. K. Mishra, and B. D. Gupta, “Fabrication and characterization of a SPR based fiber optic sensor for the detection of chlorine gas using silver and zinc oxide,” Materials 8, 2204–2216 (2015).
[Crossref]

Mondal, S. K.

S. Bagchi, R. Achla, and S. K. Mondal, “Electrospun polypyrrole-polyethylene oxide coated optical fiber sensor probe for detection of volatile compounds,” Sens. Actuators B 250, 52–60 (2017).
[Crossref]

Monzón-Hernández, D.

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photon. Technol. Lett. 27, 2591–2594 (2015).
[Crossref]

Moreno-Hernandez, D.

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photon. Technol. Lett. 27, 2591–2594 (2015).
[Crossref]

Moreno-Hernández, C.

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photon. Technol. Lett. 27, 2591–2594 (2015).
[Crossref]

Morovic, M.

K. Jomova and M. Morovič, “Effect of heavy metal treatment on molecular changes in root tips of Lupinus luteus L,” Czech J. Food Sci. 27, S386–S389 (2009).
[Crossref]

Murat, K.

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Murugan, G. S.

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Nilges, T.

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

Ning, X.

R. Raghunandhan, L. Chen, H. Long, L. Leam, P. So, X. Ning, and C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B 233, 31–38 (2016).
[Crossref]

Niu, P.

P. Niu, C. Fernández-Sánchez, M. Gich, C. Ayora, and A. Roig, “Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes,” Electrochim. Acta 165, 155–161 (2015).
[Crossref]

Olivares-Marín, M.

M. Á. G. Rico, M. Olivares-Marín, and E. P. Gil, “Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn (II), Cd (II) and Pb (II),” Talanta 80, 631–635 (2009).
[Crossref]

Ou, X.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Park, B.-G.

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

Park, G. Y.

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

Park, S.

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

Peng, G.

H. Liu, H. Liu, G. Peng, and P. Chu, “Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings,” Opt. Commun. 219, 139–142 (2003).
[Crossref]

Pereira, F. M.

F. M. Pereira, D. M. Brum, F. G. Lepri, and R. J. Cassella, “Extraction induced by emulsion breaking as a tool for Ca and Mg determination in biodiesel by fast sequential flame atomic absorption spectrometry (FS-FAAS) using Co as internal standard,” Microchem. J. 117, 172–177 (2014).
[Crossref]

Ponraj, J. S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Portehault, D.

W. Lei, D. Portehault, R. Dimova, and M. Antonietti, “Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors,” J. Am. Chem. Soc. 133, 7121–7127 (2011).
[Crossref]

Prasad, S.

S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J. 124, 104–110 (2016).
[Crossref]

Promphet, N.

N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, and N. Rodthongkum, “An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium,” Sens. Actuators B 207, 526–534 (2015).
[Crossref]

Qiao, X.

R. Wang and X. Qiao, “Intrinsic Fabry-Perot interferometeric sensor based on microfiber created by chemical etching,” Sensors 14, 16808–16815 (2014).
[Crossref]

Qiu, M.

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

Raghunandhan, R.

R. Raghunandhan, L. Chen, H. Long, L. Leam, P. So, X. Ning, and C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B 233, 31–38 (2016).
[Crossref]

Ran, Y.

Y. Cao, X. Wang, T. Guo, Y. Ran, X. Feng, B.-O. Guan, and J. Yao, “High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,” Sens. Actuators B 245, 583–589 (2017).
[Crossref]

Rangkupan, R.

N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, and N. Rodthongkum, “An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium,” Sens. Actuators B 207, 526–534 (2015).
[Crossref]

Rao, Y.-J.

Rattanarat, P.

N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, and N. Rodthongkum, “An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium,” Sens. Actuators B 207, 526–534 (2015).
[Crossref]

Ren, J.

Ren, L.-Y.

Ren, W.

Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1, 107–131 (2012).
[Crossref]

Ren, W. X.

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

Ren, Y.

Rico, M. Á. G.

M. Á. G. Rico, M. Olivares-Marín, and E. P. Gil, “Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn (II), Cd (II) and Pb (II),” Talanta 80, 631–635 (2009).
[Crossref]

Rodthongkum, N.

N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, and N. Rodthongkum, “An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium,” Sens. Actuators B 207, 526–534 (2015).
[Crossref]

Roig, A.

P. Niu, C. Fernández-Sánchez, M. Gich, C. Ayora, and A. Roig, “Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes,” Electrochim. Acta 165, 155–161 (2015).
[Crossref]

Ryu, S. H.

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

Sahu, S. K.

A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,” Sens. Actuators B 242, 679–686 (2017).
[Crossref]

Sang, D. K.

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

Sedghi, R.

R. Sedghi, S. Kazemi, and B. Heidari, “Novel selective and sensitive dual colorimetric sensor for mercury and lead ions derived from dithizone-polymeric nanocomposite hybrid,” Sens. Actuators B 245, 860–867 (2017).
[Crossref]

Semenova, Y.

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48, 283–284 (2012).
[Crossref]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
[Crossref]

Sessions, N. P.

Shao, J.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shi, Y.

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Shum, P. P.

So, P.

R. Raghunandhan, L. Chen, H. Long, L. Leam, P. So, X. Ning, and C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B 233, 31–38 (2016).
[Crossref]

Sohn, Y.

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

Song, Y.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Soni, S. K.

S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J. 124, 104–110 (2016).
[Crossref]

Sousa, C. R.

P. T. Martinhon, J. Carreño, C. R. Sousa, O. E. Barcia, and O. R. Mattos, “Electrochemical impedance spectroscopy of lead (II) ion-selective solid-state membranes,” Electrochim. Acta 51, 3022–3028 (2006).
[Crossref]

Squier, T. C.

C. Hou, Y. Xiong, N. Fu, C. C. Jacquot, T. C. Squier, and H. Cao, “Turn-on ratiometric fluorescent sensor for Pb2+ detection,” Tetrahedron Lett. 52, 2692–2696 (2011).
[Crossref]

Steele, G. A.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Van Der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Sumetsky, M.

Sun, H.

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Sun, Q.

Sun, Z.

C. Liu, Z. Sun, L. Zhang, J. Lv, X. Yu, and X. Chen, “Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,” Sens. Actuators B 257, 1093–1098 (2018).
[Crossref]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Tang, W.

Y. Lu, X. Li, G. Wang, and W. Tang, “A highly sensitive and selective optical sensor for Pb2+ by using conjugated polymers and label-free oligonucleotides,” Biosens. Bioelectron. 39, 231–235 (2013).
[Crossref]

Tang, X.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Tang, Y.

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Thatai, S.

S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J. 124, 104–110 (2016).
[Crossref]

Ti, C.

Tung, V. C.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3, 301–306 (2009).
[Crossref]

Urrutia, A.

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 805053 (2015).
[Crossref]

Usha, S. P.

S. P. Usha, S. K. Mishra, and B. D. Gupta, “Fabrication and characterization of a SPR based fiber optic sensor for the detection of chlorine gas using silver and zinc oxide,” Materials 8, 2204–2216 (2015).
[Crossref]

Van Der Zant, H. S.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Van Der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

Villatoro, J.

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photon. Technol. Lett. 27, 2591–2594 (2015).
[Crossref]

Volker, P.

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Wang, G.

Y. Lu, X. Li, G. Wang, and W. Tang, “A highly sensitive and selective optical sensor for Pb2+ by using conjugated polymers and label-free oligonucleotides,” Biosens. Bioelectron. 39, 231–235 (2013).
[Crossref]

Wang, H.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Wang, J.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
[Crossref]

Wang, P.

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, R.

R. Wang and X. Qiao, “Intrinsic Fabry-Perot interferometeric sensor based on microfiber created by chemical etching,” Sensors 14, 16808–16815 (2014).
[Crossref]

Wang, X.

Y. Cao, X. Wang, T. Guo, Y. Ran, X. Feng, B.-O. Guan, and J. Yao, “High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,” Sens. Actuators B 245, 583–589 (2017).
[Crossref]

Wang, Y.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Y.-L.

Wang, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Weiller, B. H.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3, 301–306 (2009).
[Crossref]

Wen, J.

Wilkinson, J. S.

Won, M.

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

Wu, H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Wu, L.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Wu, Q.

Y.-N. Zhang, L. Zhang, B. Han, P. Gao, Q. Wu, and A. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating,” Sens. Actuators B 272, 331–339 (2018).
[Crossref]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48, 283–284 (2012).
[Crossref]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
[Crossref]

Wu, Y.

Wu, Z.-S.

Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1, 107–131 (2012).
[Crossref]

Xi, F.

B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sens. Actuators B 259, 364–371 (2018).
[Crossref]

Xia, F.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Xiang, J.

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Xiao, Q.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

Xie, H.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

Xiong, Y.

C. Hou, Y. Xiong, N. Fu, C. C. Jacquot, T. C. Squier, and H. Cao, “Turn-on ratiometric fluorescent sensor for Pb2+ detection,” Tetrahedron Lett. 52, 2692–2696 (2011).
[Crossref]

Xu, F.

S.-C. Yan, B.-C. Zheng, J.-H. Chen, F. Xu, and Y.-Q. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107, 053502 (2015).
[Crossref]

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, and J. S. Wilkinson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
[Crossref]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[Crossref]

Xu, Y.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

Xu, Y.-P.

Xu, Z.

Xue, M.

Yan, S.-C.

S.-C. Yan, B.-C. Zheng, J.-H. Chen, F. Xu, and Y.-Q. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107, 053502 (2015).
[Crossref]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yang, B.

R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
[Crossref]

Yang, Q.

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Yang, R.

R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
[Crossref]

Yang, Y.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3, 301–306 (2009).
[Crossref]

Yang, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Yao, J.

Y. Cao, X. Wang, T. Guo, Y. Ran, X. Feng, B.-O. Guan, and J. Yao, “High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,” Sens. Actuators B 245, 583–589 (2017).
[Crossref]

Ye, G. J.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Yi, Y.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

Yin, L.-C.

Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1, 107–131 (2012).
[Crossref]

Yin, Y.

Yoo, H. W.

S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
[Crossref]

Youngblood, N.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9, 247–252 (2015).
[Crossref]

Yu, H.

R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
[Crossref]

Yu, J.

Yu, L.

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Yu, X.

C. Liu, Z. Sun, L. Zhang, J. Lv, X. Yu, and X. Chen, “Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,” Sens. Actuators B 257, 1093–1098 (2018).
[Crossref]

Yu, X.-F.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

Yu, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Yury, G.

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Zhang, A.

Y.-N. Zhang, L. Zhang, B. Han, P. Gao, Q. Wu, and A. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating,” Sens. Actuators B 272, 331–339 (2018).
[Crossref]

Zhang, F.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Zhang, H.

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Zhang, L.

Y.-N. Zhang, L. Zhang, B. Han, P. Gao, Q. Wu, and A. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating,” Sens. Actuators B 272, 331–339 (2018).
[Crossref]

C. Liu, Z. Sun, L. Zhang, J. Lv, X. Yu, and X. Chen, “Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,” Sens. Actuators B 257, 1093–1098 (2018).
[Crossref]

B. Jiang, M. Xue, C. Zhao, D. Mao, K. Zhou, L. Zhang, and J. Zhao, “Refractometer probe based on a reflective carbon nanotube-modified microfiber Bragg grating,” Appl. Opt. 55, 7037–7041 (2016).
[Crossref]

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23, 6662–6672 (2015).
[Crossref]

Zhang, R.

Y. Ren, R. Zhang, C. Ti, and Y. Liu, “Tapered optical fiber loops and helices for integrated photonic device characterization and microfluidic roller coasters,” Optica 3, 1205–1208 (2016).
[Crossref]

R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
[Crossref]

Zhang, X.

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Zhang, Y.

R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Zhang, Y.-N.

Y.-N. Zhang, L. Zhang, B. Han, P. Gao, Q. Wu, and A. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating,” Sens. Actuators B 272, 331–339 (2018).
[Crossref]

Zhao, C.

Zhao, J.

Zhao, Y.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

Zheng, B.-C.

S.-C. Yan, B.-C. Zheng, J.-H. Chen, F. Xu, and Y.-Q. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107, 053502 (2015).
[Crossref]

Zhou, C.

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

Zhou, G.

Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1, 107–131 (2012).
[Crossref]

Zhou, H.

Zhou, K.

Zhou, L.

B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sens. Actuators B 259, 364–371 (2018).
[Crossref]

ACS Nano (2)

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3, 301–306 (2009).
[Crossref]

A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, “Black phosphorus gas sensors,” ACS Nano 9, 5618–5624 (2015).
[Crossref]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Mater. (3)

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, and L. Liao, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

N. Michael, K. Murat, P. Volker, L. Jun, N. Junjie, H. Min, H. Lars, G. Yury, and M. W. Barsoum, “Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

S. Y. Cho, Y. Lee, H. J. Koh, H. Jung, J. S. Kim, H. W. Yoo, J. Kim, and H. T. Jung, “Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene,” Adv. Mater. 28, 7020–7028 (2016).
[Crossref]

Adv. Opt. Mater. (1)

R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang, B. Yang, Z. Liu, and J. Wang, “Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,” Adv. Opt. Mater. 3, 1787–1792 (2015).
[Crossref]

Adv. Opt. Photon. (1)

Adv. Sci. (1)

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Anal. Methods (1)

G. Liu, J. Chen, X. Hou, and W. Huang, “A highly-sensitive electrochemical sensor for the simultaneous detection of Cd2+ and Pb2+ using liquid phase-exfoliated graphene,” Anal. Methods 6, 5760–5765 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[Crossref]

S.-C. Yan, B.-C. Zheng, J.-H. Chen, F. Xu, and Y.-Q. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107, 053502 (2015).
[Crossref]

Biosens. Bioelectron. (1)

Y. Lu, X. Li, G. Wang, and W. Tang, “A highly sensitive and selective optical sensor for Pb2+ by using conjugated polymers and label-free oligonucleotides,” Biosens. Bioelectron. 39, 231–235 (2013).
[Crossref]

Chem. Soc. Rev. (1)

M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, and J. S. Kim, “Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).
[Crossref]

Czech J. Food Sci. (1)

K. Jomova and M. Morovič, “Effect of heavy metal treatment on molecular changes in root tips of Lupinus luteus L,” Czech J. Food Sci. 27, S386–S389 (2009).
[Crossref]

Electrochim. Acta (2)

P. T. Martinhon, J. Carreño, C. R. Sousa, O. E. Barcia, and O. R. Mattos, “Electrochemical impedance spectroscopy of lead (II) ion-selective solid-state membranes,” Electrochim. Acta 51, 3022–3028 (2006).
[Crossref]

P. Niu, C. Fernández-Sánchez, M. Gich, C. Ayora, and A. Roig, “Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes,” Electrochim. Acta 165, 155–161 (2015).
[Crossref]

Electron. Lett. (1)

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48, 283–284 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photon. Technol. Lett. 27, 2591–2594 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

W. Lei, D. Portehault, R. Dimova, and M. Antonietti, “Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors,” J. Am. Chem. Soc. 133, 7121–7127 (2011).
[Crossref]

J. Colloid Interface Sci. (1)

Y.-C. Chang and D.-H. Chen, “Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions,” J. Colloid Interface Sci. 283, 446–451 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. Lett. (1)

A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6, 4280–4291 (2015).
[Crossref]

J. Sens. (1)

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 805053 (2015).
[Crossref]

Laser Photon. Rev. (1)

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, and Y. Song, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Materials (1)

S. P. Usha, S. K. Mishra, and B. D. Gupta, “Fabrication and characterization of a SPR based fiber optic sensor for the detection of chlorine gas using silver and zinc oxide,” Materials 8, 2204–2216 (2015).
[Crossref]

Microchem. J. (2)

F. M. Pereira, D. M. Brum, F. G. Lepri, and R. J. Cassella, “Extraction induced by emulsion breaking as a tool for Ca and Mg determination in biodiesel by fast sequential flame atomic absorption spectrometry (FS-FAAS) using Co as internal standard,” Microchem. J. 117, 172–177 (2014).
[Crossref]

S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J. 124, 104–110 (2016).
[Crossref]

Nano Energy (1)

Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1, 107–131 (2012).
[Crossref]

Nano Lett. (1)

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Van Der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

Nat. Commun. (2)

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.-F. Yu, Y. Zhao, and H. Zhang, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Nat. Nanotechnol. (2)

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Nat. Photonics (1)

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9, 247–252 (2015).
[Crossref]

Opt. Commun. (1)

H. Liu, H. Liu, G. Peng, and P. Chu, “Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings,” Opt. Commun. 219, 139–142 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Science (2)

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,” Science 349, 723–726 (2015).
[Crossref]

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[Crossref]

Sens. Actuators B (10)

S. Bagchi, R. Achla, and S. K. Mondal, “Electrospun polypyrrole-polyethylene oxide coated optical fiber sensor probe for detection of volatile compounds,” Sens. Actuators B 250, 52–60 (2017).
[Crossref]

R. Raghunandhan, L. Chen, H. Long, L. Leam, P. So, X. Ning, and C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B 233, 31–38 (2016).
[Crossref]

Y. Cao, X. Wang, T. Guo, Y. Ran, X. Feng, B.-O. Guan, and J. Yao, “High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,” Sens. Actuators B 245, 583–589 (2017).
[Crossref]

R. Sedghi, S. Kazemi, and B. Heidari, “Novel selective and sensitive dual colorimetric sensor for mercury and lead ions derived from dithizone-polymeric nanocomposite hybrid,” Sens. Actuators B 245, 860–867 (2017).
[Crossref]

A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,” Sens. Actuators B 242, 679–686 (2017).
[Crossref]

B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sens. Actuators B 259, 364–371 (2018).
[Crossref]

B. S. Boruah and R. Biswas, “Localized surface plasmon resonance based U-shaped optical fiber probe for the detection of Pb2+ in aqueous medium,” Sens. Actuators B 276, 89–94 (2018).
[Crossref]

C. Liu, Z. Sun, L. Zhang, J. Lv, X. Yu, and X. Chen, “Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,” Sens. Actuators B 257, 1093–1098 (2018).
[Crossref]

N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, and N. Rodthongkum, “An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium,” Sens. Actuators B 207, 526–534 (2015).
[Crossref]

Y.-N. Zhang, L. Zhang, B. Han, P. Gao, Q. Wu, and A. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating,” Sens. Actuators B 272, 331–339 (2018).
[Crossref]

Sensors (1)

R. Wang and X. Qiao, “Intrinsic Fabry-Perot interferometeric sensor based on microfiber created by chemical etching,” Sensors 14, 16808–16815 (2014).
[Crossref]

Talanta (2)

M. Á. G. Rico, M. Olivares-Marín, and E. P. Gil, “Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn (II), Cd (II) and Pb (II),” Talanta 80, 631–635 (2009).
[Crossref]

H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, “A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,” Talanta 136, 210–214 (2015).
[Crossref]

Tetrahedron Lett. (1)

C. Hou, Y. Xiong, N. Fu, C. C. Jacquot, T. C. Squier, and H. Cao, “Turn-on ratiometric fluorescent sensor for Pb2+ detection,” Tetrahedron Lett. 52, 2692–2696 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) Schematic diagram of the MCR. (b) Adsorption between BP and Pb 2 + .
Fig. 2.
Fig. 2. (a) Schematic diagram of MCR fabrication process. (b) Schematic diagram of BP deposition and the Pb 2 + detection process. The inset in (b) shows the scanning electron microscopy image of the BP nanosheets.
Fig. 3.
Fig. 3. (a) Spectral response of sensor without BP functionalized to varying Pb 2 + concentration. (b) Sensitivity curve for refractive index for a non-functionalized sensor without BP deposition.
Fig. 4.
Fig. 4. (a) Transmission spectra in the BP deposition. (b) Response time curve for the deposition of BP on the MCR.
Fig. 5.
Fig. 5. Spectral evolution before and after several cycles of BP deposition.
Fig. 6.
Fig. 6. (a) Resonance wavelength change against the number of deposition cycles. (b) Extinction ratio change against the number of deposition cycles.
Fig. 7.
Fig. 7. (a) Transmission spectra of the BP-MCR sensor with different concentrations of Pb 2 + . (b) Sensitivity comparison between non-functionalized and BP functionalized sensors.
Fig. 8.
Fig. 8. Langmuir mode of the resonance wavelength shift with concentration of Pb 2 + .
Fig. 9.
Fig. 9. Response time curves with the BP-MCR sensor immersed in Pb 2 + concentrations of 0.1, 10, and 100 ppb.
Fig. 10.
Fig. 10. (a) Transmission spectra of the BP functionalized sensor at different temperatures. (b) Linear fitting of the temperature response of the BP functionalized sensor. The points are experimental data, and the line is the linear fit of experimental data to temperature.
Fig. 11.
Fig. 11. Resonance wavelength shift of the BP-MCR sensor with different pH values of the solution.
Fig. 12.
Fig. 12. Resonance wavelength shifts of the BP functionalized sensor for Pb 2 + solutions after different durations.

Tables (1)

Tables Icon

Table 1. Summary of Different Kinds of Sensors for Pb 2 + Detection

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i d d l [ A 1 ( l ) A 2 ( l ) A 3 ( l ) A n 2 ( l ) A n 1 ( l ) A n ( l ) ] = [ 0 k 0 0 0 0 0 k 0 k 0 0 0 0 0 k 0 k 0 0 0 0 0 0 0 0 k 0 0 0 0 0 k 0 k 0 0 0 0 0 k 0 ] [ A 1 ( l ) A 2 ( l ) A 3 ( l ) A n 2 ( l ) A n 1 ( l ) A n ( l ) ] ,
[ A 1 ( 0 ) A 2 ( 0 ) A 3 ( 0 ) A n 2 ( 0 ) A n 1 ( 0 ) A n ( 0 ) ] = [ 0 0 0 0 0 0 exp i β l 0 0 0 0 0 0 exp i β l 0 0 0 0 0 0 0 0 0 0 0 0 0 exp i β l 0 0 0 0 0 0 exp i β l 0 ] × [ A 1 ( l ) A 2 ( l ) A 3 ( l ) A n 2 ( l ) A n 1 ( l ) A n ( l ) ] + [ A 1 ( 0 ) 0 0 0 0 0 ] ,
β = 2 π n eff λ ,
T = A n ( L ) exp ( i β L ) A 1 ( 0 ) .