Abstract

Bio-chemical molecular detection in the nanoscale, based on alloyed nanorods (NRs) with tunable surface plasmon resonance (SPR) properties and high chemical stability, has attracted particular interest. In this work, alloyed Au-Ag NRs with tunable aspect ratios were achieved by annealing Au nanobipyramid-directed Au@Ag core-shell NRs. The core-shell NRs were encapsulated within mesoporous silica outer shells to avoid fusion or aggregation. The structural stability of fully alloyed Au-Ag NRs, including chemical and thermal stability, is remarkably improved compared with that of Au@Ag core-shell NRs. The alloyed NRs would maintain the rod-like structure after being incubated in etchant solution, while Au@Ag core-shell NRs would decay into nanobipyramids. Additionally, fully alloyed NRs present stable morphology under annealing at high temperatures of up to 600°C in air. Benefiting from excellent structural and chemical stabilities, the surface-enhanced Raman scattering effect based on alloyed NRs is stable in harsh environments. Taking advantage of tunable SPR properties (600–1800 nm) and excellent stability, the obtained nanostructures can serve as drug carriers. The perfect photo-thermal effect induced by the particular SPR of alloyed NRs can improve the release efficiency of drugs.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency

R. Kuladeep, L. Jyothi, K. Shadak Alee, K. L. N. Deepak, and D. Narayana Rao
Opt. Mater. Express 2(2) 161-172 (2012)

Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy

Hua Zhang, Linlin Xu, Yue Tian, Ming Chen, Xiangdong Liu, and Feng Chen
Opt. Express 25(23) 29389-29400 (2017)

Unusual optical properties of the Au/Ag alloy at the matching mole fraction

Yoshiaki Nishijima and Shunsuke Akiyama
Opt. Mater. Express 2(9) 1226-1235 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Yu, L. M. Liz-Marzán, and F. J. G. de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46, 6710–6724 (2017).
    [Crossref]
  2. A. W. Schell, A. Kuhlicke, G. Kewes, and O. Benson, “‘Flying plasmons’: Fabry-Pérot resonances in levitated silver nanowires,” ACS Photon. 4, 2719–2725 (2017).
    [Crossref]
  3. J. X. Zhang and L. D. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photon. 4, 157–321 (2012).
    [Crossref]
  4. H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
    [Crossref]
  5. C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
    [Crossref]
  6. H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
    [Crossref]
  7. W. B. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23, 1612–1619 (2013).
    [Crossref]
  8. D. S. Wang and Y. D. Li, “Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications,” Adv. Mater. 23, 1044–1060 (2011).
    [Crossref]
  9. H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, and D. N. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
    [Crossref]
  10. N. D. Burrows, S. Harvey, F. A. Idesis, and C. J. Murphy, “Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments,” Langmuir 33, 1891–1907 (2017).
    [Crossref]
  11. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 2001, 617–618 (2001).
    [Crossref]
  12. J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
    [Crossref]
  13. X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
    [Crossref]
  14. C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, and Z. S. Li, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
    [Crossref]
  15. X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
    [Crossref]
  16. B. Wiley, Y. G. Sun, and Y. N. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40, 1067–1076 (2007).
    [Crossref]
  17. D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
    [Crossref]
  18. Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
    [Crossref]
  19. Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
    [Crossref]
  20. Y. H. Cheng, Y. Zhang, S. L. Chau, S. K. M. Lai, H. W. Tang, and K. M. Ng, “Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys,” ACS Appl. Mater. Interfaces 8, 29668–29675 (2016).
    [Crossref]
  21. A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
    [Crossref]
  22. R. Rajendra, P. Bhatia, A. Justin, S. Sharma, and N. Ballav, “Homogeneously-alloyed gold-silver nanoparticles as per feeding moles,” J. Phys. Chem. C 119, 5604–5613 (2015).
    [Crossref]
  23. I. Lee, S. W. Han, and K. Kim, “Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys,” Chem. Commun. 2001, 1782–1783 (2001).
    [Crossref]
  24. C. Wang, S. Peng, R. Chan, and S. H. Sun, “Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au,” Small 5, 567–570 (2009).
    [Crossref]
  25. C. Wang, H. G. Yin, R. Chan, S. Peng, S. Dai, and S. H. Sun, “One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation,” Chem. Mater. 21, 433–435 (2009).
    [Crossref]
  26. Y. G. Sun and Y. N. Xia, “Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction,” Nano Lett. 3, 1569–1572 (2003).
    [Crossref]
  27. Q. B. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. X. Zhang, “Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions,” Nanotechnology 18, 245605 (2007).
    [Crossref]
  28. X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
    [Crossref]
  29. C. B. Gao, Y. X. Hu, M. S. Wang, M. F. Chi, and Y. D. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136, 7474–7479 (2014).
    [Crossref]
  30. T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
    [Crossref]
  31. J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
    [Crossref]
  32. W. H. Qi and S. T. Lee, “Phase stability, melting, and alloy formation of Au-Ag bimetallic nanoparticles,” J. Phys. Chem. C 114, 9580–9587 (2010).
    [Crossref]
  33. W. Albrecht, J. E. S. van der Hoeven, T. S. Deng, P. E. de Jongh, and A. van Blaaderen, “Fully alloyed metal nanorods with highly tunable properties,” Nanoscale 9, 2845–2851 (2017).
    [Crossref]
  34. Y. C. Bai, C. B. Gao, and Y. D. Yin, “Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability,” Nanoscale 9, 14875–14880 (2017).
    [Crossref]
  35. A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning,” J. Am. Chem. Soc. 139, 107–110 (2017).
    [Crossref]
  36. Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
    [Crossref]
  37. J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu, and C. S. Wang, “Synthesis and stability of bimetallic Au@Ag nanorods,” Superlattice. Microst. 100, 315–323 (2016).
    [Crossref]
  38. X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
    [Crossref]
  39. W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, and H. Y. Guo, “Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates,” RSC Adv. 4, 3487–3493 (2014).
    [Crossref]
  40. A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
    [Crossref]
  41. Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
    [Crossref]

2018 (2)

Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
[Crossref]

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

2017 (9)

R. W. Yu, L. M. Liz-Marzán, and F. J. G. de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46, 6710–6724 (2017).
[Crossref]

A. W. Schell, A. Kuhlicke, G. Kewes, and O. Benson, “‘Flying plasmons’: Fabry-Pérot resonances in levitated silver nanowires,” ACS Photon. 4, 2719–2725 (2017).
[Crossref]

H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, and D. N. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
[Crossref]

N. D. Burrows, S. Harvey, F. A. Idesis, and C. J. Murphy, “Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments,” Langmuir 33, 1891–1907 (2017).
[Crossref]

W. Albrecht, J. E. S. van der Hoeven, T. S. Deng, P. E. de Jongh, and A. van Blaaderen, “Fully alloyed metal nanorods with highly tunable properties,” Nanoscale 9, 2845–2851 (2017).
[Crossref]

Y. C. Bai, C. B. Gao, and Y. D. Yin, “Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability,” Nanoscale 9, 14875–14880 (2017).
[Crossref]

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning,” J. Am. Chem. Soc. 139, 107–110 (2017).
[Crossref]

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
[Crossref]

2016 (6)

Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
[Crossref]

X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
[Crossref]

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Y. H. Cheng, Y. Zhang, S. L. Chau, S. K. M. Lai, H. W. Tang, and K. M. Ng, “Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys,” ACS Appl. Mater. Interfaces 8, 29668–29675 (2016).
[Crossref]

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu, and C. S. Wang, “Synthesis and stability of bimetallic Au@Ag nanorods,” Superlattice. Microst. 100, 315–323 (2016).
[Crossref]

2015 (6)

A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
[Crossref]

R. Rajendra, P. Bhatia, A. Justin, S. Sharma, and N. Ballav, “Homogeneously-alloyed gold-silver nanoparticles as per feeding moles,” J. Phys. Chem. C 119, 5604–5613 (2015).
[Crossref]

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
[Crossref]

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

2014 (4)

W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, and H. Y. Guo, “Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates,” RSC Adv. 4, 3487–3493 (2014).
[Crossref]

C. B. Gao, Y. X. Hu, M. S. Wang, M. F. Chi, and Y. D. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136, 7474–7479 (2014).
[Crossref]

D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

2013 (1)

W. B. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23, 1612–1619 (2013).
[Crossref]

2012 (1)

2011 (1)

D. S. Wang and Y. D. Li, “Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications,” Adv. Mater. 23, 1044–1060 (2011).
[Crossref]

2010 (2)

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, and Z. S. Li, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

W. H. Qi and S. T. Lee, “Phase stability, melting, and alloy formation of Au-Ag bimetallic nanoparticles,” J. Phys. Chem. C 114, 9580–9587 (2010).
[Crossref]

2009 (4)

A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

C. Wang, S. Peng, R. Chan, and S. H. Sun, “Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au,” Small 5, 567–570 (2009).
[Crossref]

C. Wang, H. G. Yin, R. Chan, S. Peng, S. Dai, and S. H. Sun, “One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation,” Chem. Mater. 21, 433–435 (2009).
[Crossref]

X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[Crossref]

2007 (2)

B. Wiley, Y. G. Sun, and Y. N. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40, 1067–1076 (2007).
[Crossref]

Q. B. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. X. Zhang, “Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions,” Nanotechnology 18, 245605 (2007).
[Crossref]

2003 (1)

Y. G. Sun and Y. N. Xia, “Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction,” Nano Lett. 3, 1569–1572 (2003).
[Crossref]

2001 (2)

I. Lee, S. W. Han, and K. Kim, “Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys,” Chem. Commun. 2001, 1782–1783 (2001).
[Crossref]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 2001, 617–618 (2001).
[Crossref]

Albrecht, W.

W. Albrecht, J. E. S. van der Hoeven, T. S. Deng, P. E. de Jongh, and A. van Blaaderen, “Fully alloyed metal nanorods with highly tunable properties,” Nanoscale 9, 2845–2851 (2017).
[Crossref]

Altantzis, T.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning,” J. Am. Chem. Soc. 139, 107–110 (2017).
[Crossref]

Bai, Y. C.

Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
[Crossref]

Y. C. Bai, C. B. Gao, and Y. D. Yin, “Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability,” Nanoscale 9, 14875–14880 (2017).
[Crossref]

X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
[Crossref]

Ballav, N.

R. Rajendra, P. Bhatia, A. Justin, S. Sharma, and N. Ballav, “Homogeneously-alloyed gold-silver nanoparticles as per feeding moles,” J. Phys. Chem. C 119, 5604–5613 (2015).
[Crossref]

Bals, S.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning,” J. Am. Chem. Soc. 139, 107–110 (2017).
[Crossref]

Benson, O.

A. W. Schell, A. Kuhlicke, G. Kewes, and O. Benson, “‘Flying plasmons’: Fabry-Pérot resonances in levitated silver nanowires,” ACS Photon. 4, 2719–2725 (2017).
[Crossref]

Besner, S.

D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

Bhatia, P.

R. Rajendra, P. Bhatia, A. Justin, S. Sharma, and N. Ballav, “Homogeneously-alloyed gold-silver nanoparticles as per feeding moles,” J. Phys. Chem. C 119, 5604–5613 (2015).
[Crossref]

Bigelow, N. W.

Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
[Crossref]

Boothroyd, C.

Q. B. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. X. Zhang, “Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions,” Nanotechnology 18, 245605 (2007).
[Crossref]

Burrows, N. D.

N. D. Burrows, S. Harvey, F. A. Idesis, and C. J. Murphy, “Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments,” Langmuir 33, 1891–1907 (2017).
[Crossref]

Cai, W. P.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Camden, J. P.

Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
[Crossref]

Chan, R.

C. Wang, S. Peng, R. Chan, and S. H. Sun, “Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au,” Small 5, 567–570 (2009).
[Crossref]

C. Wang, H. G. Yin, R. Chan, S. Peng, S. Dai, and S. H. Sun, “One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation,” Chem. Mater. 21, 433–435 (2009).
[Crossref]

Chau, S. L.

Y. H. Cheng, Y. Zhang, S. L. Chau, S. K. M. Lai, H. W. Tang, and K. M. Ng, “Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys,” ACS Appl. Mater. Interfaces 8, 29668–29675 (2016).
[Crossref]

Chen, C. H.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Chen, D.

H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
[Crossref]

Chen, H. C.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Chen, H. H.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Chen, H. Y.

H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
[Crossref]

Chen, J. L.

X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
[Crossref]

Chen, S.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Cheng, C. Y.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Cheng, Y. H.

Y. H. Cheng, Y. Zhang, S. L. Chau, S. K. M. Lai, H. W. Tang, and K. M. Ng, “Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys,” ACS Appl. Mater. Interfaces 8, 29668–29675 (2016).
[Crossref]

Cherqui, C.

Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
[Crossref]

Chi, M. F.

C. B. Gao, Y. X. Hu, M. S. Wang, M. F. Chi, and Y. D. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136, 7474–7479 (2014).
[Crossref]

Cronin, S. B.

W. B. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23, 1612–1619 (2013).
[Crossref]

Dagallier, A.

A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
[Crossref]

Dai, S.

C. Wang, H. G. Yin, R. Chan, S. Peng, S. Dai, and S. H. Sun, “One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation,” Chem. Mater. 21, 433–435 (2009).
[Crossref]

Darvish, B.

A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
[Crossref]

Davletshin, Y. R.

A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
[Crossref]

de Abajo, F. J. G.

R. W. Yu, L. M. Liz-Marzán, and F. J. G. de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46, 6710–6724 (2017).
[Crossref]

de Jongh, P. E.

W. Albrecht, J. E. S. van der Hoeven, T. S. Deng, P. E. de Jongh, and A. van Blaaderen, “Fully alloyed metal nanorods with highly tunable properties,” Nanoscale 9, 2845–2851 (2017).
[Crossref]

Deng, T. S.

W. Albrecht, J. E. S. van der Hoeven, T. S. Deng, P. E. de Jongh, and A. van Blaaderen, “Fully alloyed metal nanorods with highly tunable properties,” Nanoscale 9, 2845–2851 (2017).
[Crossref]

Di, Y. F.

H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
[Crossref]

El-Sayed, M. A.

X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[Crossref]

Fan, Q. K.

X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
[Crossref]

Fratalocchi, A.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Gan, Z. B.

W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, and H. Y. Guo, “Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates,” RSC Adv. 4, 3487–3493 (2014).
[Crossref]

Gao, C. B.

Y. C. Bai, C. B. Gao, and Y. D. Yin, “Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability,” Nanoscale 9, 14875–14880 (2017).
[Crossref]

X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
[Crossref]

C. B. Gao, Y. X. Hu, M. S. Wang, M. F. Chi, and Y. D. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136, 7474–7479 (2014).
[Crossref]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 2001, 617–618 (2001).
[Crossref]

Grzelczak, M.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning,” J. Am. Chem. Soc. 139, 107–110 (2017).
[Crossref]

Gu, Y. Q.

H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
[Crossref]

Guo, H. Y.

W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, and H. Y. Guo, “Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates,” RSC Adv. 4, 3487–3493 (2014).
[Crossref]

Han, S. W.

I. Lee, S. W. Han, and K. Kim, “Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys,” Chem. Commun. 2001, 1782–1783 (2001).
[Crossref]

Han, Y.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Hang, L. F.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Harvey, S.

N. D. Burrows, S. Harvey, F. A. Idesis, and C. J. Murphy, “Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments,” Langmuir 33, 1891–1907 (2017).
[Crossref]

Hatef, A.

A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
[Crossref]

Hedhili, M. N.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Hou, W. B.

W. B. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23, 1612–1619 (2013).
[Crossref]

Hu, Y. X.

C. B. Gao, Y. X. Hu, M. S. Wang, M. F. Chi, and Y. D. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136, 7474–7479 (2014).
[Crossref]

Huang, J. F.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Huang, S. C.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Huang, S. R.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Huang, X. H.

X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[Crossref]

Idesis, F. A.

N. D. Burrows, S. Harvey, F. A. Idesis, and C. J. Murphy, “Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments,” Langmuir 33, 1891–1907 (2017).
[Crossref]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 2001, 617–618 (2001).
[Crossref]

Jiang, R. B.

X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
[Crossref]

Johnston, W.

A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
[Crossref]

Justin, A.

R. Rajendra, P. Bhatia, A. Justin, S. Sharma, and N. Ballav, “Homogeneously-alloyed gold-silver nanoparticles as per feeding moles,” J. Phys. Chem. C 119, 5604–5613 (2015).
[Crossref]

Kan, C. X.

H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, and D. N. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
[Crossref]

J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu, and C. S. Wang, “Synthesis and stability of bimetallic Au@Ag nanorods,” Superlattice. Microst. 100, 315–323 (2016).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, and Z. S. Li, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Kewes, G.

A. W. Schell, A. Kuhlicke, G. Kewes, and O. Benson, “‘Flying plasmons’: Fabry-Pérot resonances in levitated silver nanowires,” ACS Photon. 4, 2719–2725 (2017).
[Crossref]

Kim, K.

I. Lee, S. W. Han, and K. Kim, “Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys,” Chem. Commun. 2001, 1782–1783 (2001).
[Crossref]

Kuhlicke, A.

A. W. Schell, A. Kuhlicke, G. Kewes, and O. Benson, “‘Flying plasmons’: Fabry-Pérot resonances in levitated silver nanowires,” ACS Photon. 4, 2719–2725 (2017).
[Crossref]

Kumaradas, J. C.

A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
[Crossref]

Lai, S. K. M.

Y. H. Cheng, Y. Zhang, S. L. Chau, S. K. M. Lai, H. W. Tang, and K. M. Ng, “Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys,” ACS Appl. Mater. Interfaces 8, 29668–29675 (2016).
[Crossref]

Lee, I.

I. Lee, S. W. Han, and K. Kim, “Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys,” Chem. Commun. 2001, 1782–1783 (2001).
[Crossref]

Lee, J. Y.

Q. B. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. X. Zhang, “Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions,” Nanotechnology 18, 245605 (2007).
[Crossref]

Lee, S. T.

W. H. Qi and S. T. Lee, “Phase stability, melting, and alloy formation of Au-Ag bimetallic nanoparticles,” J. Phys. Chem. C 114, 9580–9587 (2010).
[Crossref]

Li, C. C.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Li, C. Y.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Li, D.

W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, and H. Y. Guo, “Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates,” RSC Adv. 4, 3487–3493 (2014).
[Crossref]

Li, G. L.

Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
[Crossref]

Li, H. C.

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, and Z. S. Li, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Li, H. L.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Li, J.

Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
[Crossref]

Li, J. F.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Li, J. S.

Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
[Crossref]

Li, L.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Li, Q.

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Li, S.

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Li, W. L.

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

Li, Y.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Li, Y. D.

D. S. Wang and Y. D. Li, “Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications,” Adv. Mater. 23, 1044–1060 (2011).
[Crossref]

Li, Y. L.

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

Li, Y. Y.

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

Li, Z. S.

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, and Z. S. Li, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Lin, C. M.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Lin, H. C.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Lin, T. Y.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Liu, C.

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

Liu, C. X.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Liu, D. L.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Liu, G. Q.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Liu, H. P.

X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
[Crossref]

Liu, J. S.

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

Liu, Y. C.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Liu, Z. H.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Liz-Marzán, L. M.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning,” J. Am. Chem. Soc. 139, 107–110 (2017).
[Crossref]

R. W. Yu, L. M. Liz-Marzán, and F. J. G. de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46, 6710–6724 (2017).
[Crossref]

Lou, Y. K.

J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu, and C. S. Wang, “Synthesis and stability of bimetallic Au@Ag nanorods,” Superlattice. Microst. 100, 315–323 (2016).
[Crossref]

Lu, B. B.

Lyu, X. J.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Ma, F.

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

Madrid, K.

H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
[Crossref]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

Masiello, D. J.

Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
[Crossref]

Mazur, E.

D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

Meng, L. Y.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Meng, M.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Meunier, M.

A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
[Crossref]

D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

Miao, C. Z.

Munoz, P.

D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

Murphy, C. J.

N. D. Burrows, S. Harvey, F. A. Idesis, and C. J. Murphy, “Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments,” Langmuir 33, 1891–1907 (2017).
[Crossref]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 2001, 617–618 (2001).
[Crossref]

Neretina, S.

X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[Crossref]

Ng, K. M.

Y. H. Cheng, Y. Zhang, S. L. Chau, S. K. M. Lai, H. W. Tang, and K. M. Ng, “Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys,” ACS Appl. Mater. Interfaces 8, 29668–29675 (2016).
[Crossref]

Ni, Y.

H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, and D. N. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
[Crossref]

J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu, and C. S. Wang, “Synthesis and stability of bimetallic Au@Ag nanorods,” Superlattice. Microst. 100, 315–323 (2016).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

Nie, S. M.

A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

Panneerselvam, R.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Peng, S.

C. Wang, S. Peng, R. Chan, and S. H. Sun, “Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au,” Small 5, 567–570 (2009).
[Crossref]

C. Wang, H. G. Yin, R. Chan, S. Peng, S. Dai, and S. H. Sun, “One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation,” Chem. Mater. 21, 433–435 (2009).
[Crossref]

Qi, J. S.

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, and Z. S. Li, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Qi, W. H.

W. H. Qi and S. T. Lee, “Phase stability, melting, and alloy formation of Au-Ag bimetallic nanoparticles,” J. Phys. Chem. C 114, 9580–9587 (2010).
[Crossref]

Qiao, Y.

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

Qin, X. J.

Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
[Crossref]

Rack, P. D.

Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
[Crossref]

Rajendra, R.

R. Rajendra, P. Bhatia, A. Justin, S. Sharma, and N. Ballav, “Homogeneously-alloyed gold-silver nanoparticles as per feeding moles,” J. Phys. Chem. C 119, 5604–5613 (2015).
[Crossref]

Ren, B.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Rioux, D.

A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
[Crossref]

D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

Ruan, Q. F.

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Sánchez-Iglesias, A.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning,” J. Am. Chem. Soc. 139, 107–110 (2017).
[Crossref]

Schell, A. W.

A. W. Schell, A. Kuhlicke, G. Kewes, and O. Benson, “‘Flying plasmons’: Fabry-Pérot resonances in levitated silver nanowires,” ACS Photon. 4, 2719–2725 (2017).
[Crossref]

Sharma, S.

R. Rajendra, P. Bhatia, A. Justin, S. Sharma, and N. Ballav, “Homogeneously-alloyed gold-silver nanoparticles as per feeding moles,” J. Phys. Chem. C 119, 5604–5613 (2015).
[Crossref]

Shi, D. N.

H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, and D. N. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

Shih, C. M.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Si, Y. M.

Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
[Crossref]

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

Sun, H. H.

W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, and H. Y. Guo, “Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates,” RSC Adv. 4, 3487–3493 (2014).
[Crossref]

Sun, S. H.

C. Wang, S. Peng, R. Chan, and S. H. Sun, “Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au,” Small 5, 567–570 (2009).
[Crossref]

C. Wang, H. G. Yin, R. Chan, S. Peng, S. Dai, and S. H. Sun, “One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation,” Chem. Mater. 21, 433–435 (2009).
[Crossref]

Sun, Y. G.

B. Wiley, Y. G. Sun, and Y. N. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40, 1067–1076 (2007).
[Crossref]

Y. G. Sun and Y. N. Xia, “Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction,” Nano Lett. 3, 1569–1572 (2003).
[Crossref]

Sun, Y. Q.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Tang, H. W.

Y. H. Cheng, Y. Zhang, S. L. Chau, S. K. M. Lai, H. W. Tang, and K. M. Ng, “Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys,” ACS Appl. Mater. Interfaces 8, 29668–29675 (2016).
[Crossref]

Tang, L. P.

H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
[Crossref]

Tao, W. Y.

W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, and H. Y. Guo, “Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates,” RSC Adv. 4, 3487–3493 (2014).
[Crossref]

Thakkar, N.

Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
[Crossref]

Tian, C. P.

H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
[Crossref]

Tian, Z. Q.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Vallières, S.

D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

van Blaaderen, A.

W. Albrecht, J. E. S. van der Hoeven, T. S. Deng, P. E. de Jongh, and A. van Blaaderen, “Fully alloyed metal nanorods with highly tunable properties,” Nanoscale 9, 2845–2851 (2017).
[Crossref]

van der Hoeven, J. E. S.

W. Albrecht, J. E. S. van der Hoeven, T. S. Deng, P. E. de Jongh, and A. van Blaaderen, “Fully alloyed metal nanorods with highly tunable properties,” Nanoscale 9, 2845–2851 (2017).
[Crossref]

Wang, C.

C. Wang, H. G. Yin, R. Chan, S. Peng, S. Dai, and S. H. Sun, “One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation,” Chem. Mater. 21, 433–435 (2009).
[Crossref]

C. Wang, S. Peng, R. Chan, and S. H. Sun, “Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au,” Small 5, 567–570 (2009).
[Crossref]

Wang, C. S.

H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, and D. N. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
[Crossref]

J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu, and C. S. Wang, “Synthesis and stability of bimetallic Au@Ag nanorods,” Superlattice. Microst. 100, 315–323 (2016).
[Crossref]

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, and Z. S. Li, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Wang, D. S.

D. S. Wang and Y. D. Li, “Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications,” Adv. Mater. 23, 1044–1060 (2011).
[Crossref]

Wang, J. F.

X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
[Crossref]

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Wang, M. S.

C. B. Gao, Y. X. Hu, M. S. Wang, M. F. Chi, and Y. D. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136, 7474–7479 (2014).
[Crossref]

Wei, J. J.

H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, and D. N. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
[Crossref]

J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu, and C. S. Wang, “Synthesis and stability of bimetallic Au@Ag nanorods,” Superlattice. Microst. 100, 315–323 (2016).
[Crossref]

Wei, Q. L.

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

Wei, X. Y.

X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
[Crossref]

Wiley, B.

B. Wiley, Y. G. Sun, and Y. N. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40, 1067–1076 (2007).
[Crossref]

Winckelmans, N.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning,” J. Am. Chem. Soc. 139, 107–110 (2017).
[Crossref]

Wu, Y. Y.

Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
[Crossref]

Xia, Y. N.

B. Wiley, Y. G. Sun, and Y. N. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40, 1067–1076 (2007).
[Crossref]

Y. G. Sun and Y. N. Xia, “Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction,” Nano Lett. 3, 1569–1572 (2003).
[Crossref]

Xiao, Z. J.

Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
[Crossref]

Xu, H. Y.

H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, and D. N. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
[Crossref]

J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu, and C. S. Wang, “Synthesis and stability of bimetallic Au@Ag nanorods,” Superlattice. Microst. 100, 315–323 (2016).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

Xu, Q. H.

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Yang, C. P.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Yang, J.

Q. B. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. X. Zhang, “Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions,” Nanotechnology 18, 245605 (2007).
[Crossref]

Yang, K. H.

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

Yang, Z.

X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
[Crossref]

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

Yang, Z. L.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Yin, H. G.

C. Wang, H. G. Yin, R. Chan, S. Peng, S. Dai, and S. H. Sun, “One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation,” Chem. Mater. 21, 433–435 (2009).
[Crossref]

Yin, Y. D.

Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
[Crossref]

Y. C. Bai, C. B. Gao, and Y. D. Yin, “Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability,” Nanoscale 9, 14875–14880 (2017).
[Crossref]

X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
[Crossref]

C. B. Gao, Y. X. Hu, M. S. Wang, M. F. Chi, and Y. D. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136, 7474–7479 (2014).
[Crossref]

Yip, H. K.

X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
[Crossref]

Yu, R. W.

R. W. Yu, L. M. Liz-Marzán, and F. J. G. de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46, 6710–6724 (2017).
[Crossref]

Zhang, J. X.

J. X. Zhang and L. D. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photon. 4, 157–321 (2012).
[Crossref]

Q. B. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. X. Zhang, “Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions,” Nanotechnology 18, 245605 (2007).
[Crossref]

Zhang, L.

X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
[Crossref]

Zhang, L. D.

Zhang, M.

H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
[Crossref]

Zhang, M. F.

W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, and H. Y. Guo, “Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates,” RSC Adv. 4, 3487–3493 (2014).
[Crossref]

Zhang, Q. B.

Q. B. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. X. Zhang, “Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions,” Nanotechnology 18, 245605 (2007).
[Crossref]

Zhang, S. J.

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

Zhang, T.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Zhang, Y.

Y. H. Cheng, Y. Zhang, S. L. Chau, S. K. M. Lai, H. W. Tang, and K. M. Ng, “Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys,” ACS Appl. Mater. Interfaces 8, 29668–29675 (2016).
[Crossref]

Zhao, A. W.

W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, and H. Y. Guo, “Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates,” RSC Adv. 4, 3487–3493 (2014).
[Crossref]

Zhao, Y. F.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Zheng, H. Q.

X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
[Crossref]

Zhong, D. N.

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

Zhong, W. W.

Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
[Crossref]

Zhou, B.

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

Zhou, F.

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

Zhou, M.

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

Zhu, J. J.

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, and Z. S. Li, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Zhu, X. M.

X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
[Crossref]

Zhu, X. Z.

X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
[Crossref]

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

Zhu, Y. H.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Zhuo, X. L.

X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
[Crossref]

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Acc. Chem. Res. (1)

B. Wiley, Y. G. Sun, and Y. N. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40, 1067–1076 (2007).
[Crossref]

ACS Appl. Mater. Interfaces (3)

Y. H. Cheng, Y. Zhang, S. L. Chau, S. K. M. Lai, H. W. Tang, and K. M. Ng, “Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys,” ACS Appl. Mater. Interfaces 8, 29668–29675 (2016).
[Crossref]

Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, and M. Zhou, “Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing,” ACS Appl. Mater. Interfaces 10, 193–206 (2018).
[Crossref]

H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, and Y. C. Liu, “Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential,” ACS Appl. Mater. Interfaces 8, 19691–19700 (2016).
[Crossref]

ACS Photon. (2)

Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, and P. D. Rack, “Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects,” ACS Photon. 3, 130–138 (2016).
[Crossref]

A. W. Schell, A. Kuhlicke, G. Kewes, and O. Benson, “‘Flying plasmons’: Fabry-Pérot resonances in levitated silver nanowires,” ACS Photon. 4, 2719–2725 (2017).
[Crossref]

Adv. Funct. Mater. (2)

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

W. B. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23, 1612–1619 (2013).
[Crossref]

Adv. Mater. (2)

D. S. Wang and Y. D. Li, “Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications,” Adv. Mater. 23, 1044–1060 (2011).
[Crossref]

X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[Crossref]

Adv. Opt. Mater. (2)

D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Adv. Opt. Photon. (1)

Anal. Chem. (1)

Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, and Y. D. Yin, “Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells,” Anal. Chem. 90, 3898–3905 (2018).
[Crossref]

Appl. Phys. Lett. (1)

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

Chem. Commun. (2)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 2001, 617–618 (2001).
[Crossref]

I. Lee, S. W. Han, and K. Kim, “Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys,” Chem. Commun. 2001, 1782–1783 (2001).
[Crossref]

Chem. Mater. (1)

C. Wang, H. G. Yin, R. Chan, S. Peng, S. Dai, and S. H. Sun, “One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation,” Chem. Mater. 21, 433–435 (2009).
[Crossref]

Chem. Soc. Rev. (1)

R. W. Yu, L. M. Liz-Marzán, and F. J. G. de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46, 6710–6724 (2017).
[Crossref]

J. Am. Chem. Soc. (4)

X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, and J. F. Wang, “Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals,” J. Am. Chem. Soc. 139, 13837–13846 (2017).
[Crossref]

C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, and Z. Q. Tian, “‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies,” J. Am. Chem. Soc. 137, 13784–13787 (2015).
[Crossref]

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning,” J. Am. Chem. Soc. 139, 107–110 (2017).
[Crossref]

C. B. Gao, Y. X. Hu, M. S. Wang, M. F. Chi, and Y. D. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136, 7474–7479 (2014).
[Crossref]

J. Mater. Chem. C (1)

T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, and Y. Li, “Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties,” J. Mater. Chem. C 5, 11039–11045 (2017).
[Crossref]

J. Phys. Chem. C (3)

W. H. Qi and S. T. Lee, “Phase stability, melting, and alloy formation of Au-Ag bimetallic nanoparticles,” J. Phys. Chem. C 114, 9580–9587 (2010).
[Crossref]

A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water,” J. Phys. Chem. C 119, 24075–24080 (2015).
[Crossref]

R. Rajendra, P. Bhatia, A. Justin, S. Sharma, and N. Ballav, “Homogeneously-alloyed gold-silver nanoparticles as per feeding moles,” J. Phys. Chem. C 119, 5604–5613 (2015).
[Crossref]

Langmuir (1)

N. D. Burrows, S. Harvey, F. A. Idesis, and C. J. Murphy, “Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments,” Langmuir 33, 1891–1907 (2017).
[Crossref]

Nano Lett. (1)

Y. G. Sun and Y. N. Xia, “Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction,” Nano Lett. 3, 1569–1572 (2003).
[Crossref]

Nanoscale (4)

W. Albrecht, J. E. S. van der Hoeven, T. S. Deng, P. E. de Jongh, and A. van Blaaderen, “Fully alloyed metal nanorods with highly tunable properties,” Nanoscale 9, 2845–2851 (2017).
[Crossref]

Y. C. Bai, C. B. Gao, and Y. D. Yin, “Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability,” Nanoscale 9, 14875–14880 (2017).
[Crossref]

X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8, 15689–15695 (2016).
[Crossref]

H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, and Y. Q. Gu, “Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules,” Nanoscale 7, 8884–8897 (2015).
[Crossref]

Nanotechnology (1)

Q. B. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. X. Zhang, “Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions,” Nanotechnology 18, 245605 (2007).
[Crossref]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

Photon. Res. (1)

RSC Adv. (1)

W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, and H. Y. Guo, “Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates,” RSC Adv. 4, 3487–3493 (2014).
[Crossref]

Small (3)

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

C. Wang, S. Peng, R. Chan, and S. H. Sun, “Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au,” Small 5, 567–570 (2009).
[Crossref]

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, and Z. S. Li, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Superlattice. Microst. (1)

J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu, and C. S. Wang, “Synthesis and stability of bimetallic Au@Ag nanorods,” Superlattice. Microst. 100, 315–323 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic illustration of the synthetic process of alloyed Au-Ag NRs. HAADF-STEM images of as-prepared. (b) Au@Ag core-shell NRs and (c) alloyed NRs with in situ STEM heating up to 350°C (scale bars: 100 nm).
Fig. 2.
Fig. 2. UV-vis-NIR absorption spectra of (a) Au@Ag core-shell NRs and (b) alloyed Au-Ag NRs under annealing at 400°C in N2 flow. (c) SPRL and SPRT wavelength versus the volume of the AgNO3 precursor. (d)–(i) TEM images of alloyed Au-Ag NRs with increasing aspect ratios (n=L/W, the ratio between length and width of NRs, i.e., 3, 4, 5, 6, 8, 9). The insets of (d)–(i) are corresponding TEM images of Au@Ag core-shell NRs capsuled within mesoporous silica. (j),(k) HAADF-STEM images and element mapping of alloyed Au-Ag NRs (aspect ratio n=3 and 6, respectively) (scale bars: 200 nm).
Fig. 3.
Fig. 3. Annealing temperature effects on alloying of Au and Ag. (a) UV-vis-NIR absorption spectra and (b)–(d) corresponding TEM images of alloyed Au-Ag NRs obtained at annealing temperatures of 450°C, 500°C, and 600°C. The inset of (a) is the evolution schematics of partially and fully alloyed Au-Ag NRs. (e) The elemental distribution of fully alloyed Au-Ag NRs obtained at 450°C (scale bars: 200 nm).
Fig. 4.
Fig. 4. UV-vis-NIR absorption spectra and corresponding TEM images of (a) Au@Ag core-shell NRs and (b) alloyed Au-Ag NRs before and after incubated in NH4OH and H2O2 solution. The insets in (a),(b) are corresponding colloidal products. The following samples were etched and further observed. (c) HAADF-STEM images and corresponding elemental distribution of fully/partially alloyed Au-Ag NRs. (d)–(g) TEM images of alloyed Au-Ag NRs with increasing Au composition under annealing at 400°C. The bottom insets in (d)–(g) are TEM images of Au NBPs, and the top inset in (d) is the TEM image of alloyed Au-Ag NRs by annealing at 450°C.
Fig. 5.
Fig. 5. UV-vis-NIR absorption spectra and corresponding TEM images of as-prepared alloyed NRs after re-annealing at higher temperatures in an N2 or air atmosphere.
Fig. 6.
Fig. 6. (a) UV-vis-NIR absorption spectra of core-shell and alloyed NRs with the same resonance intensity. (b), (c) SERS spectra of R6G absorbed on alloyed and core-shell NRs-loaded substrates before and after etching in NH4OH and H2O2.
Fig. 7.
Fig. 7. (a) Schematic of DOX release under 980 nm laser irradiation. (b) TEM images of alloyed Au-Ag NRs with full and hollow silica capping by annealing in N2 flow and air, respectively. (c) UV-vis-NIR absorption spectra of free DOX molecules before and after being loaded on alloyed Au-Ag NRs. The inset in (c) is the absorption spectra of alloyed Au-Ag NRs coated by full/hollow mesoporous silica. (d) DOX release profiles with and without laser irradiation. The inset in (d) is the absorption spectra of released DOX after 1 h. (e) The photo-thermal conversion and (f) corresponding UV-vis-NIR spectra of alloyed Au-Ag NRs (1 mL) under irradiation of a 980 nm laser with different powers (laser spot: 2  mm×2  mm).

Tables (1)

Tables Icon

Table 1. Morphology Evolution of As-Prepared Alloyed NRs after Re-Annealing at Higher Temperatures in an N2 or Air Atmospherea

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D=D0exp(ΔHdkT),