Abstract

Dispersion engineering in optical waveguides allows applications relying on the precise control of phase matching conditions to be implemented. Although extremely effective over relatively narrow band spectral regions, dispersion control becomes increasingly challenging as the bandwidth of the process of interest increases. Phase matching can also be achieved by exploiting the propagation characteristics of waves exciting different spatial modes of the same waveguide. Phase matching control in this case relies on achieving very similar propagation characteristics across two, and even more, waveguide modes over the wavelengths of interest, which may be rather far from one another. We demonstrate here that broadband (>40  nm) four-wave mixing can be achieved between pump waves and a signal located in different bands of the communications spectrum (separated by 50 nm) by exploiting interband nonlinearities. Our demonstration is carried out in the silicon-rich silicon nitride material platform, which allows flexible device engineering, allowing for strong effective nonlinearity at telecommunications wavelengths without deleterious nonlinear-loss effects.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Silicon/silicon-rich nitride hybrid-core waveguide for nonlinear optics

Xiaoyan Wang, Xiaowei Guan, Shiming Gao, Hao Hu, Leif K. Oxenløwe, and Lars H. Frandsen
Opt. Express 27(17) 23775-23784 (2019)

Silicon-rich nitride waveguides for ultra-broadband nonlinear signal processing

Mohammad Rezagholipour Dizaji, Clemens J. Krückel, Attila Fülöp, Peter A. Andrekson, Victor Torres-Company, and Lawrence R. Chen
Opt. Express 25(11) 12100-12108 (2017)

Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides

Clemens J. Krückel, Attila Fülöp, Thomas Klintberg, Jörgen Bengtsson, Peter A. Andrekson, and Víctor Torres-Company
Opt. Express 23(20) 25827-25837 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  2. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [Crossref]
  3. S. Zlatanovic, J. Park, S. Moro, and J. Boggio, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
    [Crossref]
  4. F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
    [Crossref]
  5. J. Demas, G. Prabhakar, T. He, S. Ramachandran, and S. Ramachandran, “Broadband and wideband parametric gain via intermodal four-wave mixing in optical fiber,” in Conference on Lasers and Electro-Optics (2017), paper SM3M.1.
  6. R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
    [Crossref]
  7. C. Lacava, M. A. Ettabib, G. Sharp, Y. Jung, P. Petropoulos, and D. J. Richardson, “Silicon photonics wavelength converter based on inter-modal four wave mixing Bragg scattering,” in 15th International Conference on Group IV Photonics (GFP) (2018), pp. 99–100.
  8. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008).
    [Crossref]
  9. A. B. Kalifa, A. B. Salem, and R. Cherif, “Multimode supercontinuum generation in As2S3 chalcogenide photonic crystal fiber,” in Frontier in Optics (2018), paper JTu2A.18.
  10. Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, and R. A. Correa, “Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber,” in Optical Fiber Communication Conference (2018), paper Th3D.2.
  11. R. Dupiol, K. Krupa, A. Tonello, M. Fabert, D. Modotto, S. Wabnitz, G. Millot, and V. Couderc, “Interplay of Kerr and Raman beam cleaning with a multimode microstructure fiber,” Opt. Lett. 43, 587–590 (2018).
    [Crossref]
  12. J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran, “High-power, wavelength-tunable NIR all-fiber lasers via intermodal four-wave mixing,” in Conference on Lasers and Electro-Optics (2017), paper JTh5A.8.
  13. L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, and S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in Conference on Lasers and Electro-Optics (2012), paper CTu3M.6.
  14. R. Guenard, K. Krupa, R. Dupiol, M. Fabert, A. Bendahmane, V. Kermene, A. Desfarges-Berthelemot, J. L. Auguste, A. Tonello, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Kerr self-cleaning of pulsed beam in an ytterbium doped multimode fiber,” Opt. Express 25, 4783–4792 (2017).
    [Crossref]
  15. Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22, 127–135 (2014).
    [Crossref]
  16. S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
    [Crossref]
  17. M. Guasoni, F. Parmigiani, and D. J. Richardson, “Novel fiber design for wideband conversion and amplification in multimode fibers,” in European Conference on Optical Communication (2017), pp. 181–183.
  18. O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization-insensitive four-wave-mixing-based wavelength conversion in few-mode optical fibers,” J. Lightwave Technol. 36, 3678–3683 (2018).
    [Crossref]
  19. S. Signorini, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides,” in Group IV Photonics (2017), pp. 59–60.
  20. R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42, 1293–1296 (2017).
    [Crossref]
  21. J. Yuan, Z. Kang, X. Zhang, X. Sang, B. Yan, F. Li, K. Wang, C. Yu, H. Y. Tam, and P. K. A. Wai, “Experimental demonstration of intermodal four-wave mixing by femtosecond pump pulses at 1550  nm,” J. Lightwave Technol. 35, 2385–2390 (2017).
    [Crossref]
  22. C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
    [Crossref]
  23. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
    [Crossref]
  24. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, Y. Okawachi, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon waveguides,” Opt. Express 14, 4357–4362 (2006).
    [Crossref]
  25. F. Parmigiani, M. Guasoni, O. F. Anjum, P. Horak, Y. Jung, L. Gruner-Nielsen, P. Petropoulos, and D. J. Richardson, “Polarization insensitive wavelength conversion in a few mode fibre,” in European Conference on Optical Communication (2017), paper W2F2.
  26. J. B. Christensen, J. G. Koefoed, B. A. Bell, C. J. McKinstrie, and K. Rottwitt, “Shape-preserving and unidirectional frequency conversion using four-wave mixing Bragg scattering,” Opt. Express 26, 17145–17157 (2018).
    [Crossref]
  27. B. Bell, C. Xiong, D. Marpaung, C. McKinstrie, and B. Eggleton, “Uni-directional wavelength conversion in silicon using four-wave mixing driven by cross-polarized pumps,” Opt. Lett. 42, 1668–1671 (2017).
    [Crossref]
  28. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express 14, 8995–8999 (2006).
    [Crossref]
  29. Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22, 32039–32059 (2014).
    [Crossref]

2018 (3)

2017 (6)

B. Bell, C. Xiong, D. Marpaung, C. McKinstrie, and B. Eggleton, “Uni-directional wavelength conversion in silicon using four-wave mixing driven by cross-polarized pumps,” Opt. Lett. 42, 1668–1671 (2017).
[Crossref]

R. Guenard, K. Krupa, R. Dupiol, M. Fabert, A. Bendahmane, V. Kermene, A. Desfarges-Berthelemot, J. L. Auguste, A. Tonello, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Kerr self-cleaning of pulsed beam in an ytterbium doped multimode fiber,” Opt. Express 25, 4783–4792 (2017).
[Crossref]

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42, 1293–1296 (2017).
[Crossref]

J. Yuan, Z. Kang, X. Zhang, X. Sang, B. Yan, F. Li, K. Wang, C. Yu, H. Y. Tam, and P. K. A. Wai, “Experimental demonstration of intermodal four-wave mixing by femtosecond pump pulses at 1550  nm,” J. Lightwave Technol. 35, 2385–2390 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

2016 (1)

2014 (2)

2013 (1)

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

2010 (1)

S. Zlatanovic, J. Park, S. Moro, and J. Boggio, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

2008 (1)

2006 (3)

2002 (1)

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

Agrawal, G. P.

Anjum, O. F.

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization-insensitive four-wave-mixing-based wavelength conversion in few-mode optical fibers,” J. Lightwave Technol. 36, 3678–3683 (2018).
[Crossref]

F. Parmigiani, M. Guasoni, O. F. Anjum, P. Horak, Y. Jung, L. Gruner-Nielsen, P. Petropoulos, and D. J. Richardson, “Polarization insensitive wavelength conversion in a few mode fibre,” in European Conference on Optical Communication (2017), paper W2F2.

Auguste, J. L.

Aviles, H. L.

Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, and R. A. Correa, “Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber,” in Optical Fiber Communication Conference (2018), paper Th3D.2.

Barthelemy, A.

Barthélémy, A.

Begleris, I.

Bell, B.

Bell, B. A.

Bendahmane, A.

Bernard, M.

S. Signorini, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides,” in Group IV Photonics (2017), pp. 59–60.

Boggio, J.

S. Zlatanovic, J. Park, S. Moro, and J. Boggio, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Bucio, T.

C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Chen, Y.

L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, and S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in Conference on Lasers and Electro-Optics (2012), paper CTu3M.6.

Cherif, R.

A. B. Kalifa, A. B. Salem, and R. Cherif, “Multimode supercontinuum generation in As2S3 chalcogenide photonic crystal fiber,” in Frontier in Optics (2018), paper JTu2A.18.

Chraplyvy, A. R.

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Christensen, J. B.

Christodoulides, D.

Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, and R. A. Correa, “Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber,” in Optical Fiber Communication Conference (2018), paper Th3D.2.

Correa, R. A.

Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, and R. A. Correa, “Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber,” in Optical Fiber Communication Conference (2018), paper Th3D.2.

Couderc, V.

Demas, J.

J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran, “High-power, wavelength-tunable NIR all-fiber lasers via intermodal four-wave mixing,” in Conference on Lasers and Electro-Optics (2017), paper JTh5A.8.

J. Demas, G. Prabhakar, T. He, S. Ramachandran, and S. Ramachandran, “Broadband and wideband parametric gain via intermodal four-wave mixing in optical fiber,” in Conference on Lasers and Electro-Optics (2017), paper SM3M.1.

Desfarges-Berthelemot, A.

Desgroseilliers, M.

Ding, Y.

Dupiol, R.

Eftekhar, M.

Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, and R. A. Correa, “Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber,” in Optical Fiber Communication Conference (2018), paper Th3D.2.

Eggleton, B.

Essiambre, R.

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Essiambre, R.-J.

Ettabib, M. A.

C. Lacava, M. A. Ettabib, G. Sharp, Y. Jung, P. Petropoulos, and D. J. Richardson, “Silicon photonics wavelength converter based on inter-modal four wave mixing Bragg scattering,” in 15th International Conference on Group IV Photonics (GFP) (2018), pp. 99–100.

Ezhaveh, Z. S.

Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, and R. A. Correa, “Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber,” in Optical Fiber Communication Conference (2018), paper Th3D.2.

Fabert, M.

Foster, M. A.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, Y. Okawachi, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Friis, S. M. M.

Gaeta, A. L.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, Y. Okawachi, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Gardes, F.

C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Geisler, T.

Ghulinyan, M.

S. Signorini, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides,” in Group IV Photonics (2017), pp. 59–60.

Gnauck, A. H.

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Gruner-Nielsen, L.

F. Parmigiani, M. Guasoni, O. F. Anjum, P. Horak, Y. Jung, L. Gruner-Nielsen, P. Petropoulos, and D. J. Richardson, “Polarization insensitive wavelength conversion in a few mode fibre,” in European Conference on Optical Communication (2017), paper W2F2.

Grüner-Nielsen, L.

Guasoni, M.

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization-insensitive four-wave-mixing-based wavelength conversion in few-mode optical fibers,” J. Lightwave Technol. 36, 3678–3683 (2018).
[Crossref]

F. Parmigiani, M. Guasoni, O. F. Anjum, P. Horak, Y. Jung, L. Gruner-Nielsen, P. Petropoulos, and D. J. Richardson, “Polarization insensitive wavelength conversion in a few mode fibre,” in European Conference on Optical Communication (2017), paper W2F2.

M. Guasoni, F. Parmigiani, and D. J. Richardson, “Novel fiber design for wideband conversion and amplification in multimode fibers,” in European Conference on Optical Communication (2017), pp. 181–183.

Guenard, R.

Harvey, J. D.

He, T.

J. Demas, G. Prabhakar, T. He, S. Ramachandran, and S. Ramachandran, “Broadband and wideband parametric gain via intermodal four-wave mixing in optical fiber,” in Conference on Lasers and Electro-Optics (2017), paper SM3M.1.

Horak, P.

Jiang, X.

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Jung, Y.

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization-insensitive four-wave-mixing-based wavelength conversion in few-mode optical fibers,” J. Lightwave Technol. 36, 3678–3683 (2018).
[Crossref]

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

F. Parmigiani, M. Guasoni, O. F. Anjum, P. Horak, Y. Jung, L. Gruner-Nielsen, P. Petropoulos, and D. J. Richardson, “Polarization insensitive wavelength conversion in a few mode fibre,” in European Conference on Optical Communication (2017), paper W2F2.

C. Lacava, M. A. Ettabib, G. Sharp, Y. Jung, P. Petropoulos, and D. J. Richardson, “Silicon photonics wavelength converter based on inter-modal four wave mixing Bragg scattering,” in 15th International Conference on Group IV Photonics (GFP) (2018), pp. 99–100.

Kalifa, A. B.

A. B. Kalifa, A. B. Salem, and R. Cherif, “Multimode supercontinuum generation in As2S3 chalcogenide photonic crystal fiber,” in Frontier in Optics (2018), paper JTu2A.18.

Kang, Z.

Kazovsky, L. G.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

Kermene, V.

Khokhar, A.

C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Kibler, B.

Koefoed, J. G.

Kolsik, M.

Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, and R. A. Correa, “Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber,” in Optical Fiber Communication Conference (2018), paper Th3D.2.

Krupa, K.

Lacava, C.

C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

C. Lacava, M. A. Ettabib, G. Sharp, Y. Jung, P. Petropoulos, and D. J. Richardson, “Silicon photonics wavelength converter based on inter-modal four wave mixing Bragg scattering,” in 15th International Conference on Group IV Photonics (GFP) (2018), pp. 99–100.

Li, F.

Lingle, R.

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, Y. Okawachi, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]

Liu, X.

J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran, “High-power, wavelength-tunable NIR all-fiber lasers via intermodal four-wave mixing,” in Conference on Lasers and Electro-Optics (2017), paper JTh5A.8.

Lopez, J. A.

Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, and R. A. Correa, “Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber,” in Optical Fiber Communication Conference (2018), paper Th3D.2.

Mancinelli, M.

S. Signorini, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides,” in Group IV Photonics (2017), pp. 59–60.

Manolatou, C.

Marhic, M. E.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

Marpaung, D.

McKinstrie, C.

McKinstrie, C. J.

Méchin, D.

Mestre, M. A.

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Millot, G.

Modotto, D.

Moro, S.

S. Zlatanovic, J. Park, S. Moro, and J. Boggio, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Mumtaz, S.

Okawachi, Y.

Ou, H.

Park, J.

S. Zlatanovic, J. Park, S. Moro, and J. Boggio, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Parmigiani, F.

Pavesi, L.

S. Signorini, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides,” in Group IV Photonics (2017), pp. 59–60.

Petropoulos, P.

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization-insensitive four-wave-mixing-based wavelength conversion in few-mode optical fibers,” J. Lightwave Technol. 36, 3678–3683 (2018).
[Crossref]

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

F. Parmigiani, M. Guasoni, O. F. Anjum, P. Horak, Y. Jung, L. Gruner-Nielsen, P. Petropoulos, and D. J. Richardson, “Polarization insensitive wavelength conversion in a few mode fibre,” in European Conference on Optical Communication (2017), paper W2F2.

C. Lacava, M. A. Ettabib, G. Sharp, Y. Jung, P. Petropoulos, and D. J. Richardson, “Silicon photonics wavelength converter based on inter-modal four wave mixing Bragg scattering,” in 15th International Conference on Group IV Photonics (GFP) (2018), pp. 99–100.

Peucheret, C.

Poletti, F.

Prabhakar, G.

J. Demas, G. Prabhakar, T. He, S. Ramachandran, and S. Ramachandran, “Broadband and wideband parametric gain via intermodal four-wave mixing in optical fiber,” in Conference on Lasers and Electro-Optics (2017), paper SM3M.1.

J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran, “High-power, wavelength-tunable NIR all-fiber lasers via intermodal four-wave mixing,” in Conference on Lasers and Electro-Optics (2017), paper JTh5A.8.

Provo, R.

Pucker, G.

S. Signorini, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides,” in Group IV Photonics (2017), pp. 59–60.

Ramachandran, S.

L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, and S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in Conference on Lasers and Electro-Optics (2012), paper CTu3M.6.

J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran, “High-power, wavelength-tunable NIR all-fiber lasers via intermodal four-wave mixing,” in Conference on Lasers and Electro-Optics (2017), paper JTh5A.8.

J. Demas, G. Prabhakar, T. He, S. Ramachandran, and S. Ramachandran, “Broadband and wideband parametric gain via intermodal four-wave mixing in optical fiber,” in Conference on Lasers and Electro-Optics (2017), paper SM3M.1.

J. Demas, G. Prabhakar, T. He, S. Ramachandran, and S. Ramachandran, “Broadband and wideband parametric gain via intermodal four-wave mixing in optical fiber,” in Conference on Lasers and Electro-Optics (2017), paper SM3M.1.

Reed, G.

C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Richardson, D.

C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Richardson, D. J.

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization-insensitive four-wave-mixing-based wavelength conversion in few-mode optical fibers,” J. Lightwave Technol. 36, 3678–3683 (2018).
[Crossref]

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

F. Parmigiani, M. Guasoni, O. F. Anjum, P. Horak, Y. Jung, L. Gruner-Nielsen, P. Petropoulos, and D. J. Richardson, “Polarization insensitive wavelength conversion in a few mode fibre,” in European Conference on Optical Communication (2017), paper W2F2.

M. Guasoni, F. Parmigiani, and D. J. Richardson, “Novel fiber design for wideband conversion and amplification in multimode fibers,” in European Conference on Optical Communication (2017), pp. 181–183.

C. Lacava, M. A. Ettabib, G. Sharp, Y. Jung, P. Petropoulos, and D. J. Richardson, “Silicon photonics wavelength converter based on inter-modal four wave mixing Bragg scattering,” in 15th International Conference on Group IV Photonics (GFP) (2018), pp. 99–100.

Rishøj, L.

L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, and S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in Conference on Lasers and Electro-Optics (2012), paper CTu3M.6.

J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran, “High-power, wavelength-tunable NIR all-fiber lasers via intermodal four-wave mixing,” in Conference on Lasers and Electro-Optics (2017), paper JTh5A.8.

Rottwitt, K.

Ryf, R.

Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22, 32039–32059 (2014).
[Crossref]

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Salem, A. B.

A. B. Kalifa, A. B. Salem, and R. Cherif, “Multimode supercontinuum generation in As2S3 chalcogenide photonic crystal fiber,” in Frontier in Optics (2018), paper JTu2A.18.

Sang, X.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, Y. Okawachi, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]

Sharp, G.

C. Lacava, M. A. Ettabib, G. Sharp, Y. Jung, P. Petropoulos, and D. J. Richardson, “Silicon photonics wavelength converter based on inter-modal four wave mixing Bragg scattering,” in 15th International Conference on Group IV Photonics (GFP) (2018), pp. 99–100.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Signorini, S.

S. Signorini, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides,” in Group IV Photonics (2017), pp. 59–60.

Stankovic, S.

C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Steinvurzel, P.

L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, and S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in Conference on Lasers and Electro-Optics (2012), paper CTu3M.6.

Sun, Y.

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Sylvestre, T.

Tam, H. Y.

Tkach, R. W.

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Tonello, A.

Tulino, A. M.

Turner, A. C.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, Y. Okawachi, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Uesaka, K.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

Wabnitz, S.

Wai, P. K. A.

Wang, K.

Wise, F.

Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, and R. A. Correa, “Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber,” in Optical Fiber Communication Conference (2018), paper Th3D.2.

Wong, K. K.-Y.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

Xiao, Y.

Xiong, C.

Xu, J.

Yan, B.

Yu, C.

Yuan, J.

Zhang, X.

Zlatanovic, S.

S. Zlatanovic, J. Park, S. Moro, and J. Boggio, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

S. Zlatanovic, J. Park, S. Moro, and J. Boggio, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Opt. Express (8)

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

R. Guenard, K. Krupa, R. Dupiol, M. Fabert, A. Bendahmane, V. Kermene, A. Desfarges-Berthelemot, J. L. Auguste, A. Tonello, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Kerr self-cleaning of pulsed beam in an ytterbium doped multimode fiber,” Opt. Express 25, 4783–4792 (2017).
[Crossref]

Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22, 127–135 (2014).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, Y. Okawachi, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]

J. B. Christensen, J. G. Koefoed, B. A. Bell, C. J. McKinstrie, and K. Rottwitt, “Shape-preserving and unidirectional frequency conversion using four-wave mixing Bragg scattering,” Opt. Express 26, 17145–17157 (2018).
[Crossref]

D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express 14, 8995–8999 (2006).
[Crossref]

Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22, 32039–32059 (2014).
[Crossref]

Opt. Lett. (3)

Sci. Rep. (1)

C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Other (10)

F. Parmigiani, M. Guasoni, O. F. Anjum, P. Horak, Y. Jung, L. Gruner-Nielsen, P. Petropoulos, and D. J. Richardson, “Polarization insensitive wavelength conversion in a few mode fibre,” in European Conference on Optical Communication (2017), paper W2F2.

J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran, “High-power, wavelength-tunable NIR all-fiber lasers via intermodal four-wave mixing,” in Conference on Lasers and Electro-Optics (2017), paper JTh5A.8.

L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, and S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in Conference on Lasers and Electro-Optics (2012), paper CTu3M.6.

S. Signorini, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides,” in Group IV Photonics (2017), pp. 59–60.

M. Guasoni, F. Parmigiani, and D. J. Richardson, “Novel fiber design for wideband conversion and amplification in multimode fibers,” in European Conference on Optical Communication (2017), pp. 181–183.

J. Demas, G. Prabhakar, T. He, S. Ramachandran, and S. Ramachandran, “Broadband and wideband parametric gain via intermodal four-wave mixing in optical fiber,” in Conference on Lasers and Electro-Optics (2017), paper SM3M.1.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

A. B. Kalifa, A. B. Salem, and R. Cherif, “Multimode supercontinuum generation in As2S3 chalcogenide photonic crystal fiber,” in Frontier in Optics (2018), paper JTu2A.18.

Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, and R. A. Correa, “Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber,” in Optical Fiber Communication Conference (2018), paper Th3D.2.

C. Lacava, M. A. Ettabib, G. Sharp, Y. Jung, P. Petropoulos, and D. J. Richardson, “Silicon photonics wavelength converter based on inter-modal four wave mixing Bragg scattering,” in 15th International Conference on Group IV Photonics (GFP) (2018), pp. 99–100.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (Top panel) Dual-pump Bragg scattering operation principle. When two pumps (P1 and P2) and a signal (S) are injected in third-order nonlinear media, Bragg scattering can occur if the phase matching condition is satisfied. Photons are scattered from the signal (S) to two idlers (IBS,r and IBS,b), and energy exchange also occurs between the two pumps (P1 and P2). This mechanism can be employed to realize wavelength conversion and wavelength exchange functionalities. (Bottom panel) Graph illustrating the phase matching mechanism between spatial modes in a multimode waveguide. If the two pumps (P1 and P2) are placed in the first-order mode (mode 0) and the signal and idlers in the second-order mode (mode 1), the phase matching condition can be realized and retained if a horizontal line that crosses the inverse group velocity (IGV) curves of the two considered modes can be drawn, intercepting the average frequencies of the two pumps and the signal and one idler [either IBS,r or IBS,b (yellow dots in the figure)].
Fig. 2.
Fig. 2. Calculated group index for the first two waveguide modes (dots, simulations based on the measured refractive index of the silicon-rich silicon nitride material; line, polynomial fit). Inset: cross-section of the silicon-rich silicon nitride waveguide (not to scale).
Fig. 3.
Fig. 3. Calculated BS-IM-FWM normalized efficiency for different pump-to-pump and pump-to-signal detuning values for (a) IBS,b and (b) IBS,r. Numerical results showed that phase matching can be retained for high pump-to-pump detuning values. For instance, if pump 1 (P1) is kept fixed and the second pump (P2) is detuned to a longer wavelength, the phase matching bandwidth is more than 60 nm for the IBS,r idler (see right panel), while it is significantly shorter for the IBS,b idler (see left panel). It is worth noting that opposite results would be achieved if P2 was kept constant, and P1 moved to shorter wavelength values. (c) Numerical results for a specific value of signal detuning (-5 nm from the phase matched wavelength) for the BS,b (blue line) and BS,r (red line) idlers.
Fig. 4.
Fig. 4. Experimental set-up. TLS: tunable laser source. OA: optical amplifier. PC: polarization controller. BS: beam splitter. PBS: polarization beam splitter. PP: phase plate. SiN-WG: silicon-rich silicon nitride waveguide.
Fig. 5.
Fig. 5. Recorded spectra at (a) the TE00 port, when P1 and P2 were launched in the TE00 mode, while S was launched in the TE10 mode; (b) the TE10 port, when P1 and P2 were launched in the TE00 mode, while S was launched in the TE10 mode; and (c) the TE00 port, when all waves were launched in the TE00 mode (i.e., no intermodal FWM).
Fig. 6.
Fig. 6. (a) FWM efficiency measured for different pump-to-pump detuning values for the IM scheme (red and blue squares) and for the intramodal scheme (magenta stars); (b) IM-FWM efficiency as a function of the signal wavelength (pump power 32 dBm) for IBS,r and IBS,b when the pump-to-pump detuning was 1 nm (red and blue squares, respectively) and for IBS,r when the pump-to-pump detuning was 30 nm (green squares). The inset shows a zoom-in of the plot in the region of perfect phase matching.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β0(ωP1)+β1(ωS)+β0(ωP2)β1(ωBS,r)=0,
β0(ωP1)β0(ωP2)=β1(ωS)β1(ωBS,r),
β0(ωP1)β0(ωP1Δω)=β1(ωS)β1(ωSΔω).
Q0101=|E0|2|E1|2dxdy|E0|2dxdy|E1|2dxdy,

Metrics