Abstract

Bio-imaging generally indicates imaging techniques that acquire biological information from living forms. Recently, the ability to detect, diagnose, and monitor pathological, physiological, and molecular dynamics is in great demand, while scaling down the observing angle, achieving precise alignment, fast actuation, and a miniaturized platform become key elements in next-generation optical imaging systems. Optofluidics, nominally merging optic and microfluidic technologies, is a relatively new research field, and it has drawn great attention since the last decade. Given its abilities to manipulate both optic and fluidic functions/elements in the micro-/nanometer regime, optofluidics shows great potential in bio-imaging to elevate our cognition in the subcellular and/or molecular level. In this paper, we emphasize the development of optofluidics in bio-imaging, from individual components to representative applications in a more modularized, systematic sense. Further, we expound our expectations for the near future of the optofluidic imaging discipline.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
The application of Fresnel zone plate based projection in optofluidic microscopy

Jigang Wu, Xiquan Cui, Lap Man Lee, and Changhuei Yang
Opt. Express 16(20) 15595-15602 (2008)

A hybrid silicon-PDMS optofluidic platform for sensing applications

Genni Testa, Gianluca Persichetti, Pasqualina M. Sarro, and Romeo Bernini
Biomed. Opt. Express 5(2) 417-426 (2014)

Spectrometer and scanner with optofluidic configuration

Sergio Calixto, Martha Rosete-Aguilar, Maria Eugenia Sanchez-Morales, and Margarita Calixto-Solano
Appl. Opt. 52(3) 495-504 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
    [Crossref]
  2. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
    [Crossref]
  3. F. Gaboriaud and Y. F. Dufrêne, “Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces,” Colloids Surf. B 54, 10–19 (2007).
    [Crossref]
  4. M. A. Hamburg and F. S. Collins, “The path to personalized medicine,” N. Engl. J. Med. 363, 301–304 (2010).
    [Crossref]
  5. K.-H. Jung and K.-H. Lee, “Molecular imaging in the era of personalized medicine,” J. Pathol. Transl. Med. 49, 5–12 (2015).
    [Crossref]
  6. P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
    [Crossref]
  7. X. Mao, S.-C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9, 1583–1589 (2009).
    [Crossref]
  8. X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
    [Crossref]
  9. M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
    [Crossref]
  10. J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
    [Crossref]
  11. X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
    [Crossref]
  12. N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics 4, 031501 (2010).
    [Crossref]
  13. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
    [Crossref]
  14. N.-T. Huang, H.-L. Zhang, M.-T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14, 1230–1245 (2014).
    [Crossref]
  15. C. Monat, P. Domachuck, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
    [Crossref]
  16. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
    [Crossref]
  17. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5, 583–590 (2011).
    [Crossref]
  18. T. Yang, F. Bragheri, and P. Minzioni, “A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level,” Micromachines 7, 90 (2016).
    [Crossref]
  19. C. Song and S. H. Tan, “A perspective on the rise of optofluidics and the future,” Micromachines 8, 152 (2017).
    [Crossref]
  20. Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13, 17–24 (2013).
    [Crossref]
  21. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
    [Crossref]
  22. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94, 161110 (2009).
    [Crossref]
  23. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
    [Crossref]
  24. W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98, 061103 (2011).
    [Crossref]
  25. S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
    [Crossref]
  26. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
    [Crossref]
  27. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
    [Crossref]
  28. S. Xiong, A. Liu, L. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11, 1864–1869 (2011).
    [Crossref]
  29. D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Opt. 55, 2136–2142 (2016).
    [Crossref]
  30. L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12, 3543–3551 (2012).
    [Crossref]
  31. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett. 85, 6119–6121 (2004).
    [Crossref]
  32. P.-H. Huang, M. I. Lapsley, D. Ahmed, Y. Chen, L. Wang, and T. J. Huang, “A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles,” Appl. Phys. Lett. 101, 141101 (2012).
    [Crossref]
  33. Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
    [Crossref]
  34. X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
    [Crossref]
  35. H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
    [Crossref]
  36. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
    [Crossref]
  37. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
    [Crossref]
  38. Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
    [Crossref]
  39. J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
    [Crossref]
  40. H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17, 1280–1286 (2017).
    [Crossref]
  41. C. Fang, B. Dai, Q. Xu, R. Zhuo, Q. Wang, X. Wang, and D. Zhang, “Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave,” Opt. Express 25, 888–897 (2017).
    [Crossref]
  42. N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
    [Crossref]
  43. E. De Tommasi, A. C. De Luca, L. Lavanga, P. Dardano, M. De Stefano, L. De Stefano, C. Langella, I. Rendina, K. Dholakia, and M. Mazilu, “Biologically enabled sub-diffractive focusing,” Opt. Express 22, 27214–27227 (2014).
    [Crossref]
  44. L. Miccio, P. Memmolo, F. Merola, P. A. Netti, and P. Ferraro, “Red blood cell as an adaptive optofluidic microlens,” Nat. Commun. 6, 6502 (2015).
    [Crossref]
  45. J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
    [Crossref]
  46. Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11, 10672–10680 (2017).
    [Crossref]
  47. P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4, 174–180 (2004).
    [Crossref]
  48. D. Hess, A. Rane, A. J. deMello, and S. Stavrakis, “High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging,” Anal. Chem. 87, 4965–4972 (2015).
    [Crossref]
  49. Y. Zeng, L. Jiang, W. Zheng, D. Li, S. Yao, and J. Y. Qu, “Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging,” Opt. Lett. 36, 2236–2238 (2011).
    [Crossref]
  50. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
    [Crossref]
  51. M. Duocastella, G. Vicidomini, and A. Diaspro, “Simultaneous multiplane confocal microscopy using acoustic tunable lenses,” Opt. Express 22, 19293–19301 (2014).
    [Crossref]
  52. C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett. 87, 114104 (2005).
    [Crossref]
  53. H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, and H. Lee, “New technologies for analysis of extracellular vesicles,” Chem. Rev. 118, 1917–1950 (2018).
    [Crossref]
  54. Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. 51, 1236–1239 (2012).
    [Crossref]
  55. Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,” Lab Chip 13, 2679–2681 (2013).
    [Crossref]
  56. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  57. L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8, 1044–1046 (2011).
    [Crossref]
  58. M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED–SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100, L43–L45 (2011).
    [Crossref]
  59. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
    [Crossref]
  60. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
    [Crossref]
  61. R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J.-B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12, 641–644 (2015).
    [Crossref]
  62. T. Bruns, S. Schickinger, R. Wittig, and H. Schneckenburger, “Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy,” J. Biomed. Opt. 17, 1015181 (2012).
    [Crossref]
  63. R. Regmi, K. Mohan, and P. P. Mondal, “High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles,” AIP Adv. 4, 097125 (2014).
    [Crossref]
  64. H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
    [Crossref]
  65. P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
    [Crossref]
  66. P. Paiè, F. Bragheri, T. Claude, and R. Osellame, “Optofluidic light modulator integrated in lab-on-a-chip,” Opt. Express 25, 7313–7323 (2017).
    [Crossref]
  67. E. Zagato, T. Brans, S. Verstuyft, D. van Thourhout, J. Missinne, G. van Steenberge, J. Demeester, S. De Smedt, K. Remaut, K. Neyts, and K. Braeckmans, “Microfabricated devices for single objective single plane illumination microscopy (SoSPIM),” Opt. Express 25, 1732–1745 (2017).
    [Crossref]
  68. M. B. M. Meddens, S. Liu, P. S. Finnegan, T. L. Edwards, C. D. James, and K. A. Lidke, “Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution,” Biomed. Opt. Express 7, 2219–2236 (2016).
    [Crossref]
  69. V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
    [Crossref]
  70. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [Crossref]
  71. S. A. Lee, R. Leitao, G. Zheng, S. Yang, A. Rodriguez, and C. Yang, “Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis,” PLOS ONE 6, e26127 (2011).
    [Crossref]
  72. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
    [Crossref]
  73. A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
    [Crossref]
  74. L. M. Lee, X. Cui, and C. Yang, “The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts,” Biomed. Microdevices 11, 951–958 (2009).
    [Crossref]
  75. G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10, 3125–3129 (2010).
    [Crossref]
  76. S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
    [Crossref]
  77. M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
    [Crossref]
  78. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [Crossref]
  79. W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
    [Crossref]
  80. A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6, 267ra175 (2014).
    [Crossref]
  81. W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
    [Crossref]
  82. A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21, 12469–12483 (2013).
    [Crossref]
  83. Y. Zhang, Y. Wu, Y. Zhang, and A. Ozcan, “Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction,” Sci. Rep. 6, 27811 (2016).
    [Crossref]
  84. M. M. Villone, G. D’Avino, M. A. Hulsen, and P. L. Maffettone, “Dynamics of prolate spheroidal elastic particles in confined shear flow,” Phys. Rev. E 92, 062303 (2015).
    [Crossref]
  85. F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
    [Crossref]
  86. C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15, 1267–1275 (2015).
    [Crossref]
  87. C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
    [Crossref]
  88. Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
    [Crossref]
  89. B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
    [Crossref]
  90. S. H. Ko, D. Chandra, W. Ouyang, T. Kwon, P. Karande, and J. Han, “Nanofluidic device for continuous multiparameter quality assurance of biologics,” Nat. Nanotechnol. 12, 804–812 (2017).
    [Crossref]
  91. A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16, 1743–1756 (2016).
    [Crossref]
  92. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
    [Crossref]
  93. F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1  GHz line-scan microscopic imaging,” Photon. Res. 2, B31–B34 (2014).
    [Crossref]
  94. A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express 2, 3387–3392 (2011).
    [Crossref]
  95. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
    [Crossref]
  96. T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
    [Crossref]
  97. M. Ugawa, C. Lei, T. Nozawa, T. Ideguchi, D. Di Carlo, S. Ota, Y. Ozeki, and K. Goda, “High-throughput optofluidic particle profiling with morphological and chemical specificity,” Opt. Lett. 40, 4803–4806 (2015).
    [Crossref]

2018 (3)

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, and H. Lee, “New technologies for analysis of extracellular vesicles,” Chem. Rev. 118, 1917–1950 (2018).
[Crossref]

2017 (12)

H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17, 1280–1286 (2017).
[Crossref]

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11, 10672–10680 (2017).
[Crossref]

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

C. Song and S. H. Tan, “A perspective on the rise of optofluidics and the future,” Micromachines 8, 152 (2017).
[Crossref]

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

S. H. Ko, D. Chandra, W. Ouyang, T. Kwon, P. Karande, and J. Han, “Nanofluidic device for continuous multiparameter quality assurance of biologics,” Nat. Nanotechnol. 12, 804–812 (2017).
[Crossref]

C. Fang, B. Dai, Q. Xu, R. Zhuo, Q. Wang, X. Wang, and D. Zhang, “Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave,” Opt. Express 25, 888–897 (2017).
[Crossref]

E. Zagato, T. Brans, S. Verstuyft, D. van Thourhout, J. Missinne, G. van Steenberge, J. Demeester, S. De Smedt, K. Remaut, K. Neyts, and K. Braeckmans, “Microfabricated devices for single objective single plane illumination microscopy (SoSPIM),” Opt. Express 25, 1732–1745 (2017).
[Crossref]

P. Paiè, F. Bragheri, T. Claude, and R. Osellame, “Optofluidic light modulator integrated in lab-on-a-chip,” Opt. Express 25, 7313–7323 (2017).
[Crossref]

2016 (9)

D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Opt. 55, 2136–2142 (2016).
[Crossref]

M. B. M. Meddens, S. Liu, P. S. Finnegan, T. L. Edwards, C. D. James, and K. A. Lidke, “Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution,” Biomed. Opt. Express 7, 2219–2236 (2016).
[Crossref]

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16, 1743–1756 (2016).
[Crossref]

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

T. Yang, F. Bragheri, and P. Minzioni, “A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level,” Micromachines 7, 90 (2016).
[Crossref]

Y. Zhang, Y. Wu, Y. Zhang, and A. Ozcan, “Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction,” Sci. Rep. 6, 27811 (2016).
[Crossref]

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref]

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

2015 (8)

L. Miccio, P. Memmolo, F. Merola, P. A. Netti, and P. Ferraro, “Red blood cell as an adaptive optofluidic microlens,” Nat. Commun. 6, 6502 (2015).
[Crossref]

D. Hess, A. Rane, A. J. deMello, and S. Stavrakis, “High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging,” Anal. Chem. 87, 4965–4972 (2015).
[Crossref]

M. M. Villone, G. D’Avino, M. A. Hulsen, and P. L. Maffettone, “Dynamics of prolate spheroidal elastic particles in confined shear flow,” Phys. Rev. E 92, 062303 (2015).
[Crossref]

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15, 1267–1275 (2015).
[Crossref]

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J.-B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12, 641–644 (2015).
[Crossref]

K.-H. Jung and K.-H. Lee, “Molecular imaging in the era of personalized medicine,” J. Pathol. Transl. Med. 49, 5–12 (2015).
[Crossref]

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
[Crossref]

M. Ugawa, C. Lei, T. Nozawa, T. Ideguchi, D. Di Carlo, S. Ota, Y. Ozeki, and K. Goda, “High-throughput optofluidic particle profiling with morphological and chemical specificity,” Opt. Lett. 40, 4803–4806 (2015).
[Crossref]

2014 (10)

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6, 267ra175 (2014).
[Crossref]

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1  GHz line-scan microscopic imaging,” Photon. Res. 2, B31–B34 (2014).
[Crossref]

M. Duocastella, G. Vicidomini, and A. Diaspro, “Simultaneous multiplane confocal microscopy using acoustic tunable lenses,” Opt. Express 22, 19293–19301 (2014).
[Crossref]

E. De Tommasi, A. C. De Luca, L. Lavanga, P. Dardano, M. De Stefano, L. De Stefano, C. Langella, I. Rendina, K. Dholakia, and M. Mazilu, “Biologically enabled sub-diffractive focusing,” Opt. Express 22, 27214–27227 (2014).
[Crossref]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

N.-T. Huang, H.-L. Zhang, M.-T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14, 1230–1245 (2014).
[Crossref]

R. Regmi, K. Mohan, and P. P. Mondal, “High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles,” AIP Adv. 4, 097125 (2014).
[Crossref]

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

2013 (7)

Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,” Lab Chip 13, 2679–2681 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
[Crossref]

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13, 17–24 (2013).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21, 12469–12483 (2013).
[Crossref]

2012 (7)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12, 3543–3551 (2012).
[Crossref]

P.-H. Huang, M. I. Lapsley, D. Ahmed, Y. Chen, L. Wang, and T. J. Huang, “A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles,” Appl. Phys. Lett. 101, 141101 (2012).
[Crossref]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
[Crossref]

T. Bruns, S. Schickinger, R. Wittig, and H. Schneckenburger, “Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy,” J. Biomed. Opt. 17, 1015181 (2012).
[Crossref]

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. 51, 1236–1239 (2012).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

2011 (12)

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8, 1044–1046 (2011).
[Crossref]

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED–SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100, L43–L45 (2011).
[Crossref]

S. A. Lee, R. Leitao, G. Zheng, S. Yang, A. Rodriguez, and C. Yang, “Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis,” PLOS ONE 6, e26127 (2011).
[Crossref]

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5, 583–590 (2011).
[Crossref]

S. Xiong, A. Liu, L. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11, 1864–1869 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98, 061103 (2011).
[Crossref]

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[Crossref]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

Y. Zeng, L. Jiang, W. Zheng, D. Li, S. Yao, and J. Y. Qu, “Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging,” Opt. Lett. 36, 2236–2238 (2011).
[Crossref]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express 2, 3387–3392 (2011).
[Crossref]

2010 (6)

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[Crossref]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics 4, 031501 (2010).
[Crossref]

M. A. Hamburg and F. S. Collins, “The path to personalized medicine,” N. Engl. J. Med. 363, 301–304 (2010).
[Crossref]

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10, 3125–3129 (2010).
[Crossref]

2009 (6)

L. M. Lee, X. Cui, and C. Yang, “The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts,” Biomed. Microdevices 11, 951–958 (2009).
[Crossref]

X. Mao, S.-C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9, 1583–1589 (2009).
[Crossref]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref]

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94, 161110 (2009).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

2008 (4)

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

2007 (4)

C. Monat, P. Domachuck, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]

F. Gaboriaud and Y. F. Dufrêne, “Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces,” Colloids Surf. B 54, 10–19 (2007).
[Crossref]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]

2006 (3)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

2005 (2)

C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett. 87, 114104 (2005).
[Crossref]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

2004 (2)

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett. 85, 6119–6121 (2004).
[Crossref]

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4, 174–180 (2004).
[Crossref]

2002 (1)

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
[Crossref]

2000 (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[Crossref]

Abate, A. R.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref]

Abu-Ghazalah, R. M.

J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
[Crossref]

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]

Agresti, J. J.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref]

Ahmed, D.

P.-H. Huang, M. I. Lapsley, D. Ahmed, Y. Chen, L. Wang, and T. J. Huang, “A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles,” Appl. Phys. Lett. 101, 141101 (2012).
[Crossref]

Akbari, N.

Aravind, A.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J.-B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12, 641–644 (2015).
[Crossref]

Astier, Y.

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

Austin, R. H.

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Balduzzi, D.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Bassi, A.

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref]

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

Bawendi, M. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]

Berg-Sørensen, K.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Bernini, R.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Bianco, V.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Bishara, W.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Bracke, M.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Braeckmans, K.

E. Zagato, T. Brans, S. Verstuyft, D. van Thourhout, J. Missinne, G. van Steenberge, J. Demeester, S. De Smedt, K. Remaut, K. Neyts, and K. Braeckmans, “Microfabricated devices for single objective single plane illumination microscopy (SoSPIM),” Opt. Express 25, 1732–1745 (2017).
[Crossref]

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Bragheri, F.

P. Paiè, F. Bragheri, T. Claude, and R. Osellame, “Optofluidic light modulator integrated in lab-on-a-chip,” Opt. Express 25, 7313–7323 (2017).
[Crossref]

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref]

T. Yang, F. Bragheri, and P. Minzioni, “A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level,” Micromachines 7, 90 (2016).
[Crossref]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Brans, T.

Breakefield, X.

H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, and H. Lee, “New technologies for analysis of extracellular vesicles,” Chem. Rev. 118, 1917–1950 (2018).
[Crossref]

Brink, M.

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

Bruce, R. L.

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

Bruns, T.

T. Bruns, S. Schickinger, R. Wittig, and H. Schneckenburger, “Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy,” J. Biomed. Opt. 17, 1015181 (2012).
[Crossref]

Cai, J.

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4, 174–180 (2004).
[Crossref]

Campbell, K.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett. 85, 6119–6121 (2004).
[Crossref]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Castro, C. M.

H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, and H. Lee, “New technologies for analysis of extracellular vesicles,” Chem. Rev. 118, 1917–1950 (2018).
[Crossref]

Chan, A. C. S.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Chan, C. Y.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13, 17–24 (2013).
[Crossref]

Chan, G. C. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Chan, Y.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Chandra, D.

S. H. Ko, D. Chandra, W. Ouyang, T. Kwon, P. Karande, and J. Han, “Nanofluidic device for continuous multiparameter quality assurance of biologics,” Nat. Nanotechnol. 12, 804–812 (2017).
[Crossref]

Chau, F. S.

Chen, H.

Chen, H. M.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12, 3543–3551 (2012).
[Crossref]

Chen, J.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Chen, M.

Chen, Q.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,” Lab Chip 13, 2679–2681 (2013).
[Crossref]

Chen, T. N.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Chen, Y.

P.-H. Huang, M. I. Lapsley, D. Ahmed, Y. Chen, L. Wang, and T. J. Huang, “A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles,” Appl. Phys. Lett. 101, 141101 (2012).
[Crossref]

Chiang, I.-K.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref]

Chin, L.

S. Xiong, A. Liu, L. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11, 1864–1869 (2011).
[Crossref]

Chin, L. K.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Chu, J.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Chung, M.-T.

N.-T. Huang, H.-L. Zhang, M.-T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14, 1230–1245 (2014).
[Crossref]

Chung, P.-L.

A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6, 267ra175 (2014).
[Crossref]

Claude, T.

Cojoc, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Collins, F. S.

M. A. Hamburg and F. S. Collins, “The path to personalized medicine,” N. Engl. J. Med. 363, 301–304 (2010).
[Crossref]

Conroy, R. S.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Coppola, S.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Coskun, A. F.

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

Cristiani, I.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Cui, X.

L. M. Lee, X. Cui, and C. Yang, “The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts,” Biomed. Microdevices 11, 951–958 (2009).
[Crossref]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[Crossref]

D’Avino, G.

M. M. Villone, G. D’Avino, M. A. Hulsen, and P. L. Maffettone, “Dynamics of prolate spheroidal elastic particles in confined shear flow,” Phys. Rev. E 92, 062303 (2015).
[Crossref]

D’Ippolito, G.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Dai, B.

Dardano, P.

de Camprieu, L.

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4, 174–180 (2004).
[Crossref]

De Luca, A. C.

De Smedt, S.

De Smedt, S. C.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

De Stefano, L.

De Stefano, M.

De Tommasi, E.

Demeester, J.

E. Zagato, T. Brans, S. Verstuyft, D. van Thourhout, J. Missinne, G. van Steenberge, J. Demeester, S. De Smedt, K. Remaut, K. Neyts, and K. Braeckmans, “Microfabricated devices for single objective single plane illumination microscopy (SoSPIM),” Opt. Express 25, 1732–1745 (2017).
[Crossref]

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

deMello, A. J.

D. Hess, A. Rane, A. J. deMello, and S. Stavrakis, “High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging,” Anal. Chem. 87, 4965–4972 (2015).
[Crossref]

Deschout, H.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Dholakia, K.

Di Carlo, D.

Di Fabrizio, E.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Diaspro, A.

Ding, X.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref]

Domachuck, P.

C. Monat, P. Domachuck, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]

Dong, C.

X. Mao, S.-C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9, 1583–1589 (2009).
[Crossref]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]

Duan, Q.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Dufrêne, Y. F.

F. Gaboriaud and Y. F. Dufrêne, “Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces,” Colloids Surf. B 54, 10–19 (2007).
[Crossref]

Duocastella, M.

Edwards, T. L.

Eftekhari, F.

J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
[Crossref]

Eggleton, B. J.

C. Monat, P. Domachuck, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]

El-Deiry, W. S.

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
[Crossref]

Erickson, D.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5, 583–590 (2011).
[Crossref]

Ermolayev, V.

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED–SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100, L43–L45 (2011).
[Crossref]

Esteves, T.

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

Faigle, C.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15, 1267–1275 (2015).
[Crossref]

Fainman, Y.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12, 3543–3551 (2012).
[Crossref]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett. 85, 6119–6121 (2004).
[Crossref]

Fan, S.-K.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Fan, X.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,” Lab Chip 13, 2679–2681 (2013).
[Crossref]

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. 51, 1236–1239 (2012).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98, 061103 (2011).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]

Fang, C.

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express 2, 3387–3392 (2011).
[Crossref]

Feizi, A.

A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6, 267ra175 (2014).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21, 12469–12483 (2013).
[Crossref]

Ferrara, L.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Ferraro, P.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, P. A. Netti, and P. Ferraro, “Red blood cell as an adaptive optofluidic microlens,” Nat. Commun. 6, 6502 (2015).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Finizio, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Finnegan, P. S.

Fontana, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Freeman, L. M.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12, 3543–3551 (2012).
[Crossref]

Friedrich, M.

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED–SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100, L43–L45 (2011).
[Crossref]

Fu, J.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

Gaboriaud, F.

F. Gaboriaud and Y. F. Dufrêne, “Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces,” Colloids Surf. B 54, 10–19 (2007).
[Crossref]

Galland, R.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J.-B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12, 641–644 (2015).
[Crossref]

Galli, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Gambale, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Gan, Q.

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED–SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100, L43–L45 (2011).
[Crossref]

García, J.

M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

Gifford, S. M.

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Goda, K.

M. Ugawa, C. Lei, T. Nozawa, T. Ideguchi, D. Di Carlo, S. Ota, Y. Ozeki, and K. Goda, “High-throughput optofluidic particle profiling with morphological and chemical specificity,” Opt. Lett. 40, 4803–4806 (2015).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express 2, 3387–3392 (2011).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

Gohagan, J. K.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express 2, 3387–3392 (2011).
[Crossref]

Granero, L.

M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

Greenbaum, A.

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
[Crossref]

A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6, 267ra175 (2014).
[Crossref]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21, 12469–12483 (2013).
[Crossref]

Grenci, G.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J.-B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12, 641–644 (2015).
[Crossref]

Groisman, A.

C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett. 87, 114104 (2005).
[Crossref]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett. 85, 6119–6121 (2004).
[Crossref]

Guck, J.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15, 1267–1275 (2015).
[Crossref]

Guo, F.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13, 17–24 (2013).
[Crossref]

Guo, S.

H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17, 1280–1286 (2017).
[Crossref]

Gustafsson, M. G.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8, 1044–1046 (2011).
[Crossref]

Gylfason, K. B.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Hamburg, M. A.

M. A. Hamburg and F. S. Collins, “The path to personalized medicine,” N. Engl. J. Med. 363, 301–304 (2010).
[Crossref]

Han, C.

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[Crossref]

Han, J.

S. H. Ko, D. Chandra, W. Ouyang, T. Kwon, P. Karande, and J. Han, “Nanofluidic device for continuous multiparameter quality assurance of biologics,” Nat. Nanotechnol. 12, 804–812 (2017).
[Crossref]

Hao, Y. L.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Haraldsson, T.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Harms, G. S.

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED–SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100, L43–L45 (2011).
[Crossref]

Hawkins, N.

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Helmy, A. S.

J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
[Crossref]

Hendrix, A.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Heng, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[Crossref]

Hess, D.

D. Hess, A. Rane, A. J. deMello, and S. Stavrakis, “High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging,” Anal. Chem. 87, 4965–4972 (2015).
[Crossref]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Hesselink, L.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
[Crossref]

Ho, K. K. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Homewood, P.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15, 1267–1275 (2015).
[Crossref]

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Hu, Y.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

Huang, H.

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

Huang, N.-T.

N.-T. Huang, H.-L. Zhang, M.-T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14, 1230–1245 (2014).
[Crossref]

Huang, P.-H.

P.-H. Huang, M. I. Lapsley, D. Ahmed, Y. Chen, L. Wang, and T. J. Huang, “A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles,” Appl. Phys. Lett. 101, 141101 (2012).
[Crossref]

Huang, T. J.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13, 17–24 (2013).
[Crossref]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
[Crossref]

P.-H. Huang, M. I. Lapsley, D. Ahmed, Y. Chen, L. Wang, and T. J. Huang, “A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles,” Appl. Phys. Lett. 101, 141101 (2012).
[Crossref]

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref]

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref]

X. Mao, S.-C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9, 1583–1589 (2009).
[Crossref]

Hulsen, M. A.

M. M. Villone, G. D’Avino, M. A. Hulsen, and P. L. Maffettone, “Dynamics of prolate spheroidal elastic particles in confined shear flow,” Phys. Rev. E 92, 062303 (2015).
[Crossref]

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Ideguchi, T.

Im, H.

H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, and H. Lee, “New technologies for analysis of extracellular vesicles,” Chem. Rev. 118, 1917–1950 (2018).
[Crossref]

Iolascon, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Irizar, J.

J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
[Crossref]

Jalali, B.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express 2, 3387–3392 (2011).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

James, C. D.

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]

Jiang, L.

Jiang, X.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

Jiguet, S.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Juluri, B. K.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref]

Jung, K.-H.

K.-H. Jung and K.-H. Lee, “Molecular imaging in the era of personalized medicine,” J. Pathol. Transl. Med. 49, 5–12 (2015).
[Crossref]

Kampmann, R.

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

Kandukuri, S. R.

A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6, 267ra175 (2014).
[Crossref]

Karande, P.

S. H. Ko, D. Chandra, W. Ouyang, T. Kwon, P. Karande, and J. Han, “Nanofluidic device for continuous multiparameter quality assurance of biologics,” Nat. Nanotechnol. 12, 804–812 (2017).
[Crossref]

Khademhosseinieh, B.

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

Kherlopian, A. R.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Kner, P.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8, 1044–1046 (2011).
[Crossref]

Ko, S. H.

S. H. Ko, D. Chandra, W. Ouyang, T. Kwon, P. Karande, and J. Han, “Nanofluidic device for continuous multiparameter quality assurance of biologics,” Nat. Nanotechnol. 12, 804–812 (2017).
[Crossref]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[Crossref]

Kopp, D.

Korvink, J. G.

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

Kurabayashi, K.

N.-T. Huang, H.-L. Zhang, M.-T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14, 1230–1245 (2014).
[Crossref]

Kwon, T.

S. H. Ko, D. Chandra, W. Ouyang, T. Kwon, P. Karande, and J. Han, “Nanofluidic device for continuous multiparameter quality assurance of biologics,” Nat. Nanotechnol. 12, 804–812 (2017).
[Crossref]

La Rocca, R.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Laine, A. F.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Lam, E. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Langella, C.

Lapsley, M. I.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13, 17–24 (2013).
[Crossref]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
[Crossref]

P.-H. Huang, M. I. Lapsley, D. Ahmed, Y. Chen, L. Wang, and T. J. Huang, “A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles,” Appl. Phys. Lett. 101, 141101 (2012).
[Crossref]

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref]

Lau, A. K.

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16, 1743–1756 (2016).
[Crossref]

Lau, A. K. S.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Lautenschläger, F.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15, 1267–1275 (2015).
[Crossref]

Lavanga, L.

Lee, H.

H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, and H. Lee, “New technologies for analysis of extracellular vesicles,” Chem. Rev. 118, 1917–1950 (2018).
[Crossref]

Lee, K.-H.

K.-H. Jung and K.-H. Lee, “Molecular imaging in the era of personalized medicine,” J. Pathol. Transl. Med. 49, 5–12 (2015).
[Crossref]

Lee, L. M.

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[Crossref]

L. M. Lee, X. Cui, and C. Yang, “The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts,” Biomed. Microdevices 11, 951–958 (2009).
[Crossref]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[Crossref]

Lee, S. A.

S. A. Lee, R. Leitao, G. Zheng, S. Yang, A. Rodriguez, and C. Yang, “Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis,” PLOS ONE 6, e26127 (2011).
[Crossref]

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10, 3125–3129 (2010).
[Crossref]

Lee, W.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98, 061103 (2011).
[Crossref]

Lehmann, L.

Lei, C.

Lei, H.

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11, 10672–10680 (2017).
[Crossref]

Leitao, R.

S. A. Lee, R. Leitao, G. Zheng, S. Yang, A. Rodriguez, and C. Yang, “Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis,” PLOS ONE 6, e26127 (2011).
[Crossref]

Lenn, T.

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

Leung, H. M.

Levy, U.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett. 85, 6119–6121 (2004).
[Crossref]

Li, B.

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11, 10672–10680 (2017).
[Crossref]

Li, D.

Li, H.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98, 061103 (2011).
[Crossref]

Li, J.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Li, L.

H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17, 1280–1286 (2017).
[Crossref]

Li, P. C. H.

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4, 174–180 (2004).
[Crossref]

Li, T.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Li, Y.

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11, 10672–10680 (2017).
[Crossref]

Li, Z.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94, 161110 (2009).
[Crossref]

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref]

Liang, L.

H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17, 1280–1286 (2017).
[Crossref]

Liberale, C.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Lidke, K. A.

Liedberg, B.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Lin, S.-C. S.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13, 17–24 (2013).
[Crossref]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
[Crossref]

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref]

X. Mao, S.-C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9, 1583–1589 (2009).
[Crossref]

Liu, A.

S. Xiong, A. Liu, L. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11, 1864–1869 (2011).
[Crossref]

Liu, A. Q.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Liu, A.-Q.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Liu, H.

H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17, 1280–1286 (2017).
[Crossref]

Liu, S.

Liu, X.

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11, 10672–10680 (2017).
[Crossref]

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Long, J.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Lowe, A. R.

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

Luckhart, S.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

Luo, W.

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
[Crossref]

A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6, 267ra175 (2014).
[Crossref]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

Maffettone, P. L.

M. M. Villone, G. D’Avino, M. A. Hulsen, and P. L. Maffettone, “Dynamics of prolate spheroidal elastic particles in confined shear flow,” Phys. Rev. E 92, 062303 (2015).
[Crossref]

Mahjoubfar, A.

Mak, J. S.

J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
[Crossref]

Mandracchia, B.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Mao, X.

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
[Crossref]

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref]

X. Mao, S.-C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9, 1583–1589 (2009).
[Crossref]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref]

Maoddi, P.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Marchesano, V.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Martín-Badosa, E.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15, 1267–1275 (2015).
[Crossref]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Mayers, B. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Mazilu, M.

McCoy, J. P.

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
[Crossref]

Meddens, M. B. M.

Meissner, M. V.

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

Memmolo, P.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, P. A. Netti, and P. Ferraro, “Red blood cell as an adaptive optofluidic microlens,” Nat. Commun. 6, 6502 (2015).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Mernier, G.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Merola, F.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, P. A. Netti, and P. Ferraro, “Red blood cell as an adaptive optofluidic microlens,” Nat. Commun. 6, 6502 (2015).
[Crossref]

Miccio, L.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, P. A. Netti, and P. Ferraro, “Red blood cell as an adaptive optofluidic microlens,” Nat. Commun. 6, 6502 (2015).
[Crossref]

Micó, V.

M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

Minzioni, P.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

T. Yang, F. Bragheri, and P. Minzioni, “A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level,” Micromachines 7, 90 (2016).
[Crossref]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Mishra, K.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Missinne, J.

Mohan, K.

R. Regmi, K. Mohan, and P. P. Mondal, “High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles,” AIP Adv. 4, 097125 (2014).
[Crossref]

Monat, C.

C. Monat, P. Domachuck, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]

Mondal, P. P.

R. Regmi, K. Mohan, and P. P. Mondal, “High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles,” AIP Adv. 4, 097125 (2014).
[Crossref]

Monks, J. N.

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Mookherjea, S.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett. 85, 6119–6121 (2004).
[Crossref]

Mudanyali, O.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

Mugele, F.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Mugnano, M.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Mullineaux, C. W.

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Nawaz, A. A.

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
[Crossref]

Neimark, M. A.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Netti, P. A.

L. Miccio, P. Memmolo, F. Merola, P. A. Netti, and P. Ferraro, “Red blood cell as an adaptive optofluidic microlens,” Nat. Commun. 6, 6502 (2015).
[Crossref]

Neyts, K.

E. Zagato, T. Brans, S. Verstuyft, D. van Thourhout, J. Missinne, G. van Steenberge, J. Demeester, S. De Smedt, K. Remaut, K. Neyts, and K. Braeckmans, “Microfabricated devices for single objective single plane illumination microscopy (SoSPIM),” Opt. Express 25, 1732–1745 (2017).
[Crossref]

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Nguyen, N.-T.

N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics 4, 031501 (2010).
[Crossref]

Ni, J.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Nocera, D. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Nozawa, T.

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Olivieri, F.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Omenetto, F.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Osellame, R.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

P. Paiè, F. Bragheri, T. Claude, and R. Osellame, “Optofluidic light modulator integrated in lab-on-a-chip,” Opt. Express 25, 7313–7323 (2017).
[Crossref]

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref]

Ota, S.

Ouyang, W.

S. H. Ko, D. Chandra, W. Ouyang, T. Kwon, P. Karande, and J. Han, “Nanofluidic device for continuous multiparameter quality assurance of biologics,” Nat. Nanotechnol. 12, 804–812 (2017).
[Crossref]

Ozcan, A.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Y. Zhang, Y. Wu, Y. Zhang, and A. Ozcan, “Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction,” Sci. Rep. 6, 27811 (2016).
[Crossref]

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
[Crossref]

A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6, 267ra175 (2014).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21, 12469–12483 (2013).
[Crossref]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

Ozeki, Y.

Pagliarulo, V.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Paiè, P.

P. Paiè, F. Bragheri, T. Claude, and R. Osellame, “Optofluidic light modulator integrated in lab-on-a-chip,” Opt. Express 25, 7313–7323 (2017).
[Crossref]

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref]

Pang, L.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12, 3543–3551 (2012).
[Crossref]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett. 85, 6119–6121 (2004).
[Crossref]

Pang, S.

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[Crossref]

Paturzo, M.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Perozziello, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Picazo-Bueno, J. Á.

M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

Po, M. J.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Pollnau, M.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Psaltis, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5, 583–590 (2011).
[Crossref]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94, 161110 (2009).
[Crossref]

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett. 85, 6119–6121 (2004).
[Crossref]

Puglisi, R.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Qiu, W.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Qu, J. Y.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

Raemdonck, K.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Rajamanickam, V.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Rane, A.

D. Hess, A. Rane, A. J. deMello, and S. Stavrakis, “High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging,” Anal. Chem. 87, 4965–4972 (2015).
[Crossref]

Rao, S.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Reddy, K.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98, 061103 (2011).
[Crossref]

Regmi, R.

R. Regmi, K. Mohan, and P. P. Mondal, “High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles,” AIP Adv. 4, 097125 (2014).
[Crossref]

Rego, E. H.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8, 1044–1046 (2011).
[Crossref]

Remaut, K.

Renaud, P.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Rendina, I.

Ritt, M.

Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,” Lab Chip 13, 2679–2681 (2013).
[Crossref]

Robles, J. D. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Roding, M.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Rodriguez, A.

S. A. Lee, R. Leitao, G. Zheng, S. Yang, A. Rodriguez, and C. Yang, “Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis,” PLOS ONE 6, e26127 (2011).
[Crossref]

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Rudemo, M.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Rutledge, S. A.

J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
[Crossref]

Sada, C.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Sangar, M.

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4, 174–180 (2004).
[Crossref]

Sanz, M.

M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

Sardo, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Savoia, R.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Schickinger, S.

T. Bruns, S. Schickinger, R. Wittig, and H. Schneckenburger, “Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy,” J. Biomed. Opt. 17, 1015181 (2012).
[Crossref]

Schmidt, H.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Schneckenburger, H.

T. Bruns, S. Schickinger, R. Wittig, and H. Schneckenburger, “Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy,” J. Biomed. Opt. 17, 1015181 (2012).
[Crossref]

Schuergers, N.

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

Seo, J. H.

N.-T. Huang, H.-L. Zhang, M.-T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14, 1230–1245 (2014).
[Crossref]

Ser, W.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Shao, H.

H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, and H. Lee, “New technologies for analysis of extracellular vesicles,” Chem. Rev. 118, 1917–1950 (2018).
[Crossref]

Shao, L.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8, 1044–1046 (2011).
[Crossref]

Shi, J.

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref]

Shi, X.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
[Crossref]

Shi, Y.

H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17, 1280–1286 (2017).
[Crossref]

Shi, Y. Z.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Shiue, C.-C.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]

Shum, H. C.

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16, 1743–1756 (2016).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Sibarita, J.-B.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J.-B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12, 641–644 (2015).
[Crossref]

Sikora, U.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

Simonnet, C.

C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett. 87, 114104 (2005).
[Crossref]

Sinton, D.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5, 583–590 (2011).
[Crossref]

Sivaramakrishnan, S.

Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,” Lab Chip 13, 2679–2681 (2013).
[Crossref]

Smith, J. T.

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

Snee, P. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Song, C.

C. Song and S. H. Tan, “A perspective on the rise of optofluidics and the future,” Micromachines 8, 152 (2017).
[Crossref]

Song, Q.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

Song, T.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Song, W.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94, 161110 (2009).
[Crossref]

Stavrakis, S.

D. Hess, A. Rane, A. J. deMello, and S. Stavrakis, “High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging,” Anal. Chem. 87, 4965–4972 (2015).
[Crossref]

Sternberg, P. W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[Crossref]

Stolovitzky, G.

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

Stratton, Z.

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

Stratton, Z. S.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13, 17–24 (2013).
[Crossref]

Stremersch, S.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Strubbe, F.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Studer, V.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J.-B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12, 641–644 (2015).
[Crossref]

Su, T. W.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

Su, T.-W.

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

Sugioka, K.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Sun, Y.

Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,” Lab Chip 13, 2679–2681 (2013).
[Crossref]

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. 51, 1236–1239 (2012).
[Crossref]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98, 061103 (2011).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Suter, J. D.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98, 061103 (2011).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Tam, N. C.

J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
[Crossref]

Tan, S. H.

C. Song and S. H. Tan, “A perspective on the rise of optofluidics and the future,” Micromachines 8, 152 (2017).
[Crossref]

Tang, A. H. L.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Tang, M. Y. H.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Tang, S. K.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref]

Temerinac-Ott, M.

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

Testa, G.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Tong, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

Tsia, K. K.

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16, 1743–1756 (2016).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

Ugawa, M.

Van den Broecke, R.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

van den Ende, D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

van Steenberge, G.

van Thourhout, D.

Vasdekis, A. E.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94, 161110 (2009).
[Crossref]

Verstuyft, S.

Vezenov, D. V.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Viasnoff, V.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J.-B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12, 641–644 (2015).
[Crossref]

Vicidomini, G.

Villone, M. M.

M. M. Villone, G. D’Avino, M. A. Hulsen, and P. L. Maffettone, “Dynamics of prolate spheroidal elastic particles in confined shear flow,” Phys. Rev. E 92, 062303 (2015).
[Crossref]

Vollrath, F.

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Wang, C.

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Wang, L.

P.-H. Huang, M. I. Lapsley, D. Ahmed, Y. Chen, L. Wang, and T. J. Huang, “A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles,” Appl. Phys. Lett. 101, 141101 (2012).
[Crossref]

Wang, Q.

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

Wang, X.

Wang, Z.

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Wax, A.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Wei, P.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Wei, X.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Weissleder, R.

H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, and H. Lee, “New technologies for analysis of extracellular vesicles,” Chem. Rev. 118, 1917–1950 (2018).
[Crossref]

Weitz, D. A.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref]

Weng, Z.

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Whitesides, G. M.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Whyte, G.

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15, 1267–1275 (2015).
[Crossref]

Wilde, A.

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

Wittig, R.

T. Bruns, S. Schickinger, R. Wittig, and H. Schneckenburger, “Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy,” J. Biomed. Opt. 17, 1015181 (2012).
[Crossref]

Wong, K. K.

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16, 1743–1756 (2016).
[Crossref]

Wong, K. K. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Wong, T. T. W.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

Wu, D.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Wu, J. H.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Wu, S.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Wu, Y.

Y. Zhang, Y. Wu, Y. Zhang, and A. Ozcan, “Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction,” Sci. Rep. 6, 27811 (2016).
[Crossref]

Wunsch, B. H.

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

Xie, S.

Xing, F.

Xiong, S.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

S. Xiong, A. Liu, L. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11, 1864–1869 (2011).
[Crossref]

Xu, B.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Xu, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

Xu, Q.

Yaglidere, O.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

Yan, B.

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[Crossref]

S. A. Lee, R. Leitao, G. Zheng, S. Yang, A. Rodriguez, and C. Yang, “Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis,” PLOS ONE 6, e26127 (2011).
[Crossref]

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10, 3125–3129 (2010).
[Crossref]

L. M. Lee, X. Cui, and C. Yang, “The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts,” Biomed. Microdevices 11, 951–958 (2009).
[Crossref]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

Yang, L.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Yang, S.

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1  GHz line-scan microscopic imaging,” Photon. Res. 2, B31–B34 (2014).
[Crossref]

S. A. Lee, R. Leitao, G. Zheng, S. Yang, A. Rodriguez, and C. Yang, “Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis,” PLOS ONE 6, e26127 (2011).
[Crossref]

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10, 3125–3129 (2010).
[Crossref]

Yang, T.

T. Yang, F. Bragheri, and P. Minzioni, “A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level,” Micromachines 7, 90 (2016).
[Crossref]

Yang, X.

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11, 10672–10680 (2017).
[Crossref]

Yang, Y.

H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17, 1280–1286 (2017).
[Crossref]

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

S. Xiong, A. Liu, L. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11, 1864–1869 (2011).
[Crossref]

Yang, Z. C.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Yao, S.

Yap, P. H.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Yin, L.

H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17, 1280–1286 (2017).
[Crossref]

Yu, H.

Yun, S. H.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

Zagato, E.

Zappe, H.

Zeng, Y.

Zhang, D.

Zhang, H.-L.

N.-T. Huang, H.-L. Zhang, M.-T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14, 1230–1245 (2014).
[Crossref]

Zhang, J. B.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Zhang, P.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]

Zhang, X.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,” Lab Chip 13, 2679–2681 (2013).
[Crossref]

Zhang, Y.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11, 10672–10680 (2017).
[Crossref]

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Y. Zhang, Y. Wu, Y. Zhang, and A. Ozcan, “Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction,” Sci. Rep. 6, 27811 (2016).
[Crossref]

Y. Zhang, Y. Wu, Y. Zhang, and A. Ozcan, “Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction,” Sci. Rep. 6, 27811 (2016).
[Crossref]

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
[Crossref]

A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6, 267ra175 (2014).
[Crossref]

Zhao, S.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

Zhao, Y.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13, 17–24 (2013).
[Crossref]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
[Crossref]

Zheng, G.

J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

S. A. Lee, R. Leitao, G. Zheng, S. Yang, A. Rodriguez, and C. Yang, “Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis,” PLOS ONE 6, e26127 (2011).
[Crossref]

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10, 3125–3129 (2010).
[Crossref]

Zheng, W.

Zheng, Y. B.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref]

Zhong, W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[Crossref]

Zhou, G.

Zhou, H.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Zhuang, X.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

Zhuo, R.

ACS Nano (1)

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11, 10672–10680 (2017).
[Crossref]

Adv. Opt. Mater. (1)

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

AIP Adv. (1)

R. Regmi, K. Mohan, and P. P. Mondal, “High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles,” AIP Adv. 4, 097125 (2014).
[Crossref]

Anal. Chem. (1)

D. Hess, A. Rane, A. J. deMello, and S. Stavrakis, “High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging,” Anal. Chem. 87, 4965–4972 (2015).
[Crossref]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Angew. Chem. Int. Ed. (1)

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. 51, 1236–1239 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett. 87, 114104 (2005).
[Crossref]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94, 161110 (2009).
[Crossref]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98, 061103 (2011).
[Crossref]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett. 85, 6119–6121 (2004).
[Crossref]

P.-H. Huang, M. I. Lapsley, D. Ahmed, Y. Chen, L. Wang, and T. J. Huang, “A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles,” Appl. Phys. Lett. 101, 141101 (2012).
[Crossref]

Biomed. Microdevices (1)

L. M. Lee, X. Cui, and C. Yang, “The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts,” Biomed. Microdevices 11, 951–958 (2009).
[Crossref]

Biomed. Opt. Express (2)

Biomicrofluidics (2)

N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics 4, 031501 (2010).
[Crossref]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6, 024113 (2012).
[Crossref]

Biophys. J. (2)

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, “STED–SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100, L43–L45 (2011).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

BMC Syst. Biol. (1)

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Chem. Rev. (1)

H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, and H. Lee, “New technologies for analysis of extracellular vesicles,” Chem. Rev. 118, 1917–1950 (2018).
[Crossref]

Colloids Surf. B (1)

F. Gaboriaud and Y. F. Dufrêne, “Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces,” Colloids Surf. B 54, 10–19 (2007).
[Crossref]

ELife (1)

N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, and A. Wilde, “Cyanobacteria use micro-optics to sense light direction,” ELife 5, e12620 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

J. Biomed. Opt. (1)

T. Bruns, S. Schickinger, R. Wittig, and H. Schneckenburger, “Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy,” J. Biomed. Opt. 17, 1015181 (2012).
[Crossref]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[Crossref]

J. Opt. (1)

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19, 093003 (2017).
[Crossref]

J. Pathol. Transl. Med. (1)

K.-H. Jung and K.-H. Lee, “Molecular imaging in the era of personalized medicine,” J. Pathol. Transl. Med. 49, 5–12 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
[Crossref]

Lab Chip (19)

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10, 3125–3129 (2010).
[Crossref]

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[Crossref]

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4, 174–180 (2004).
[Crossref]

H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17, 1280–1286 (2017).
[Crossref]

Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,” Lab Chip 13, 2679–2681 (2013).
[Crossref]

N.-T. Huang, H.-L. Zhang, M.-T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14, 1230–1245 (2014).
[Crossref]

X. Mao, S.-C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9, 1583–1589 (2009).
[Crossref]

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref]

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13, 17–24 (2013).
[Crossref]

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref]

S. Xiong, A. Liu, L. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11, 1864–1869 (2011).
[Crossref]

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12, 3543–3551 (2012).
[Crossref]

C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, and J. Guck, “A monolithic glass chip for active single-cell sorting based on mechanical phenotyping,” Lab Chip 15, 1267–1275 (2015).
[Crossref]

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17, 2443–2450 (2017).
[Crossref]

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16, 1743–1756 (2016).
[Crossref]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

Light Sci. Appl. (3)

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
[Crossref]

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Microfluid. Nanofluid. (1)

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

Micromachines (3)

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

T. Yang, F. Bragheri, and P. Minzioni, “A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level,” Micromachines 7, 90 (2016).
[Crossref]

C. Song and S. H. Tan, “A perspective on the rise of optofluidics and the future,” Micromachines 8, 152 (2017).
[Crossref]

N. Engl. J. Med. (1)

M. A. Hamburg and F. S. Collins, “The path to personalized medicine,” N. Engl. J. Med. 363, 301–304 (2010).
[Crossref]

Nano Lett. (1)

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Nanoscale (1)

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Nat. Commun. (1)

L. Miccio, P. Memmolo, F. Merola, P. A. Netti, and P. Ferraro, “Red blood cell as an adaptive optofluidic microlens,” Nat. Commun. 6, 6502 (2015).
[Crossref]

Nat. Methods (3)

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8, 1044–1046 (2011).
[Crossref]

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J.-B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12, 641–644 (2015).
[Crossref]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

Nat. Nanotechnol. (2)

B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, and Y. Astier, “Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm,” Nat. Nanotechnol. 11, 936–940 (2016).
[Crossref]

S. H. Ko, D. Chandra, W. Ouyang, T. Kwon, P. Karande, and J. Han, “Nanofluidic device for continuous multiparameter quality assurance of biologics,” Nat. Nanotechnol. 12, 804–812 (2017).
[Crossref]

Nat. Photonics (4)

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5, 583–590 (2011).
[Crossref]

C. Monat, P. Domachuck, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Nature (3)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

Opt. Express (8)

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[Crossref]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21, 12469–12483 (2013).
[Crossref]

M. Duocastella, G. Vicidomini, and A. Diaspro, “Simultaneous multiplane confocal microscopy using acoustic tunable lenses,” Opt. Express 22, 19293–19301 (2014).
[Crossref]

E. De Tommasi, A. C. De Luca, L. Lavanga, P. Dardano, M. De Stefano, L. De Stefano, C. Langella, I. Rendina, K. Dholakia, and M. Mazilu, “Biologically enabled sub-diffractive focusing,” Opt. Express 22, 27214–27227 (2014).
[Crossref]

C. Fang, B. Dai, Q. Xu, R. Zhuo, Q. Wang, X. Wang, and D. Zhang, “Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave,” Opt. Express 25, 888–897 (2017).
[Crossref]

E. Zagato, T. Brans, S. Verstuyft, D. van Thourhout, J. Missinne, G. van Steenberge, J. Demeester, S. De Smedt, K. Remaut, K. Neyts, and K. Braeckmans, “Microfabricated devices for single objective single plane illumination microscopy (SoSPIM),” Opt. Express 25, 1732–1745 (2017).
[Crossref]

P. Paiè, F. Bragheri, T. Claude, and R. Osellame, “Optofluidic light modulator integrated in lab-on-a-chip,” Opt. Express 25, 7313–7323 (2017).
[Crossref]

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. E (1)

M. M. Villone, G. D’Avino, M. A. Hulsen, and P. L. Maffettone, “Dynamics of prolate spheroidal elastic particles in confined shear flow,” Phys. Rev. E 92, 062303 (2015).
[Crossref]

PLOS ONE (1)

S. A. Lee, R. Leitao, G. Zheng, S. Yang, A. Rodriguez, and C. Yang, “Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis,” PLOS ONE 6, e26127 (2011).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Prog. Quant. Electron. (1)

J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, and A. S. Helmy, “Recent developments in optofluidic-assisted Raman spectroscopy,” Prog. Quant. Electron. 37, 1–50 (2013).
[Crossref]

Sci. Rep. (6)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

Y. Zhang, Y. Wu, Y. Zhang, and A. Ozcan, “Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction,” Sci. Rep. 6, 27811 (2016).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258 (2013).
[Crossref]

Sci. Transl. Med. (1)

A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6, 267ra175 (2014).
[Crossref]

Science (1)

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) DFB resonator-based optofluidic laser. (b) An optofluidic ring resonator laser. (c) A rotatable optofluidic prism with beam positions tuned by the electro-wetting effect. (d) Beam positions of the tunable prism for 10 repeated cycles. Maximum tilt angle (pink crosses), spatial average (blue triangles), and the smaller tilt angle (gray squares) are shown in the figure. (a) Reproduced with permission [22], Copyright 2009, American Institute of Physics. (b) Reproduced with permission [24], Copyright 2011, American Institute of Physics. (c), (d) Reproduced with permission [29], Copyright 2016, Optical Society of America.
Fig. 2.
Fig. 2. (a) Schematic of a three-layer optofluidic switch with four optical facets. The arrows show the directions of both incident and reflected/transmitted laser beams. (b), (c) Working mechanism of an acoustic-driven optofluidic switch (b) without and (c) with acoustic excitation. (d) Schematic of a liquid-filled out-of-plane lens. The inset illustrates the cross section of the device. (e) Schematic of an in-plane optofluidic lens. The high-RI fluid medium forms a biconvex microlens that focuses the incident light. (f), (g) Experimental images on (f) the biconvex microlens and (g) the biconcave microlens. (a) Reproduced with permission [31], Copyright 2004, American Institute of Physics. (b), (c) Reproduced with permission [32], Copyright 2012, American Institute of Physics. (d) Reproduced with permission [35], Copyright 2010, Optical Society of America. (e)–(g) Reproduced with permission [41], Copyright 2017, Optical Society of America.
Fig. 3.
Fig. 3. (a) Planar waveguide integrated on-chip to create a light sheet directly on the sample. (b) Optofluidic lens integrated on-chip to focus a light sheet at the center of a fluidic channel, where multiple samples are automatically scanned and reconstructed in 3D. (c) Working principle of single-beam interferometry. (a) Reproduced with permission [64], Copyright 2014, Royal Society of Chemistry. (b) Reproduced with permission [65], Copyright 2016, Royal Society of Chemistry. (c) Reproduced with permission [69], Copyright 2017, Nature Publishing Group.
Fig. 4.
Fig. 4. Examples of an OFM. (a) Schematic of an OFM device (top view). The OFM apertures (white circles) are defined on a 2D CMOS image sensor (light gray dashed grid) coated with Al (gray) and span across the whole microfluidic channel (blue lines). (b) Upright operation mode of the OFM device. (c) Low-resolution sequence of a single RBC to a high-resolution image. (d) Schematics of an FZP-based fluorescence optofluidic microscope. A sample flows in the microfluidic channel on top of the image sensor. The FZP array creates an array of foci inside the channel. (e) Layout for MISHELF microscopy with detuned illumination/detection using IRRB/RGB multiplexing. (a), (b) Reproduced with permission [16], Copyright 2008, National Academy of Sciences of the USA. (c) Reproduced with permission [71], Copyright 2011, PLOS. (d) Reproduced with permission [76], Copyright 2011, Royal Society of Chemistry. (e) Reproduced with permission [77], Copyright 2017, Nature Publishing Group.
Fig. 5.
Fig. 5. Different lens-free tomographic microscopes. (a) Schematic of a tomographic microscope device integrated with a shifting aperture. (b) An array of static light sources, e.g., fiber-coupled LEDs are used to create lens-free holograms. (c) “Rainbow” artifact in the reconstructed holograms. (d) Result of the YUV colorization method. (e) An image of the same sample with a 20× objective (NA=0.5) microscope. (f) Schematic of tomographic phase microscopy. Cell tumbling behavior in a microfluidic channel is used to analyze the holograms. (a) Reproduced with permission [78], Copyright 2011, Optical Society of America. (b) Reproduced with permission [79], Copyright 2011, Royal Society of Chemistry. (c)–(e) Reproduced with permission [82], Copyright 2013, Optical Society of America. (f) Reproduced with permission [85], Copyright 2017, Nature Publishing Group.
Fig. 6.
Fig. 6. (a) Schematics of optofluidic time-stretch imaging. (b) Microfluidic channel design used for time-stretch imaging, which relies on an inertial focusing scheme to constrain the position of flowing cells into a straight stream in the imaging region. (c) White blood cell and stained MCF7 cell images captured with CCD, CMOS, and time-stretch cameras. The scale bars represent 10 μm. (a), (b) Reproduced with permission [91], Copyright 2016, Royal Society of Chemistry. (c) Reproduced with permission [95], Copyright 2012, National Academy of Sciences of the USA.