Abstract

The synergy of a plasmonic tip and fiber-based structure light field excitation can provide a powerful tool for Raman examination. Here, we present a method of Raman spectrum enhancement with an Ag-nanoparticles (Ag-NPs)-coated fiber probe internally excited via an azimuthal vector beam (AVB), which is directly generated in a few-mode fiber by using an acoustically induced fiber grating. Theoretical analysis shows that gap mode can be effectively generated on the surface of the Ag-NPs-coated fiber probe excited via an AVB. The experimental result shows that the intensity of Raman signal obtained with analyte molecules of malachite green by exciting the Ag-NPs-coated fiber probe via an AVB is approximately eight times as strong as that via the linear polarization beam (LPB), and the activity of the AVB-excited fiber probe can reach 1011  mol/L, which cannot be achieved by LPB excitation. Moreover, the time stability and reliability are also examined, respectively.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Optical fibre-tip probes for SERS: numerical study for design considerations

Tanya Hutter, Stephen R. Elliott, and Sumeet Mahajan
Opt. Express 26(12) 15539-15550 (2018)

Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection

Mingqian Zhang, Jia Wang, and Qian Tian
Opt. Express 21(8) 9414-9421 (2013)

Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering

Hsin-Hung Cheng, Shih-Wen Chen, Ying-Yu Chang, Jen-You Chu, Ding-Zheng Lin, Yi-Ping Chen, and Jia-Han Li
Opt. Express 19(22) 22125-22141 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. 53, 4756–4795 (2014).
    [Crossref]
  2. F. Y. Yang, H. R. Zhang, H. M. Feng, J. J. Dong, C. Wang, and Q. Liu, “Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure,” Photon. Res. 6, 77–83 (2018).
    [Crossref]
  3. S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
    [Crossref]
  4. H. K. Chen, X. J. Wu, Y. Q. Zhang, Y. Yang, C. J. Min, S. W. Zhu, X. C. Yuan, Q. L. Bao, and J. Bu, “Wide-field in situ multiplexed Raman imaging with superresolution,” Photon. Res. 6, 530–534 (2018).
    [Crossref]
  5. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. V. Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
    [Crossref]
  6. F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
    [Crossref]
  7. V. Shalaev and A. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998).
    [Crossref]
  8. A. X. Wang and X. M. Kong, “Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering,” Materials 8, 3024–3052 (2015).
    [Crossref]
  9. S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
    [Crossref]
  10. H. L. Wang, Y. Y. Wang, Y. Wang, W. Q. Xu, and S. P. Xu, “Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy,” Photon. Res. 5, 527–535 (2017).
    [Crossref]
  11. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [Crossref]
  12. C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
    [Crossref]
  13. P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband single molecule SERS detection designed by warped optical spaces,” Nat. Commun. 9, 5428 (2018).
    [Crossref]
  14. J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
    [Crossref]
  15. C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
    [Crossref]
  16. H. Wang, K. B. Li, C. Xu, S. C. Xu, and G. H. Li, “Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity,” J. Alloy. Compd. 772, 150–156 (2019).
    [Crossref]
  17. K. Kim, J. W. Lee, and K. S. Shin, “Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence,” ACS Appl. Mater. Interface 4, 5498–5504 (2012).
    [Crossref]
  18. C. Cheng, J. Li, H. X. Lei, and B. J. Li, “Surface enhanced Raman scattering of gold nanoparticles aggregated by a gold-nanofilm-coated nanofiber,” Photon. Res. 6, 357–362 (2018).
    [Crossref]
  19. H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, and D. N. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
    [Crossref]
  20. S. Juneja and M. S. Shishodia, “Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimers,” Opt. Commun. 433, 89–96 (2019).
    [Crossref]
  21. S. Li, L. G. Xu, W. Ma, H. Kuang, L. B. Wang, and C. L. Xu, “Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection,” Small 11, 3435–3439 (2015).
    [Crossref]
  22. W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
    [Crossref]
  23. R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
    [Crossref]
  24. Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
    [Crossref]
  25. T. Hutter, S. R. Elliott, and S. Mahajan, “Optical fibre-tip probes for SERS: numerical study for design considerations,” Opt. Express 26, 15539–15550 (2018).
    [Crossref]
  26. J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11, 743–751 (2016).
    [Crossref]
  27. J. Cao, D. Zhao, and Q. H. Mao, “A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed Ag-NPs on the silanized fiber taper,” Analyst 142, 596–602 (2017).
    [Crossref]
  28. C. Wang, L. H. Zeng, Z. Lia, and D. L. Li, “Review of optical fibre probes for enhanced Raman sensing,” J. Raman Spectrosc. 48, 1040–1055 (2017).
    [Crossref]
  29. H. Tanya, E. R. Stephen, and M. Sumeet, “Optical fibre-tip probes for SERS: numerical study for design considerations,” Opt. Express 26, 15539–15550 (2018).
    [Crossref]
  30. H. X. Xu and M. Kall, “Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates,” Chem. Phys. Chem. 4, 1001–1005 (2003).
    [Crossref]
  31. T. Itoh, K. Hashimoto, and Y. Ozaki, “Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles,” Appl. Phys. Lett. 83, 2274–2276 (2003).
    [Crossref]
  32. A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
    [Crossref]
  33. F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
    [Crossref]
  34. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  35. Z. D. Schultz, S. J. Stranick, and I. W. Levin, “Advantages and artifacts of higher order modes in nanoparticle-enhanced backscattering Raman imaging,” Anal. Chem. 81, 9657–9663 (2009).
    [Crossref]
  36. Y. Saito and P. Verma, “Polarization-controlled Raman microscopy and nanoscopy,” J. Phys. Chem. Lett. 3, 1295–1300 (2012).
    [Crossref]
  37. H. Chen, F. Tian, J. M. Chi, J. Kanka, and H. Du, “Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing,” Opt. Lett. 39, 5822–5825 (2014).
    [Crossref]
  38. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012), pp. 252–260.
  39. X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2, 407–428 (2013).
    [Crossref]
  40. T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles optical on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
    [Crossref]
  41. W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Q. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24, 10376–10384 (2016).
    [Crossref]
  42. K. Y. Wei, W. D. Zhang, L. G. Huang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25, 2733–2741 (2017).
    [Crossref]
  43. X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
    [Crossref]

2019 (3)

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

H. Wang, K. B. Li, C. Xu, S. C. Xu, and G. H. Li, “Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity,” J. Alloy. Compd. 772, 150–156 (2019).
[Crossref]

S. Juneja and M. S. Shishodia, “Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimers,” Opt. Commun. 433, 89–96 (2019).
[Crossref]

2018 (12)

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband single molecule SERS detection designed by warped optical spaces,” Nat. Commun. 9, 5428 (2018).
[Crossref]

F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
[Crossref]

A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
[Crossref]

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

F. Y. Yang, H. R. Zhang, H. M. Feng, J. J. Dong, C. Wang, and Q. Liu, “Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure,” Photon. Res. 6, 77–83 (2018).
[Crossref]

C. Cheng, J. Li, H. X. Lei, and B. J. Li, “Surface enhanced Raman scattering of gold nanoparticles aggregated by a gold-nanofilm-coated nanofiber,” Photon. Res. 6, 357–362 (2018).
[Crossref]

H. K. Chen, X. J. Wu, Y. Q. Zhang, Y. Yang, C. J. Min, S. W. Zhu, X. C. Yuan, Q. L. Bao, and J. Bu, “Wide-field in situ multiplexed Raman imaging with superresolution,” Photon. Res. 6, 530–534 (2018).
[Crossref]

H. Tanya, E. R. Stephen, and M. Sumeet, “Optical fibre-tip probes for SERS: numerical study for design considerations,” Opt. Express 26, 15539–15550 (2018).
[Crossref]

T. Hutter, S. R. Elliott, and S. Mahajan, “Optical fibre-tip probes for SERS: numerical study for design considerations,” Opt. Express 26, 15539–15550 (2018).
[Crossref]

2017 (7)

H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, and D. N. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
[Crossref]

K. Y. Wei, W. D. Zhang, L. G. Huang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25, 2733–2741 (2017).
[Crossref]

H. L. Wang, Y. Y. Wang, Y. Wang, W. Q. Xu, and S. P. Xu, “Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy,” Photon. Res. 5, 527–535 (2017).
[Crossref]

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

J. Cao, D. Zhao, and Q. H. Mao, “A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed Ag-NPs on the silanized fiber taper,” Analyst 142, 596–602 (2017).
[Crossref]

C. Wang, L. H. Zeng, Z. Lia, and D. L. Li, “Review of optical fibre probes for enhanced Raman sensing,” J. Raman Spectrosc. 48, 1040–1055 (2017).
[Crossref]

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

2016 (3)

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11, 743–751 (2016).
[Crossref]

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Q. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24, 10376–10384 (2016).
[Crossref]

2015 (4)

Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
[Crossref]

A. X. Wang and X. M. Kong, “Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering,” Materials 8, 3024–3052 (2015).
[Crossref]

C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
[Crossref]

S. Li, L. G. Xu, W. Ma, H. Kuang, L. B. Wang, and C. L. Xu, “Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection,” Small 11, 3435–3439 (2015).
[Crossref]

2014 (2)

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. 53, 4756–4795 (2014).
[Crossref]

H. Chen, F. Tian, J. M. Chi, J. Kanka, and H. Du, “Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing,” Opt. Lett. 39, 5822–5825 (2014).
[Crossref]

2013 (1)

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2, 407–428 (2013).
[Crossref]

2012 (3)

Y. Saito and P. Verma, “Polarization-controlled Raman microscopy and nanoscopy,” J. Phys. Chem. Lett. 3, 1295–1300 (2012).
[Crossref]

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. V. Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

K. Kim, J. W. Lee, and K. S. Shin, “Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence,” ACS Appl. Mater. Interface 4, 5498–5504 (2012).
[Crossref]

2011 (1)

T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles optical on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
[Crossref]

2009 (2)

Z. D. Schultz, S. J. Stranick, and I. W. Levin, “Advantages and artifacts of higher order modes in nanoparticle-enhanced backscattering Raman imaging,” Anal. Chem. 81, 9657–9663 (2009).
[Crossref]

Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[Crossref]

2003 (2)

H. X. Xu and M. Kall, “Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates,” Chem. Phys. Chem. 4, 1001–1005 (2003).
[Crossref]

T. Itoh, K. Hashimoto, and Y. Ozaki, “Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles,” Appl. Phys. Lett. 83, 2274–2276 (2003).
[Crossref]

1998 (1)

V. Shalaev and A. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998).
[Crossref]

1997 (1)

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Ahmad, W.

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

Bao, Q. L.

Benz, F.

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

Brooks, L. J.

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

Bu, J.

Cao, J.

J. Cao, D. Zhao, and Q. H. Mao, “A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed Ag-NPs on the silanized fiber taper,” Analyst 142, 596–602 (2017).
[Crossref]

Carnegie, C.

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

Chen, C.

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

Chen, H.

Chen, H. K.

Chen, Q.

P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband single molecule SERS detection designed by warped optical spaces,” Nat. Commun. 9, 5428 (2018).
[Crossref]

Chen, Q. S.

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

Chen, S. M.

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11, 743–751 (2016).
[Crossref]

Cheng, C.

Chi, J. M.

Chikkaraddy, R.

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

Contreras, R. C.

C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
[Crossref]

Cornelissen, S.

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

Ding, S. Y.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Dong, J. J.

Dorpe, P. V.

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

Dou, X. J.

A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
[Crossref]

Du, H.

Du, L. P.

A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
[Crossref]

Duyne, R. P. V.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. V. Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Elliott, S. R.

Emory, S. R.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Favraud, G.

P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband single molecule SERS detection designed by warped optical spaces,” Nat. Commun. 9, 5428 (2018).
[Crossref]

Feng, H. M.

Fernandez, C. L.

C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
[Crossref]

Fratalocchi, A.

P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband single molecule SERS detection designed by warped optical spaces,” Nat. Commun. 9, 5428 (2018).
[Crossref]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. V. Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Gao, F.

F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
[Crossref]

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

K. Y. Wei, W. D. Zhang, L. G. Huang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25, 2733–2741 (2017).
[Crossref]

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Q. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24, 10376–10384 (2016).
[Crossref]

Gao, K.

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Gong, T. C.

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11, 743–751 (2016).
[Crossref]

Guo, Z. M.

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

Han, L.

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Han, M.

P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband single molecule SERS detection designed by warped optical spaces,” Nat. Commun. 9, 5428 (2018).
[Crossref]

Hashimoto, K.

T. Itoh, K. Hashimoto, and Y. Ozaki, “Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles,” Appl. Phys. Lett. 83, 2274–2276 (2003).
[Crossref]

Hassan, M. M.

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

Henry, A. I.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. V. Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Huang, L. G.

F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
[Crossref]

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

K. Y. Wei, W. D. Zhang, L. G. Huang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25, 2733–2741 (2017).
[Crossref]

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Q. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24, 10376–10384 (2016).
[Crossref]

Huang, T. X.

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Huang, Z. L.

Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
[Crossref]

Hutter, T.

Itoh, T.

T. Itoh, K. Hashimoto, and Y. Ozaki, “Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles,” Appl. Phys. Lett. 83, 2274–2276 (2003).
[Crossref]

Jiang, B. Q.

Jiao, T. H.

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

Juneja, S.

S. Juneja and M. S. Shishodia, “Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimers,” Opt. Commun. 433, 89–96 (2019).
[Crossref]

Kall, M.

H. X. Xu and M. Kall, “Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates,” Chem. Phys. Chem. 4, 1001–1005 (2003).
[Crossref]

Kan, C. X.

Kanka, J.

Kerman, S.

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

Kim, K.

K. Kim, J. W. Lee, and K. S. Shin, “Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence,” ACS Appl. Mater. Interface 4, 5498–5504 (2012).
[Crossref]

Kleemann, M. E.

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

Kong, X. M.

A. X. Wang and X. M. Kong, “Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering,” Materials 8, 3024–3052 (2015).
[Crossref]

Kuang, H.

S. Li, L. G. Xu, W. Ma, H. Kuang, L. B. Wang, and C. L. Xu, “Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection,” Small 11, 3435–3439 (2015).
[Crossref]

Lagae, L.

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

Lee, J. W.

K. Kim, J. W. Lee, and K. S. Shin, “Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence,” ACS Appl. Mater. Interface 4, 5498–5504 (2012).
[Crossref]

Lei, H. X.

Lei, X.

Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
[Crossref]

Levin, I. W.

Z. D. Schultz, S. J. Stranick, and I. W. Levin, “Advantages and artifacts of higher order modes in nanoparticle-enhanced backscattering Raman imaging,” Anal. Chem. 81, 9657–9663 (2009).
[Crossref]

Li, B. J.

Li, C.

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Li, D. L.

C. Wang, L. H. Zeng, Z. Lia, and D. L. Li, “Review of optical fibre probes for enhanced Raman sensing,” J. Raman Spectrosc. 48, 1040–1055 (2017).
[Crossref]

Li, G. H.

H. Wang, K. B. Li, C. Xu, S. C. Xu, and G. H. Li, “Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity,” J. Alloy. Compd. 772, 150–156 (2019).
[Crossref]

Li, H. H.

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

Li, J.

Li, J. F.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Li, K. B.

H. Wang, K. B. Li, C. Xu, S. C. Xu, and G. H. Li, “Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity,” J. Alloy. Compd. 772, 150–156 (2019).
[Crossref]

Li, P.

Li, S.

S. Li, L. G. Xu, W. Ma, H. Kuang, L. B. Wang, and C. L. Xu, “Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection,” Small 11, 3435–3439 (2015).
[Crossref]

Li, X.

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Li, Y.

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

Lia, Z.

C. Wang, L. H. Zeng, Z. Lia, and D. L. Li, “Review of optical fibre probes for enhanced Raman sensing,” J. Raman Spectrosc. 48, 1040–1055 (2017).
[Crossref]

Liang, S. H.

F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
[Crossref]

Lin, J.

A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
[Crossref]

Liu, C. X.

P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband single molecule SERS detection designed by warped optical spaces,” Nat. Commun. 9, 5428 (2018).
[Crossref]

Liu, M.

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Liu, Q.

Liu, T.

T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles optical on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
[Crossref]

Liu, Y.

Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
[Crossref]

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012), pp. 252–260.

Lu, B. B.

Lu, F. F.

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
[Crossref]

Ma, W.

S. Li, L. G. Xu, W. Ma, H. Kuang, L. B. Wang, and C. L. Xu, “Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection,” Small 11, 3435–3439 (2015).
[Crossref]

Mahajan, S.

Mao, D.

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
[Crossref]

K. Y. Wei, W. D. Zhang, L. G. Huang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25, 2733–2741 (2017).
[Crossref]

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Q. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24, 10376–10384 (2016).
[Crossref]

Mao, P.

P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband single molecule SERS detection designed by warped optical spaces,” Nat. Commun. 9, 5428 (2018).
[Crossref]

Mao, Q. H.

J. Cao, D. Zhao, and Q. H. Mao, “A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed Ag-NPs on the silanized fiber taper,” Analyst 142, 596–602 (2017).
[Crossref]

Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
[Crossref]

Mei, T.

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
[Crossref]

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

K. Y. Wei, W. D. Zhang, L. G. Huang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25, 2733–2741 (2017).
[Crossref]

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Q. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24, 10376–10384 (2016).
[Crossref]

Meng, F. F.

A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
[Crossref]

Meng, G. W.

Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
[Crossref]

Mertens, J.

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

Miao, C. Z.

Min, C. J.

H. K. Chen, X. J. Wu, Y. Q. Zhang, Y. Yang, C. J. Min, S. W. Zhu, X. C. Yuan, Q. L. Bao, and J. Bu, “Wide-field in situ multiplexed Raman imaging with superresolution,” Photon. Res. 6, 530–534 (2018).
[Crossref]

A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
[Crossref]

Moskovits, M.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

Neutens, P.

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

Ni, Y.

Nie, S. M.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Nijs, B. D.

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

Obelleiro, F.

C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
[Crossref]

Ouyang, Q.

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

Ozaki, Y.

T. Itoh, K. Hashimoto, and Y. Ozaki, “Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles,” Appl. Phys. Lett. 83, 2274–2276 (2003).
[Crossref]

Panneerselvam, R.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Pastoriza, I. S.

C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
[Crossref]

Perez, J. J.

C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
[Crossref]

Polavarapu, L.

C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
[Crossref]

Ren, B.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Ringe, E.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. V. Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Saito, Y.

Y. Saito and P. Verma, “Polarization-controlled Raman microscopy and nanoscopy,” J. Phys. Chem. Lett. 3, 1295–1300 (2012).
[Crossref]

Sarychev, A.

V. Shalaev and A. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998).
[Crossref]

Schlücker, S.

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. 53, 4756–4795 (2014).
[Crossref]

Schultz, Z. D.

Z. D. Schultz, S. J. Stranick, and I. W. Levin, “Advantages and artifacts of higher order modes in nanoparticle-enhanced backscattering Raman imaging,” Anal. Chem. 81, 9657–9663 (2009).
[Crossref]

Shalaev, V.

V. Shalaev and A. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998).
[Crossref]

Sharma, B.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. V. Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Shi, D. N.

Shin, K. S.

K. Kim, J. W. Lee, and K. S. Shin, “Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence,” ACS Appl. Mater. Interface 4, 5498–5504 (2012).
[Crossref]

Shishodia, M. S.

S. Juneja and M. S. Shishodia, “Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimers,” Opt. Commun. 433, 89–96 (2019).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012), pp. 252–260.

Solis, D. M.

C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
[Crossref]

Stakenborg, T.

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

Stephen, E. R.

Stranick, S. J.

Z. D. Schultz, S. J. Stranick, and I. W. Levin, “Advantages and artifacts of higher order modes in nanoparticle-enhanced backscattering Raman imaging,” Anal. Chem. 81, 9657–9663 (2009).
[Crossref]

Su, H. S.

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Sumeet, M.

Taboada, J. M.

C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
[Crossref]

Tanya, H.

Tian, F.

Tian, Z. Q.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Tong, L. M.

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2, 407–428 (2013).
[Crossref]

Vandenbosch, G. A. E.

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

Verma, P.

Y. Saito and P. Verma, “Polarization-controlled Raman microscopy and nanoscopy,” J. Phys. Chem. Lett. 3, 1295–1300 (2012).
[Crossref]

Wang, A. X.

A. X. Wang and X. M. Kong, “Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering,” Materials 8, 3024–3052 (2015).
[Crossref]

Wang, C.

F. Y. Yang, H. R. Zhang, H. M. Feng, J. J. Dong, C. Wang, and Q. Liu, “Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure,” Photon. Res. 6, 77–83 (2018).
[Crossref]

C. Wang, L. H. Zeng, Z. Lia, and D. L. Li, “Review of optical fibre probes for enhanced Raman sensing,” J. Raman Spectrosc. 48, 1040–1055 (2017).
[Crossref]

Wang, C. S.

Wang, H.

H. Wang, K. B. Li, C. Xu, S. C. Xu, and G. H. Li, “Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity,” J. Alloy. Compd. 772, 150–156 (2019).
[Crossref]

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Wang, H. L.

Wang, J. J.

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

Wang, L. B.

S. Li, L. G. Xu, W. Ma, H. Kuang, L. B. Wang, and C. L. Xu, “Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection,” Small 11, 3435–3439 (2015).
[Crossref]

Wang, X.

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Wang, X. J.

Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
[Crossref]

Wang, Y.

Wang, Y. Y.

Wang, Z. M.

Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
[Crossref]

Wang, Z. W.

Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
[Crossref]

Wei, J. J.

Wei, K. Y.

Willems, K.

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

Wu, D. Y.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Wu, X. J.

Wu, X. Q.

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2, 407–428 (2013).
[Crossref]

Xiao, X. S.

T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles optical on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
[Crossref]

Xu, C.

H. Wang, K. B. Li, C. Xu, S. C. Xu, and G. H. Li, “Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity,” J. Alloy. Compd. 772, 150–156 (2019).
[Crossref]

Xu, C. L.

S. Li, L. G. Xu, W. Ma, H. Kuang, L. B. Wang, and C. L. Xu, “Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection,” Small 11, 3435–3439 (2015).
[Crossref]

Xu, H. X.

H. X. Xu and M. Kall, “Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates,” Chem. Phys. Chem. 4, 1001–1005 (2003).
[Crossref]

Xu, H. Y.

Xu, L. G.

S. Li, L. G. Xu, W. Ma, H. Kuang, L. B. Wang, and C. L. Xu, “Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection,” Small 11, 3435–3439 (2015).
[Crossref]

Xu, S. C.

H. Wang, K. B. Li, C. Xu, S. C. Xu, and G. H. Li, “Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity,” J. Alloy. Compd. 772, 150–156 (2019).
[Crossref]

Xu, S. P.

Xu, W. Q.

Xu, Y.

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

Yang, A. P.

A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
[Crossref]

Yang, C. X.

T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles optical on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
[Crossref]

Yang, D. X.

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

Yang, F. Y.

Yang, Y.

Yi, J.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

You, E. M.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

Yuan, X. C.

A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
[Crossref]

H. K. Chen, X. J. Wu, Y. Q. Zhang, Y. Yang, C. J. Min, S. W. Zhu, X. C. Yuan, Q. L. Bao, and J. Bu, “Wide-field in situ multiplexed Raman imaging with superresolution,” Photon. Res. 6, 530–534 (2018).
[Crossref]

Zeng, L. H.

C. Wang, L. H. Zeng, Z. Lia, and D. L. Li, “Review of optical fibre probes for enhanced Raman sensing,” J. Raman Spectrosc. 48, 1040–1055 (2017).
[Crossref]

Zhan, Q. W.

Zhang, C. L.

A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
[Crossref]

Zhang, G. Q.

Zhang, H. R.

Zhang, J.

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11, 743–751 (2016).
[Crossref]

Zhang, L.

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Zhang, S.

P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband single molecule SERS detection designed by warped optical spaces,” Nat. Commun. 9, 5428 (2018).
[Crossref]

Zhang, W. D.

F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
[Crossref]

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

K. Y. Wei, W. D. Zhang, L. G. Huang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25, 2733–2741 (2017).
[Crossref]

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Q. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24, 10376–10384 (2016).
[Crossref]

Zhang, X. C.

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

Zhang, X. L.

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11, 743–751 (2016).
[Crossref]

Zhang, Y. Q.

Zhao, D.

J. Cao, D. Zhao, and Q. H. Mao, “A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed Ag-NPs on the silanized fiber taper,” Analyst 142, 596–602 (2017).
[Crossref]

Zhao, J. L.

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
[Crossref]

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

K. Y. Wei, W. D. Zhang, L. G. Huang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25, 2733–2741 (2017).
[Crossref]

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Q. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24, 10376–10384 (2016).
[Crossref]

Zheng, X.

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

Zhu, S. W.

Zhu, Y.

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11, 743–751 (2016).
[Crossref]

ACS Appl. Mater. Inter. (1)

C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, and J. J. Perez, “Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties,” ACS Appl. Mater. Inter. 7, 12530–12538 (2015).
[Crossref]

ACS Appl. Mater. Interface (2)

K. Kim, J. W. Lee, and K. S. Shin, “Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence,” ACS Appl. Mater. Interface 4, 5498–5504 (2012).
[Crossref]

Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, and G. W. Meng, “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Appl. Mater. Interface 7, 17247–17254 (2015).
[Crossref]

ACS Photon. (1)

R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, and J. Mertens, R. W. Bowman, and G. A. E. Vandenbosch, “How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror,” ACS Photon. 4, 469–475 (2017).
[Crossref]

Adv. Opt. Photon. (1)

Anal. Chem. (1)

Z. D. Schultz, S. J. Stranick, and I. W. Levin, “Advantages and artifacts of higher order modes in nanoparticle-enhanced backscattering Raman imaging,” Anal. Chem. 81, 9657–9663 (2009).
[Crossref]

Analyst (1)

J. Cao, D. Zhao, and Q. H. Mao, “A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed Ag-NPs on the silanized fiber taper,” Analyst 142, 596–602 (2017).
[Crossref]

Angew. Chem. (1)

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. 53, 4756–4795 (2014).
[Crossref]

Appl. Phys. Lett. (1)

T. Itoh, K. Hashimoto, and Y. Ozaki, “Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles,” Appl. Phys. Lett. 83, 2274–2276 (2003).
[Crossref]

Chem. Phys. Chem. (1)

H. X. Xu and M. Kall, “Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates,” Chem. Phys. Chem. 4, 1001–1005 (2003).
[Crossref]

Chem. Soc. Rev. (1)

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

J. Alloy. Compd. (1)

H. Wang, K. B. Li, C. Xu, S. C. Xu, and G. H. Li, “Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity,” J. Alloy. Compd. 772, 150–156 (2019).
[Crossref]

J. Opt. (1)

X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, and J. L. Zhao, “All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating,” J. Opt. 20, 075608 (2018).
[Crossref]

J. Phys. Chem. Lett. (1)

Y. Saito and P. Verma, “Polarization-controlled Raman microscopy and nanoscopy,” J. Phys. Chem. Lett. 3, 1295–1300 (2012).
[Crossref]

J. Raman Spectrosc. (1)

C. Wang, L. H. Zeng, Z. Lia, and D. L. Li, “Review of optical fibre probes for enhanced Raman sensing,” J. Raman Spectrosc. 48, 1040–1055 (2017).
[Crossref]

Langmuir (1)

T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles optical on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
[Crossref]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. V. Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Materials (1)

A. X. Wang and X. M. Kong, “Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering,” Materials 8, 3024–3052 (2015).
[Crossref]

Nanophotonics (1)

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2, 407–428 (2013).
[Crossref]

Nanotechnology (1)

W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, and J. L. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Nat. Commun. (2)

C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, and P. V. Dorpe, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun. 9, 1733 (2018).
[Crossref]

P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband single molecule SERS detection designed by warped optical spaces,” Nat. Commun. 9, 5428 (2018).
[Crossref]

Nat. Rev. Mater. (1)

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Opt. Commun. (1)

S. Juneja and M. S. Shishodia, “Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimers,” Opt. Commun. 433, 89–96 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opto-Electron. Adv. (1)

F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip,” Opto-Electron. Adv. 1, 180010 (2018).
[Crossref]

Photon. Res. (5)

Phys. Rev. B (1)

V. Shalaev and A. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998).
[Crossref]

Plasmonics (2)

A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, and X. C. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2018).
[Crossref]

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11, 743–751 (2016).
[Crossref]

Science (1)

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Sens. Actuators B (1)

J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, and Q. S. Chen, “A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food,” Sens. Actuators B 285, 302–309 (2019).
[Crossref]

Sensors (1)

F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Small (1)

S. Li, L. G. Xu, W. Ma, H. Kuang, L. B. Wang, and C. L. Xu, “Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection,” Small 11, 3435–3439 (2015).
[Crossref]

Other (1)

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012), pp. 252–260.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Sketch map of the Ag-NPs-coated fiber probe; (b) distribution characteristics of the Ag-NPs on the cross section of the fiber probe; (c) dispersion curve of HE11x/y and TE01 with the decrease in the fiber radius in the bare tapered fiber; energy distributions of (d) HE11x/y and (e) TE01 along the Ag film-coated tapered fiber.
Fig. 2.
Fig. 2. (a)–(c) Sketch map of the Ag-NPs-coated fiber probe excited by three vector modes, HE11x, HE11y, and TE01, respectively, on a cross section of the fiber probe with R=250  nm; (d)–(f) electric intensity distributions of the local surface plasmon modes corresponding to (a)–(c), respectively.
Fig. 3.
Fig. 3. Optical microscope images of (a) the bare tapered fiber and (b) the Ag-NPs-coated tapered fiber; (c) SEM image of the tip area of the Ag-NPs-coated tapered fiber; (d) partial enlargement of the surface of the Ag-NPs-coated fiber tip; (e) EDS of the Ag-NPs coating of the SERS fiber probe.
Fig. 4.
Fig. 4. (a) Sketch map of experimental setup for SERS detection using the Ag-NPs-coated fiber tip internally excited via an AVB. Transverse mode intensity distribution of (b) HE11 and (c) TE01. (d)–(g) Polarization distribution examination results of the generated TE01 mode; (h) Raman spectra of MG (105  M) molecules absorbed on the surface of the Ag-NPs-coated fiber probe internally excited with HE11 (black curve) and TE01 (red curve) modes, respectively. Integration time is 10 s, and excitation power is 3.5 mW. (i) Raman spectra of MG with different concentrations (109  M, 1010  M, and 1011  M) adsorbed on the surface of the Au-NPs-coated fiber probe excited via TE01 mode and Raman spectrum of 1011  M MG solution adsorbed on the surface of Au-NPs-coated fiber probe (pink curve) excited via HE11 mode. The integration time is 10 s, and the excitation power is 3.5 mW.
Fig. 5.
Fig. 5. (a) Raman spectra of the MG solution (105  M) absorbed on the surface of the silver-coated fiber tip and internally excited via HE11 mode (black curve) and TE01 mode (red curve) after the probe being stored in a lab environment for 3 h. The integration time is 10 s. The excitation power is 3.5 mW. (b) Raman spectra as a function of storage time, recorded at 10 min intervals for 60 min, for the sample stored in a lab environment for 3 h before measuring the Raman spectra under TE01 mode excitation. The integration time is 5 s. The excitation power is 3.5 mW. (c) Time variation of intensity of the 1613.5  cm1 band as shown in (b).
Fig. 6.
Fig. 6. (a)–(c) Raman spectra of MG (105  M) detected with three different Au-NPs-coated fiber probes and internally excited via HE11 and TE01 modes, respectively. The integration time is 10 s. The excitation power is 3.5 mW. (d) Histogram of the magnification calculated with the intensity of the 1613.5  cm1 band of the three SERS fiber probes excited using TE01 and HE11 modes.

Metrics