Abstract

Hybrid square/rhombus-rectangular lasers (HSRRLs) consisting of a Fabry–Perot (FP) cavity and a square/rhombus microcavity (SRM) are proposed and demonstrated for realizing single-mode lasing with a wide wavelength tuning range. The SRM is a deformed square microcavity with a vertex extended to the FP cavity to control the coupled mode field pattern in the FP cavity. Single-mode operation with a side-mode suppression ratio (SMSR) over 45.3 dB is realized, and a wide wavelength tuning range of 21 nm with SMSR >35  dB is further demonstrated by adjusting the injection currents of the SRM and the FP cavity simultaneously. Furthermore, a 3-dB modulation bandwidth of 14.1 GHz and an open-eye diagram at 35 Gb/s are demonstrated for the HSRRL.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Relative intensity noise in high-speed hybrid square-rectangular lasers

Fu-Li Wang, Xiu-Wen Ma, Yong-Zhen Huang, Yue-De Yang, Jun-Yuan Han, and Jin-Long Xiao
Photon. Res. 6(3) 193-197 (2018)

Mode selection in square resonator microlasers for widely tunable single mode lasing

Ming-Ying Tang, Shao-Shuai Sui, Yue-De Yang, Jin-Long Xiao, Yun Du, and Yong-Zhen Huang
Opt. Express 23(21) 27739-27750 (2015)

Nine-channel wavelength tunable single mode laser array based on slots

Wei-Hua Guo, Qiaoyin Lu, Marta Nawrocka, Azat Abdullaev, James O’Callaghan, and John F. Donegan
Opt. Express 21(8) 10215-10221 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Coldren, G. Fish, Y. Akulova, J. Barton, L. Johansson, and C. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22, 193–202 (2004).
    [Crossref]
  2. J. Buus, M. C. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (Wiley-Interscience, 2005).
  3. J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24, 5–11 (2006).
    [Crossref]
  4. H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15, 514–520 (2009).
    [Crossref]
  5. H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
    [Crossref]
  6. Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–176 (1983).
    [Crossref]
  7. B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. DenBaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12, 762–764 (2000).
    [Crossref]
  8. B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, “Widely tunable sampled grating DBR laser with integrated electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 638–640 (1999).
    [Crossref]
  9. N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13, 1164–1169 (2007).
    [Crossref]
  10. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
    [Crossref]
  11. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
    [Crossref]
  12. L. A. Coldren, B. Miller, K. Iga, and J. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38, 315–317 (1981).
    [Crossref]
  13. M. Kuznetsov, P. Verlangieri, and A. Dentai, “Frequency tuning characteristics and WDM channel access of the semiconductor three-branch Y3-lasers,” IEEE Photon. Technol. Lett. 6, 157–160 (1994).
    [Crossref]
  14. S. Zhang, J. Meng, S. Guo, L. Wang, and J. J. He, “Simple and compact V-cavity semiconductor laser with 50 × 100 GHz wavelength tuning,” Opt. Express 21, 13564–13571 (2013).
    [Crossref]
  15. J. Jin, L. Wang, T. Yu, Y. Wang, and J. J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with ∼40 dB side-mode suppression ratio,” Opt. Lett. 36, 4230–4232 (2011).
    [Crossref]
  16. S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
    [Crossref]
  17. T. Segawa, W. Kobayashi, T. Sato, S. Matsuo, R. Iga, and R. Takahashi, “A flat-output widely tunable laser based on parallel-ring resonator integrated with electroabsorption modulator,” Opt. Express 20, B485–B492 (2012).
    [Crossref]
  18. M. Nawrocka, Q. Y. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22, 18949–18957 (2014).
    [Crossref]
  19. Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, and W. H. Guo, “Demonstration of multi-channel interference widely tunable semiconductor laser,” IEEE Photon. Technol. Lett. 28, 2862–2865 (2016).
    [Crossref]
  20. Q. A. Chen, C. Jiang, X. Ma, Y. Liu, D. T. Yang, Q. Y. Lu, and W. H. Guo, “1 × 8 MMI based multi-channel interference laser integrated with SOA through a 2-port multimode interference reflector,” Opt. Express 26, 19940–19949 (2018).
    [Crossref]
  21. X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
    [Crossref]
  22. X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
    [Crossref]
  23. F. L. Wang, X. W. Ma, Y. Z. Huang, Y. D. Yang, J. Y. Han, and J. L. Xiao, “Relative intensity noise in high-speed hybrid square-rectangular lasers,” Photon. Res. 6, 193–197 (2018).
    [Crossref]
  24. X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, F. L. Wang, M. Tang, J. L. Xiao, and Y. Du, “All-optical flip-flop based on hybrid square-rectangular bistable lasers,” Opt. Lett. 42, 2291–2294 (2017).
    [Crossref]
  25. Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor,” Sci. China Inf. Sci. 61, 080401 (2018).
    [Crossref]
  26. F. L. Wang, Y. Z. Huang, J. Y. Han, Y. D. Yang, and J. L. Xiao, “All-optical switch and logic gates based on hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. (submitted).
  27. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wireless Comp. Lett. 11, 223–225 (2001).
    [Crossref]
  28. S. Liu, W. Z. Sun, Y. J. Wang, X. Y. Yu, K. Xu, Y. Z. Huang, S. M. Xiao, and Q. H. Song, “End-fire injection of light into high-Q silicon microdisks,” Optica 5, 612–616 (2018).
    [Crossref]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  30. Y. D. Yang, S. S. Sui, M. Tang, J. L. Xiao, Y. Du, A. W. Poon, and Y. Z. Huang, “Hybrid AlGaInAs/Si Fabry-Pérot lasers with near-total mode confinements,” J. Semicond. 39, 084001 (2018).
    [Crossref]
  31. X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
    [Crossref]
  32. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
    [Crossref]

2018 (5)

2017 (2)

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, F. L. Wang, M. Tang, J. L. Xiao, and Y. Du, “All-optical flip-flop based on hybrid square-rectangular bistable lasers,” Opt. Lett. 42, 2291–2294 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
[Crossref]

2016 (2)

Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, and W. H. Guo, “Demonstration of multi-channel interference widely tunable semiconductor laser,” IEEE Photon. Technol. Lett. 28, 2862–2865 (2016).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

2014 (1)

2013 (2)

S. Zhang, J. Meng, S. Guo, L. Wang, and J. J. He, “Simple and compact V-cavity semiconductor laser with 50 × 100 GHz wavelength tuning,” Opt. Express 21, 13564–13571 (2013).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

2012 (1)

2011 (2)

J. Jin, L. Wang, T. Yu, Y. Wang, and J. J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with ∼40 dB side-mode suppression ratio,” Opt. Lett. 36, 4230–4232 (2011).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

2009 (2)

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
[Crossref]

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15, 514–520 (2009).
[Crossref]

2007 (1)

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13, 1164–1169 (2007).
[Crossref]

2006 (1)

2005 (1)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

2004 (1)

2003 (1)

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

2001 (1)

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wireless Comp. Lett. 11, 223–225 (2001).
[Crossref]

2000 (1)

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. DenBaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12, 762–764 (2000).
[Crossref]

1999 (1)

B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, “Widely tunable sampled grating DBR laser with integrated electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 638–640 (1999).
[Crossref]

1996 (1)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

1994 (1)

M. Kuznetsov, P. Verlangieri, and A. Dentai, “Frequency tuning characteristics and WDM channel access of the semiconductor three-branch Y3-lasers,” IEEE Photon. Technol. Lett. 6, 157–160 (1994).
[Crossref]

1983 (1)

Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–176 (1983).
[Crossref]

1981 (1)

L. A. Coldren, B. Miller, K. Iga, and J. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38, 315–317 (1981).
[Crossref]

Abdullaev, A.

Ae, S.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Akulova, Y.

Amann, M. C.

J. Buus, M. C. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (Wiley-Interscience, 2005).

Arai, S.

Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–176 (1983).
[Crossref]

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

Barton, J.

L. A. Coldren, G. Fish, Y. Akulova, J. Barton, L. Johansson, and C. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22, 193–202 (2004).
[Crossref]

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. DenBaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12, 762–764 (2000).
[Crossref]

Bello, F.

Blumenthal, D. J.

J. Buus, M. C. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (Wiley-Interscience, 2005).

Busico, G.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

Buus, J.

J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24, 5–11 (2006).
[Crossref]

J. Buus, M. C. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (Wiley-Interscience, 2005).

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

Cathcart, T.

Chen, Q. A.

Q. A. Chen, C. Jiang, X. Ma, Y. Liu, D. T. Yang, Q. Y. Lu, and W. H. Guo, “1 × 8 MMI based multi-channel interference laser integrated with SOA through a 2-port multimode interference reflector,” Opt. Express 26, 19940–19949 (2018).
[Crossref]

Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, and W. H. Guo, “Demonstration of multi-channel interference widely tunable semiconductor laser,” IEEE Photon. Technol. Lett. 28, 2862–2865 (2016).
[Crossref]

Coldren, C.

Coldren, L. A.

L. A. Coldren, G. Fish, Y. Akulova, J. Barton, L. Johansson, and C. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22, 193–202 (2004).
[Crossref]

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. DenBaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12, 762–764 (2000).
[Crossref]

B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, “Widely tunable sampled grating DBR laser with integrated electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 638–640 (1999).
[Crossref]

L. A. Coldren, B. Miller, K. Iga, and J. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38, 315–317 (1981).
[Crossref]

DenBaars, S. P.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. DenBaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12, 762–764 (2000).
[Crossref]

B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, “Widely tunable sampled grating DBR laser with integrated electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 638–640 (1999).
[Crossref]

Dentai, A.

M. Kuznetsov, P. Verlangieri, and A. Dentai, “Frequency tuning characteristics and WDM channel access of the semiconductor three-branch Y3-lasers,” IEEE Photon. Technol. Lett. 6, 157–160 (1994).
[Crossref]

Donegan, J. F.

Du, Y.

Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor,” Sci. China Inf. Sci. 61, 080401 (2018).
[Crossref]

Y. D. Yang, S. S. Sui, M. Tang, J. L. Xiao, Y. Du, A. W. Poon, and Y. Z. Huang, “Hybrid AlGaInAs/Si Fabry-Pérot lasers with near-total mode confinements,” J. Semicond. 39, 084001 (2018).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, F. L. Wang, M. Tang, J. L. Xiao, and Y. Du, “All-optical flip-flop based on hybrid square-rectangular bistable lasers,” Opt. Lett. 42, 2291–2294 (2017).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Duck, J. P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

Fish, G.

Fish, G. A.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. DenBaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12, 762–764 (2000).
[Crossref]

B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, “Widely tunable sampled grating DBR laser with integrated electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 638–640 (1999).
[Crossref]

Fujiwara, N.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13, 1164–1169 (2007).
[Crossref]

Guo, S.

Guo, W. H.

Q. A. Chen, C. Jiang, X. Ma, Y. Liu, D. T. Yang, Q. Y. Lu, and W. H. Guo, “1 × 8 MMI based multi-channel interference laser integrated with SOA through a 2-port multimode interference reflector,” Opt. Express 26, 19940–19949 (2018).
[Crossref]

Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, and W. H. Guo, “Demonstration of multi-channel interference widely tunable semiconductor laser,” IEEE Photon. Technol. Lett. 28, 2862–2865 (2016).
[Crossref]

M. Nawrocka, Q. Y. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22, 18949–18957 (2014).
[Crossref]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wireless Comp. Lett. 11, 223–225 (2001).
[Crossref]

Gustavsson, J. S.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

Haglund, Å.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Han, J. Y.

F. L. Wang, X. W. Ma, Y. Z. Huang, Y. D. Yang, J. Y. Han, and J. L. Xiao, “Relative intensity noise in high-speed hybrid square-rectangular lasers,” Photon. Res. 6, 193–197 (2018).
[Crossref]

F. L. Wang, Y. Z. Huang, J. Y. Han, Y. D. Yang, and J. L. Xiao, “All-optical switch and logic gates based on hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. (submitted).

Hatakeyama, H.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

He, J. J.

Huang, Y. Z.

Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor,” Sci. China Inf. Sci. 61, 080401 (2018).
[Crossref]

Y. D. Yang, S. S. Sui, M. Tang, J. L. Xiao, Y. Du, A. W. Poon, and Y. Z. Huang, “Hybrid AlGaInAs/Si Fabry-Pérot lasers with near-total mode confinements,” J. Semicond. 39, 084001 (2018).
[Crossref]

F. L. Wang, X. W. Ma, Y. Z. Huang, Y. D. Yang, J. Y. Han, and J. L. Xiao, “Relative intensity noise in high-speed hybrid square-rectangular lasers,” Photon. Res. 6, 193–197 (2018).
[Crossref]

S. Liu, W. Z. Sun, Y. J. Wang, X. Y. Yu, K. Xu, Y. Z. Huang, S. M. Xiao, and Q. H. Song, “End-fire injection of light into high-Q silicon microdisks,” Optica 5, 612–616 (2018).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, F. L. Wang, M. Tang, J. L. Xiao, and Y. Du, “All-optical flip-flop based on hybrid square-rectangular bistable lasers,” Opt. Lett. 42, 2291–2294 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wireless Comp. Lett. 11, 223–225 (2001).
[Crossref]

F. L. Wang, Y. Z. Huang, J. Y. Han, Y. D. Yang, and J. L. Xiao, “All-optical switch and logic gates based on hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. (submitted).

Iga, K.

L. A. Coldren, B. Miller, K. Iga, and J. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38, 315–317 (1981).
[Crossref]

Iga, R.

Ishii, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15, 514–520 (2009).
[Crossref]

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13, 1164–1169 (2007).
[Crossref]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Jiang, C.

Jin, J.

Johansson, L.

Kano, F.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Kasaya, K.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15, 514–520 (2009).
[Crossref]

Kawaguchi, Y.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13, 1164–1169 (2007).
[Crossref]

Kishino, K.

Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–176 (1983).
[Crossref]

Kobayashi, W.

Kögel, B.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

Kondo, Y.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13, 1164–1169 (2007).
[Crossref]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Kudo, K.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, P. Verlangieri, and A. Dentai, “Frequency tuning characteristics and WDM channel access of the semiconductor three-branch Y3-lasers,” IEEE Photon. Technol. Lett. 6, 157–160 (1994).
[Crossref]

Larsson, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

Li, W. J.

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wireless Comp. Lett. 11, 223–225 (2001).
[Crossref]

Liu, G. H.

Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, and W. H. Guo, “Demonstration of multi-channel interference widely tunable semiconductor laser,” IEEE Photon. Technol. Lett. 28, 2862–2865 (2016).
[Crossref]

Liu, S.

Liu, Y.

Q. A. Chen, C. Jiang, X. Ma, Y. Liu, D. T. Yang, Q. Y. Lu, and W. H. Guo, “1 × 8 MMI based multi-channel interference laser integrated with SOA through a 2-port multimode interference reflector,” Opt. Express 26, 19940–19949 (2018).
[Crossref]

Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, and W. H. Guo, “Demonstration of multi-channel interference widely tunable semiconductor laser,” IEEE Photon. Technol. Lett. 28, 2862–2865 (2016).
[Crossref]

Long, H.

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Lu, Q. Y.

Lv, X. M.

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Ma, X.

Q. A. Chen, C. Jiang, X. Ma, Y. Liu, D. T. Yang, Q. Y. Lu, and W. H. Guo, “1 × 8 MMI based multi-channel interference laser integrated with SOA through a 2-port multimode interference reflector,” Opt. Express 26, 19940–19949 (2018).
[Crossref]

Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, and W. H. Guo, “Demonstration of multi-channel interference widely tunable semiconductor laser,” IEEE Photon. Technol. Lett. 28, 2862–2865 (2016).
[Crossref]

Ma, X. W.

Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor,” Sci. China Inf. Sci. 61, 080401 (2018).
[Crossref]

F. L. Wang, X. W. Ma, Y. Z. Huang, Y. D. Yang, J. Y. Han, and J. L. Xiao, “Relative intensity noise in high-speed hybrid square-rectangular lasers,” Photon. Res. 6, 193–197 (2018).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, F. L. Wang, M. Tang, J. L. Xiao, and Y. Du, “All-optical flip-flop based on hybrid square-rectangular bistable lasers,” Opt. Lett. 42, 2291–2294 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Mason, B.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. DenBaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12, 762–764 (2000).
[Crossref]

B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, “Widely tunable sampled grating DBR laser with integrated electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 638–640 (1999).
[Crossref]

Matsuo, S.

Meng, J.

Miller, B.

L. A. Coldren, B. Miller, K. Iga, and J. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38, 315–317 (1981).
[Crossref]

Mori, K.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Morimoto, T.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Muroya, Y.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Murphy, E. J.

Naniwae, K.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Nawrocka, M.

O’Callaghan, J.

Okamoto, H.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13, 1164–1169 (2007).
[Crossref]

Oohashi, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15, 514–520 (2009).
[Crossref]

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13, 1164–1169 (2007).
[Crossref]

Ponnampalam, L.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

Poon, A. W.

Y. D. Yang, S. S. Sui, M. Tang, J. L. Xiao, Y. Du, A. W. Poon, and Y. Z. Huang, “Hybrid AlGaInAs/Si Fabry-Pérot lasers with near-total mode confinements,” J. Semicond. 39, 084001 (2018).
[Crossref]

Reid, D. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

Rentschler, J.

L. A. Coldren, B. Miller, K. Iga, and J. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38, 315–317 (1981).
[Crossref]

Robbins, D. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

Sasaki, T.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Sato, T.

Satoh, K.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Segawa, T.

Song, Q. H.

Sudo, S.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Suematsu, Y.

Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–176 (1983).
[Crossref]

Sui, S. S.

Y. D. Yang, S. S. Sui, M. Tang, J. L. Xiao, Y. Du, A. W. Poon, and Y. Z. Huang, “Hybrid AlGaInAs/Si Fabry-Pérot lasers with near-total mode confinements,” J. Semicond. 39, 084001 (2018).
[Crossref]

Sun, W.

Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, and W. H. Guo, “Demonstration of multi-channel interference widely tunable semiconductor laser,” IEEE Photon. Technol. Lett. 28, 2862–2865 (2016).
[Crossref]

Sun, W. Z.

Suzuki, N.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Takahashi, R.

Tang, M.

Y. D. Yang, S. S. Sui, M. Tang, J. L. Xiao, Y. Du, A. W. Poon, and Y. Z. Huang, “Hybrid AlGaInAs/Si Fabry-Pérot lasers with near-total mode confinements,” J. Semicond. 39, 084001 (2018).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, F. L. Wang, M. Tang, J. L. Xiao, and Y. Du, “All-optical flip-flop based on hybrid square-rectangular bistable lasers,” Opt. Lett. 42, 2291–2294 (2017).
[Crossref]

Tanobe, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Tohmori, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Verlangieri, P.

M. Kuznetsov, P. Verlangieri, and A. Dentai, “Frequency tuning characteristics and WDM channel access of the semiconductor three-branch Y3-lasers,” IEEE Photon. Technol. Lett. 6, 157–160 (1994).
[Crossref]

Wang, F. L.

Wang, L.

Wang, Y.

Wang, Y. J.

Ward, A. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

Weng, H. Z.

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, F. L. Wang, M. Tang, J. L. Xiao, and Y. Du, “All-optical flip-flop based on hybrid square-rectangular bistable lasers,” Opt. Lett. 42, 2291–2294 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Westbergh, P.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

Whitbread, N. D.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

Xiao, J. L.

Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor,” Sci. China Inf. Sci. 61, 080401 (2018).
[Crossref]

Y. D. Yang, S. S. Sui, M. Tang, J. L. Xiao, Y. Du, A. W. Poon, and Y. Z. Huang, “Hybrid AlGaInAs/Si Fabry-Pérot lasers with near-total mode confinements,” J. Semicond. 39, 084001 (2018).
[Crossref]

F. L. Wang, X. W. Ma, Y. Z. Huang, Y. D. Yang, J. Y. Han, and J. L. Xiao, “Relative intensity noise in high-speed hybrid square-rectangular lasers,” Photon. Res. 6, 193–197 (2018).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, F. L. Wang, M. Tang, J. L. Xiao, and Y. Du, “All-optical flip-flop based on hybrid square-rectangular bistable lasers,” Opt. Lett. 42, 2291–2294 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

F. L. Wang, Y. Z. Huang, J. Y. Han, Y. D. Yang, and J. L. Xiao, “All-optical switch and logic gates based on hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. (submitted).

Xiao, S. M.

Xiao, Z. X.

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Xu, K.

Yang, D. T.

Yang, Y. D.

F. L. Wang, X. W. Ma, Y. Z. Huang, Y. D. Yang, J. Y. Han, and J. L. Xiao, “Relative intensity noise in high-speed hybrid square-rectangular lasers,” Photon. Res. 6, 193–197 (2018).
[Crossref]

Y. D. Yang, S. S. Sui, M. Tang, J. L. Xiao, Y. Du, A. W. Poon, and Y. Z. Huang, “Hybrid AlGaInAs/Si Fabry-Pérot lasers with near-total mode confinements,” J. Semicond. 39, 084001 (2018).
[Crossref]

Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor,” Sci. China Inf. Sci. 61, 080401 (2018).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, F. L. Wang, M. Tang, J. L. Xiao, and Y. Du, “All-optical flip-flop based on hybrid square-rectangular bistable lasers,” Opt. Lett. 42, 2291–2294 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

F. L. Wang, Y. Z. Huang, J. Y. Han, Y. D. Yang, and J. L. Xiao, “All-optical switch and logic gates based on hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. (submitted).

Yashiki, K.

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

Yoshikuni, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Yu, T.

Yu, X. Y.

Zhang, S.

Zhao, G. Y.

Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, and W. H. Guo, “Demonstration of multi-channel interference widely tunable semiconductor laser,” IEEE Photon. Technol. Lett. 28, 2862–2865 (2016).
[Crossref]

Zou, L. X.

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Appl. Phys. Lett. (2)

L. A. Coldren, B. Miller, K. Iga, and J. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38, 315–317 (1981).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (6)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, and A. C. Carter, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2005).
[Crossref]

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
[Crossref]

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15, 514–520 (2009).
[Crossref]

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13, 1164–1169 (2007).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

IEEE Microw. Wireless Comp. Lett. (1)

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wireless Comp. Lett. 11, 223–225 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (5)

Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, and W. H. Guo, “Demonstration of multi-channel interference widely tunable semiconductor laser,” IEEE Photon. Technol. Lett. 28, 2862–2865 (2016).
[Crossref]

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. DenBaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12, 762–764 (2000).
[Crossref]

B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, “Widely tunable sampled grating DBR laser with integrated electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 638–640 (1999).
[Crossref]

H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, “Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems,” IEEE Photon. Technol. Lett. 15, 903–905 (2003).
[Crossref]

M. Kuznetsov, P. Verlangieri, and A. Dentai, “Frequency tuning characteristics and WDM channel access of the semiconductor three-branch Y3-lasers,” IEEE Photon. Technol. Lett. 6, 157–160 (1994).
[Crossref]

J. Lightwave Technol. (3)

J. Semicond. (1)

Y. D. Yang, S. S. Sui, M. Tang, J. L. Xiao, Y. Du, A. W. Poon, and Y. Z. Huang, “Hybrid AlGaInAs/Si Fabry-Pérot lasers with near-total mode confinements,” J. Semicond. 39, 084001 (2018).
[Crossref]

Laser Photon. Rev. (1)

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Photon. Res. (1)

Sci. China Inf. Sci. (1)

Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor,” Sci. China Inf. Sci. 61, 080401 (2018).
[Crossref]

Other (3)

F. L. Wang, Y. Z. Huang, J. Y. Han, Y. D. Yang, and J. L. Xiao, “All-optical switch and logic gates based on hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. (submitted).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

J. Buus, M. C. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (Wiley-Interscience, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagram of the coupled-cavity laser composed of an FP cavity and a square/rhombus microcavity as a deformed square microcavity with a vertex extending a distance of δ, and the wave vectors for the mode light rays reflected from the sides of the SRM and the square microcavity.
Fig. 2.
Fig. 2. Simulated reflectivity spectra at different gain levels obtained by FDTD simulation for an SRM connected to a vertex waveguide, with (a) the side length a=10  μm, the deformation amplitude δ=0.15  μm, and waveguide width d=2  μm and (b) a=15  μm, δ=0.25  μm, and d=2  μm, respectively. (c) Reflectivity for the modes α1, α2, α3, and η for the mode α1 versus the deformation amplitude δ for an HSRRL with a=10  μm, d=2  μm, and L=300  μm.
Fig. 3.
Fig. 3. Mode intensity profiles of Hz in the (a) HSRRL, (b) SRM, and (c) FP cavity, and (d) simulated far-field intensity at 1541.5 nm.
Fig. 4.
Fig. 4. Simulated far-field intensity profiles and mode intensity profiles of Hz of high-Q modes in the HSRRLs with a=10  μm, δ=0.15  μm, d=2  μm, and L=(a) 280 μm, (b) 290 μm, and (c) 310 μm, and the HSRL with a=10  μm, d=2  μm, and L=(d) 280 μm, (e) 290 μm, and (f) 310 μm. The proportions of the fundamental transverse mode in the FP cavity η are given for the coupled modes.
Fig. 5.
Fig. 5. Microscopic image of an HSRRL with patterned p-electrodes for current injection into the SRM and FP cavities separately.
Fig. 6.
Fig. 6. Output powers coupled into an SMF versus IFP as ISRM is fixed at different currents for HSRRLs at L=300  μm, d=2  μm, with (a) a=10  μm, δ=0.15  μm and (b) a=15  μm, δ=0.25  μm.
Fig. 7.
Fig. 7. Lasing characteristics with the variations of IFP and ISRM for the HSRRL with a=15  μm, δ=0.25  μm, d=2  μm, and L=300  μm. Lasing spectra (a) versus ISRM at IFP=64  mA and (b) versus IFP at ISRM=20  mA. Dominant lasing mode wavelengths and corresponding SMSRs (c) versus ISRM at IFP=64  mA and (d) versus IFP at ISRM=20  mA, respectively.
Fig. 8.
Fig. 8. Superimposed lasing spectra for HSRRLs at L=300  μm, d=2  μm with (a) a=15  μm, δ=0.25  μm and (b) a=10  μm, δ=0.15  μm, and their corresponding SMSRs and peak powers at (c) a=15  μm and (d) a=10  μm.
Fig. 9.
Fig. 9. Small single modulation responses of an HSRRL with a=15  μm, δ=0.25  μm, L=300  μm, and d=2  μm. (a) Small signal modulation responses at IFP=30, 40, and 70 mA; (b) fitted resonance frequency and 3-dB bandwidth vary by the square root of the injection current of the FP cavity and as a function of (IFPIth)1/2 at ISRM=5  mA.
Fig. 10.
Fig. 10. (a) 25-Gb/s and (b) 35-Gb/s eye diagrams for HSRRL with a=15  μm, δ=0.25  μm, d=2  μm, and L=300  μm at ISRM=14  mA and IFP=68  mA.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P(t)=exp[(tt0)2/tw2]cos(2πf0t),
η=|Hz(x,y)HFP*(x,y)dxdy|Hz(x,y)|2dxdy|HFP(x,y)|2dxdy|,

Metrics