Abstract

In this work, a model based on the optical rectification effect and the photocurrent surge effect is proposed to describe the terahertz emission mechanism of the layered GaTe crystal. As a centrosymmetric crystal, the optical rectification effect arises from the breaking of the inversion symmetry due to lattice reorganization of the crystal’s surface layer. In addition, the photocurrent surge originating from the unidirectional charge carrier diffusion—due to the noncubic mobility anisotropy within the layers—produces terahertz radiation. This is confirmed by both terahertz emission spectroscopy and electric property characterization. The current surge perpendicular to the layers also makes an important contribution to the terahertz radiation, which is consistent with its incident angle dependence. Based on our results, we infer that the contribution of optical rectification changes from 90% under normal incidence to 23% under a 40° incidence angle. The results not only demonstrate the terahertz radiation properties of layered GaTe bulk crystals, but also promise the potential application of terahertz emission spectroscopy for characterizing the surface properties of layered materials.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2

Xin Chen, Saifeng Zhang, Lei Wang, Yi-Fan Huang, Huiyan Liu, Jiawei Huang, Ningning Dong, Weimin Liu, Ivan M. Kislyakov, Jean Michel Nunzi, Long Zhang, and Jun Wang
Photon. Res. 7(12) 1416-1424 (2019)

Terahertz emission and optical second harmonic generation from Si surfaces

Quan Guo, Yuan Zhang, Zhi-hui Lyu, Dong-Wen Zhang, Yin-Dong Huang, Chao Meng, Zeng-Xiu Zhao, and Jian-Min Yuan
Opt. Mater. Express 9(5) 2376-2385 (2019)

Terahertz generation from graphite

Gopakumar Ramakrishnan, Reshmi Chakkittakandy, and Paul C. M. Planken
Opt. Express 17(18) 16092-16099 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
    [Crossref]
  2. A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
    [Crossref]
  3. R. Ganatra and Q. Zhang, “Few-layer MoS2: a promising layered semiconductor,” ACS Nano 8, 4074–4099 (2014).
    [Crossref]
  4. N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
    [Crossref]
  5. K. Allakhverdiev, M. Yetis, S. Özbek, T. Baykara, and E. Y. Salaev, “Effective nonlinear GaSe crystal: optical properties and applications,” Laser Phys. 19, 1092–1104 (2009).
    [Crossref]
  6. C. Ho and S. Lin, “Optical properties of the interband transitions of layered gallium sulfide,” J. Appl. Phys. 100, 083508 (2006).
    [Crossref]
  7. M. Yamashita, C. Otani, H. Okuzaki, and M. Shimizu, “Nondestructive measurement of carrier mobility in conductive polymer PEDOT: PSS using terahertz and infrared spectroscopy,” in 30th URSI General Assembly and Scientific Symposium (IEEE, 2011), pp. 1–4.
  8. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
    [Crossref]
  9. Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
    [Crossref]
  10. K. Fukunaga, Y. Ogawa, S. I. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
    [Crossref]
  11. L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat. Commun. 3, 646 (2012).
    [Crossref]
  12. P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, “All-optical control of ultrafast photocurrents in unbiased graphene,” Sci. Rep. 4, 4007 (2014).
    [Crossref]
  13. P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Photon-drag-induced terahertz emission from graphene,” Phys. Rev. B 90, 241416 (2014).
    [Crossref]
  14. Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
    [Crossref]
  15. Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai, and X. Xu, “Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy,” ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
    [Crossref]
  16. L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
    [Crossref]
  17. K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, and X. Xu, “Terahertz surface emission from layered semiconductor WSe2,” Appl. Surf. Sci. 448, 416–423 (2018).
    [Crossref]
  18. K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan, and S. Ma, “Layered GaTe crystals for radiation detectors,” in IEEE Nuclear Science Symposium & Medical Imaging Conference (IEEE, 2010), pp. 3719–3724.
  19. F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
    [Crossref]
  20. A. Al-Ghamdi, “Thermoelectric power (TEP) of layered chalcogenides GaTe crystals,” J. Therm. Anal. Calorim. 94, 597–600 (2008).
    [Crossref]
  21. G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
    [Crossref]
  22. J. Sánchez-Royo, A. Segura, and V. Muñoz, “Anisotropy of the refractive index and absorption coefficient in the layer plane of gallium telluride single crystals,” Phys. Status Solidi A 151, 257–265 (1995).
    [Crossref]
  23. A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
    [Crossref]
  24. S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
    [Crossref]
  25. O. Balitskii, B. Jaeckel, and W. Jaegermann, “Surface properties of GaTe single crystals,” Phys. Lett. A 372, 3303–3306 (2008).
    [Crossref]
  26. P. Galiy, T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber, and I. Yarovets, “Scanning tunneling microscopy/spectroscopy and low-energy electron diffraction investigations of GaTe layered crystal cleavage surface,” Metallofizika i Noveishie Tekhnologii 37, 789–801 (2015).
    [Crossref]
  27. Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
    [Crossref]
  28. T. Wang, Q. Zhao, Y. Miao, F. Ma, Y. Xie, and W. Jie, “Lattice vibration of layered GaTe single crystals,” Crystals 8, 74 (2018).
    [Crossref]
  29. J. J. Fonseca Vega, Bandgap Engineering of Gallium Telluride (University of California, 2017).
  30. H. Güder, B. Abay, H. Efeoğlu, and Y. Yoğurtçu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93, 243–248 (2001).
    [Crossref]
  31. P. C. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
    [Crossref]
  32. A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
    [Crossref]
  33. S. Vidal, J. Degert, M. Tondusson, E. Freysz, and J. Oberlé, “Optimized terahertz generation via optical rectification in ZnTe crystals,” J. Opt. Soc. Am. B 31, 149–153 (2014).
    [Crossref]
  34. R. Huber, “Femtosecond formation of coupled phonon-plasmon modes in InP: ultrabroadband THz experiment and quantum kinetic theory,” Phys. Rev. Lett. 94, 027401 (2005).
    [Crossref]
  35. X. Xu, J. Xu, and X.-C. Zhang, “Terahertz wave generation and detection from CdTe crystal characterized by different excitation wavelength,” Opt. Lett. 31, 978–980 (2006).
    [Crossref]
  36. Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
    [Crossref]
  37. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
    [Crossref]
  38. M. B. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
    [Crossref]
  39. M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
    [Crossref]
  40. R. W. Boyd, Nonlinear Optics (Elsevier, 2003).
  41. X. C. Zhang and D. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992).
    [Crossref]

2018 (3)

Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
[Crossref]

K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, and X. Xu, “Terahertz surface emission from layered semiconductor WSe2,” Appl. Surf. Sci. 448, 416–423 (2018).
[Crossref]

T. Wang, Q. Zhao, Y. Miao, F. Ma, Y. Xie, and W. Jie, “Lattice vibration of layered GaTe single crystals,” Crystals 8, 74 (2018).
[Crossref]

2017 (2)

Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai, and X. Xu, “Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy,” ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
[Crossref]

L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
[Crossref]

2016 (3)

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

2015 (1)

P. Galiy, T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber, and I. Yarovets, “Scanning tunneling microscopy/spectroscopy and low-energy electron diffraction investigations of GaTe layered crystal cleavage surface,” Metallofizika i Noveishie Tekhnologii 37, 789–801 (2015).
[Crossref]

2014 (6)

S. Vidal, J. Degert, M. Tondusson, E. Freysz, and J. Oberlé, “Optimized terahertz generation via optical rectification in ZnTe crystals,” J. Opt. Soc. Am. B 31, 149–153 (2014).
[Crossref]

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

R. Ganatra and Q. Zhang, “Few-layer MoS2: a promising layered semiconductor,” ACS Nano 8, 4074–4099 (2014).
[Crossref]

P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, “All-optical control of ultrafast photocurrents in unbiased graphene,” Sci. Rep. 4, 4007 (2014).
[Crossref]

P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Photon-drag-induced terahertz emission from graphene,” Phys. Rev. B 90, 241416 (2014).
[Crossref]

F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
[Crossref]

2013 (1)

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

2012 (1)

L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat. Commun. 3, 646 (2012).
[Crossref]

2011 (2)

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

2009 (2)

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[Crossref]

K. Allakhverdiev, M. Yetis, S. Özbek, T. Baykara, and E. Y. Salaev, “Effective nonlinear GaSe crystal: optical properties and applications,” Laser Phys. 19, 1092–1104 (2009).
[Crossref]

2008 (2)

A. Al-Ghamdi, “Thermoelectric power (TEP) of layered chalcogenides GaTe crystals,” J. Therm. Anal. Calorim. 94, 597–600 (2008).
[Crossref]

O. Balitskii, B. Jaeckel, and W. Jaegermann, “Surface properties of GaTe single crystals,” Phys. Lett. A 372, 3303–3306 (2008).
[Crossref]

2007 (1)

K. Fukunaga, Y. Ogawa, S. I. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

2006 (2)

C. Ho and S. Lin, “Optical properties of the interband transitions of layered gallium sulfide,” J. Appl. Phys. 100, 083508 (2006).
[Crossref]

X. Xu, J. Xu, and X.-C. Zhang, “Terahertz wave generation and detection from CdTe crystal characterized by different excitation wavelength,” Opt. Lett. 31, 978–980 (2006).
[Crossref]

2005 (3)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[Crossref]

R. Huber, “Femtosecond formation of coupled phonon-plasmon modes in InP: ultrabroadband THz experiment and quantum kinetic theory,” Phys. Rev. Lett. 94, 027401 (2005).
[Crossref]

2002 (2)

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

M. B. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

2001 (3)

A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
[Crossref]

H. Güder, B. Abay, H. Efeoğlu, and Y. Yoğurtçu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93, 243–248 (2001).
[Crossref]

P. C. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
[Crossref]

1995 (1)

J. Sánchez-Royo, A. Segura, and V. Muñoz, “Anisotropy of the refractive index and absorption coefficient in the layer plane of gallium telluride single crystals,” Phys. Status Solidi A 151, 257–265 (1995).
[Crossref]

1994 (1)

A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[Crossref]

1992 (1)

X. C. Zhang and D. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992).
[Crossref]

Abay, B.

H. Güder, B. Abay, H. Efeoğlu, and Y. Yoğurtçu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93, 243–248 (2001).
[Crossref]

Ahn, K. J.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

Ajayan, P.

L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat. Commun. 3, 646 (2012).
[Crossref]

Alexander, M.

A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[Crossref]

Al-Ghamdi, A.

A. Al-Ghamdi, “Thermoelectric power (TEP) of layered chalcogenides GaTe crystals,” J. Therm. Anal. Calorim. 94, 597–600 (2008).
[Crossref]

Allakhverdiev, K.

K. Allakhverdiev, M. Yetis, S. Özbek, T. Baykara, and E. Y. Salaev, “Effective nonlinear GaSe crystal: optical properties and applications,” Laser Phys. 19, 1092–1104 (2009).
[Crossref]

Auston, D.

X. C. Zhang and D. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992).
[Crossref]

Bahk, Y.-M.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

Bai, J.

Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
[Crossref]

Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai, and X. Xu, “Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy,” ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
[Crossref]

Bajwa, N.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Bakker, H. J.

Balitskii, O.

O. Balitskii, B. Jaeckel, and W. Jaegermann, “Surface properties of GaTe single crystals,” Phys. Lett. A 372, 3303–3306 (2008).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Baykara, T.

K. Allakhverdiev, M. Yetis, S. Özbek, T. Baykara, and E. Y. Salaev, “Effective nonlinear GaSe crystal: optical properties and applications,” Laser Phys. 19, 1092–1104 (2009).
[Crossref]

Bennett, D. B.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Berkdemir, A.

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Bliss, D.

A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Elsevier, 2003).

Castro-Beltran, A.

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Chen, B.

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

Choi, G.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

Choi, J.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

Ciszewski, A.

P. Galiy, T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber, and I. Yarovets, “Scanning tunneling microscopy/spectroscopy and low-energy electron diffraction investigations of GaTe layered crystal cleavage surface,” Metallofizika i Noveishie Tekhnologii 37, 789–801 (2015).
[Crossref]

Corchia, A.

M. B. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Culjat, M. O.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Das, S.

K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan, and S. Ma, “Layered GaTe crystals for radiation detectors,” in IEEE Nuclear Science Symposium & Medical Imaging Conference (IEEE, 2010), pp. 3719–3724.

Davies, A.

M. B. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Degert, J.

Ding, Y. J.

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

Drummond, N.

F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
[Crossref]

Du, W.

L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
[Crossref]

Efeoglu, H.

H. Güder, B. Abay, H. Efeoğlu, and Y. Yoğurtçu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93, 243–248 (2001).
[Crossref]

Elías, A. L.

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Fal’ko, V. I.

F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Fedosejevs, R.

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[Crossref]

Feng, S.

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Fernelius, N. C.

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

Fonseca Vega, J. J.

J. J. Fonseca Vega, Bandgap Engineering of Gallium Telluride (University of California, 2017).

Freysz, E.

Fukunaga, K.

K. Fukunaga, Y. Ogawa, S. I. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

Galiy, P.

P. Galiy, T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber, and I. Yarovets, “Scanning tunneling microscopy/spectroscopy and low-energy electron diffraction investigations of GaTe layered crystal cleavage surface,” Metallofizika i Noveishie Tekhnologii 37, 789–801 (2015).
[Crossref]

Ganatra, R.

R. Ganatra and Q. Zhang, “Few-layer MoS2: a promising layered semiconductor,” ACS Nano 8, 4074–4099 (2014).
[Crossref]

Garnov, S. V.

P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, “All-optical control of ultrafast photocurrents in unbiased graphene,” Sci. Rep. 4, 4007 (2014).
[Crossref]

P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Photon-drag-induced terahertz emission from graphene,” Phys. Rev. B 90, 241416 (2014).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Geim, A. K.

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[Crossref]

Geohegan, D. B.

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Ghosh, S.

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Goto, T.

A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
[Crossref]

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

Gu, Y.

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

Güder, H.

H. Güder, B. Abay, H. Efeoğlu, and Y. Yoğurtçu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93, 243–248 (2001).
[Crossref]

Guo, H.

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Guo, Y.

Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai, and X. Xu, “Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy,” ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
[Crossref]

Gutiérrez, H. R.

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Hayashi, S. I.

K. Fukunaga, Y. Ogawa, S. I. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

Hayashi, T.

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Hayes, T. C.

K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan, and S. Ma, “Layered GaTe crystals for radiation detectors,” in IEEE Nuclear Science Symposium & Medical Imaging Conference (IEEE, 2010), pp. 3719–3724.

He, C.

Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
[Crossref]

He, J.

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

Ho, C.

C. Ho and S. Lin, “Optical properties of the interband transitions of layered gallium sulfide,” J. Appl. Phys. 100, 083508 (2006).
[Crossref]

Holleitner, A. W.

L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat. Commun. 3, 646 (2012).
[Crossref]

Hosako, I.

K. Fukunaga, Y. Ogawa, S. I. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Huang, S.

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Huang, Y.

Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
[Crossref]

K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, and X. Xu, “Terahertz surface emission from layered semiconductor WSe2,” Appl. Surf. Sci. 448, 416–423 (2018).
[Crossref]

L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
[Crossref]

Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai, and X. Xu, “Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy,” ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
[Crossref]

Huber, R.

R. Huber, “Femtosecond formation of coupled phonon-plasmon modes in InP: ultrabroadband THz experiment and quantum kinetic theory,” Phys. Rev. Lett. 94, 027401 (2005).
[Crossref]

Hubschman, J.-P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Jaeckel, B.

O. Balitskii, B. Jaeckel, and W. Jaegermann, “Surface properties of GaTe single crystals,” Phys. Lett. A 372, 3303–3306 (2008).
[Crossref]

Jaegermann, W.

O. Balitskii, B. Jaeckel, and W. Jaegermann, “Surface properties of GaTe single crystals,” Phys. Lett. A 372, 3303–3306 (2008).
[Crossref]

Jie, W.

T. Wang, Q. Zhao, Y. Miao, F. Ma, Y. Xie, and W. Jie, “Lattice vibration of layered GaTe single crystals,” Crystals 8, 74 (2018).
[Crossref]

Jin, Y.

A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[Crossref]

Johnston, M. B.

M. B. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Kanagasekaran, T.

F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
[Crossref]

Kanda, N.

P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Photon-drag-induced terahertz emission from graphene,” Phys. Rev. B 90, 241416 (2014).
[Crossref]

Kaplas, T.

P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, “All-optical control of ultrafast photocurrents in unbiased graphene,” Sci. Rep. 4, 4007 (2014).
[Crossref]

Karvonen, L.

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

Kawazoe, Y.

A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
[Crossref]

Kealey, C. P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Kieu, K.

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

Kim, D.-S.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

Kim, Y. H.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

Kong, J.

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Konishi, K.

P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Photon-drag-induced terahertz emission from graphene,” Phys. Rev. B 90, 241416 (2014).
[Crossref]

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

Krishna, R. M.

K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan, and S. Ma, “Layered GaTe crystals for radiation detectors,” in IEEE Nuclear Science Symposium & Medical Imaging Conference (IEEE, 2010), pp. 3719–3724.

Kulatov, E.

A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
[Crossref]

Kuwata-Gonokami, M.

P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Photon-drag-induced terahertz emission from graphene,” Phys. Rev. B 90, 241416 (2014).
[Crossref]

P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, “All-optical control of ultrafast photocurrents in unbiased graphene,” Sci. Rep. 4, 4007 (2014).
[Crossref]

Larkin, J.

A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[Crossref]

Lee, H.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Li, J.

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Lin, S.

C. Ho and S. Lin, “Optical properties of the interband transitions of layered gallium sulfide,” J. Appl. Phys. 100, 083508 (2006).
[Crossref]

Linfield, E. H.

M. B. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Ling, X.

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Lipsanen, H.

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

Liu, F.

F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
[Crossref]

López-Urías, F.

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Lv, R.

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Ma, F.

T. Wang, Q. Zhao, Y. Miao, F. Ma, Y. Xie, and W. Jie, “Lattice vibration of layered GaTe single crystals,” Crystals 8, 74 (2018).
[Crossref]

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

Ma, S.

K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan, and S. Ma, “Layered GaTe crystals for radiation detectors,” in IEEE Nuclear Science Symposium & Medical Imaging Conference (IEEE, 2010), pp. 3719–3724.

Ma, X.

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[Crossref]

Mandal, K. C.

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan, and S. Ma, “Layered GaTe crystals for radiation detectors,” in IEEE Nuclear Science Symposium & Medical Imaging Conference (IEEE, 2010), pp. 3719–3724.

Mazur, P.

P. Galiy, T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber, and I. Yarovets, “Scanning tunneling microscopy/spectroscopy and low-energy electron diffraction investigations of GaTe layered crystal cleavage surface,” Metallofizika i Noveishie Tekhnologii 37, 789–801 (2015).
[Crossref]

Mehravar, S.

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

Mertiri, A.

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

Miao, Y.

T. Wang, Q. Zhao, Y. Miao, F. Ma, Y. Xie, and W. Jie, “Lattice vibration of layered GaTe single crystals,” Crystals 8, 74 (2018).
[Crossref]

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

Miura, N.

A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
[Crossref]

Muñoz, V.

J. Sánchez-Royo, A. Segura, and V. Muñoz, “Anisotropy of the refractive index and absorption coefficient in the layer plane of gallium telluride single crystals,” Phys. Status Solidi A 151, 257–265 (1995).
[Crossref]

Muzykov, P. G.

K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan, and S. Ma, “Layered GaTe crystals for radiation detectors,” in IEEE Nuclear Science Symposium & Medical Imaging Conference (IEEE, 2010), pp. 3719–3724.

Nenchuk, T.

P. Galiy, T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber, and I. Yarovets, “Scanning tunneling microscopy/spectroscopy and low-energy electron diffraction investigations of GaTe layered crystal cleavage surface,” Metallofizika i Noveishie Tekhnologii 37, 789–801 (2015).
[Crossref]

Nienhuys, H.-K.

Norwood, R. A.

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

Oberlé, J.

Obraztsov, A. N.

P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, “All-optical control of ultrafast photocurrents in unbiased graphene,” Sci. Rep. 4, 4007 (2014).
[Crossref]

P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Photon-drag-induced terahertz emission from graphene,” Phys. Rev. B 90, 241416 (2014).
[Crossref]

Obraztsov, P. A.

P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Photon-drag-induced terahertz emission from graphene,” Phys. Rev. B 90, 241416 (2014).
[Crossref]

P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, “All-optical control of ultrafast photocurrents in unbiased graphene,” Sci. Rep. 4, 4007 (2014).
[Crossref]

Ogawa, Y.

K. Fukunaga, Y. Ogawa, S. I. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

Ohno, K.

A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
[Crossref]

Okuzaki, H.

M. Yamashita, C. Otani, H. Okuzaki, and M. Shimizu, “Nondestructive measurement of carrier mobility in conductive polymer PEDOT: PSS using terahertz and infrared spectroscopy,” in 30th URSI General Assembly and Scientific Symposium (IEEE, 2011), pp. 1–4.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Otani, C.

M. Yamashita, C. Otani, H. Okuzaki, and M. Shimizu, “Nondestructive measurement of carrier mobility in conductive polymer PEDOT: PSS using terahertz and infrared spectroscopy,” in 30th URSI General Assembly and Scientific Symposium (IEEE, 2011), pp. 1–4.

Özbek, S.

K. Allakhverdiev, M. Yetis, S. Özbek, T. Baykara, and E. Y. Salaev, “Effective nonlinear GaSe crystal: optical properties and applications,” Laser Phys. 19, 1092–1104 (2009).
[Crossref]

Pabst, G.

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

Perea-López, N.

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Peyghambarian, N.

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

Planken, P. C.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

P. C. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
[Crossref]

Prechtel, L.

L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat. Commun. 3, 646 (2012).
[Crossref]

Puretzky, A. A.

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Ramakrishnan, G.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

Reid, M.

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[Crossref]

Ren, Z.

Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai, and X. Xu, “Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy,” ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
[Crossref]

Rice, A.

A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[Crossref]

Riikonen, J.

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

Roy, R.

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

Salaev, E. Y.

K. Allakhverdiev, M. Yetis, S. Özbek, T. Baykara, and E. Y. Salaev, “Effective nonlinear GaSe crystal: optical properties and applications,” Laser Phys. 19, 1092–1104 (2009).
[Crossref]

Sánchez-Royo, J.

J. Sánchez-Royo, A. Segura, and V. Muñoz, “Anisotropy of the refractive index and absorption coefficient in the layer plane of gallium telluride single crystals,” Phys. Status Solidi A 151, 257–265 (1995).
[Crossref]

Säynätjoki, A.

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

Schuh, D.

L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat. Commun. 3, 646 (2012).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Segura, A.

J. Sánchez-Royo, A. Segura, and V. Muñoz, “Anisotropy of the refractive index and absorption coefficient in the layer plane of gallium telluride single crystals,” Phys. Status Solidi A 151, 257–265 (1995).
[Crossref]

Shang, H.

F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
[Crossref]

Shimizu, M.

M. Yamashita, C. Otani, H. Okuzaki, and M. Shimizu, “Nondestructive measurement of carrier mobility in conductive polymer PEDOT: PSS using terahertz and infrared spectroscopy,” in 30th URSI General Assembly and Scientific Symposium (IEEE, 2011), pp. 1–4.

Shimotani, H.

F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
[Crossref]

Si, K.

K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, and X. Xu, “Terahertz surface emission from layered semiconductor WSe2,” Appl. Surf. Sci. 448, 416–423 (2018).
[Crossref]

Singh, R. S.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Song, H.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

Song, L.

L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat. Commun. 3, 646 (2012).
[Crossref]

Stojadinovic, A.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Sudarshan, T. S.

K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan, and S. Ma, “Layered GaTe crystals for radiation detectors,” in IEEE Nuclear Science Symposium & Medical Imaging Conference (IEEE, 2010), pp. 3719–3724.

Sun, G.

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

Susoma, J.

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

Svirko, Y. P.

P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, “All-optical control of ultrafast photocurrents in unbiased graphene,” Sci. Rep. 4, 4007 (2014).
[Crossref]

P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Photon-drag-induced terahertz emission from graphene,” Phys. Rev. B 90, 241416 (2014).
[Crossref]

Syouji, A.

A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
[Crossref]

Tani, M.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

Tanigaki, K.

F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
[Crossref]

Tatsumi, Y.

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Taylor, Z. D.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Tewari, P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Tondusson, M.

Uchida, K.

A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
[Crossref]

Vidal, S.

Wang, T.

T. Wang, Q. Zhao, Y. Miao, F. Ma, Y. Xie, and W. Jie, “Lattice vibration of layered GaTe single crystals,” Crystals 8, 74 (2018).
[Crossref]

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

Wang, Z.

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Watson, G.

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Wegscheider, W.

L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat. Commun. 3, 646 (2012).
[Crossref]

Wenckebach, T.

Whittaker, D.

M. B. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Xie, Y.

T. Wang, Q. Zhao, Y. Miao, F. Ma, Y. Xie, and W. Jie, “Lattice vibration of layered GaTe single crystals,” Crystals 8, 74 (2018).
[Crossref]

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

Xu, G.

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

Xu, J.

Xu, X.

K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, and X. Xu, “Terahertz surface emission from layered semiconductor WSe2,” Appl. Surf. Sci. 448, 416–423 (2018).
[Crossref]

Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai, and X. Xu, “Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy,” ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
[Crossref]

L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
[Crossref]

X. Xu, J. Xu, and X.-C. Zhang, “Terahertz wave generation and detection from CdTe crystal characterized by different excitation wavelength,” Opt. Lett. 31, 978–980 (2006).
[Crossref]

Xu, X. L.

Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
[Crossref]

Yamamoto, A.

A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
[Crossref]

Yamashita, M.

M. Yamashita, C. Otani, H. Okuzaki, and M. Shimizu, “Nondestructive measurement of carrier mobility in conductive polymer PEDOT: PSS using terahertz and infrared spectroscopy,” in 30th URSI General Assembly and Scientific Symposium (IEEE, 2011), pp. 1–4.

Yao, Z.

Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
[Crossref]

K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, and X. Xu, “Terahertz surface emission from layered semiconductor WSe2,” Appl. Surf. Sci. 448, 416–423 (2018).
[Crossref]

L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
[Crossref]

Yarovets, I.

P. Galiy, T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber, and I. Yarovets, “Scanning tunneling microscopy/spectroscopy and low-energy electron diffraction investigations of GaTe layered crystal cleavage surface,” Metallofizika i Noveishie Tekhnologii 37, 789–801 (2015).
[Crossref]

Yetis, M.

K. Allakhverdiev, M. Yetis, S. Özbek, T. Baykara, and E. Y. Salaev, “Effective nonlinear GaSe crystal: optical properties and applications,” Laser Phys. 19, 1092–1104 (2009).
[Crossref]

Yogurtçu, Y.

H. Güder, B. Abay, H. Efeoğlu, and Y. Yoğurtçu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93, 243–248 (2001).
[Crossref]

Zhang, L.

Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
[Crossref]

K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, and X. Xu, “Terahertz surface emission from layered semiconductor WSe2,” Appl. Surf. Sci. 448, 416–423 (2018).
[Crossref]

L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
[Crossref]

Zhang, Q.

R. Ganatra and Q. Zhang, “Few-layer MoS2: a promising layered semiconductor,” ACS Nano 8, 4074–4099 (2014).
[Crossref]

Zhang, X. C.

A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[Crossref]

X. C. Zhang and D. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992).
[Crossref]

Zhang, X.-C.

X. Xu, J. Xu, and X.-C. Zhang, “Terahertz wave generation and detection from CdTe crystal characterized by different excitation wavelength,” Opt. Lett. 31, 978–980 (2006).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

Zhao, Q.

Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
[Crossref]

T. Wang, Q. Zhao, Y. Miao, F. Ma, Y. Xie, and W. Jie, “Lattice vibration of layered GaTe single crystals,” Crystals 8, 74 (2018).
[Crossref]

K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, and X. Xu, “Terahertz surface emission from layered semiconductor WSe2,” Appl. Surf. Sci. 448, 416–423 (2018).
[Crossref]

L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
[Crossref]

Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai, and X. Xu, “Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy,” ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
[Crossref]

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

Zhou, Y.

L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
[Crossref]

Zhu, L.

Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
[Crossref]

K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, and X. Xu, “Terahertz surface emission from layered semiconductor WSe2,” Appl. Surf. Sci. 448, 416–423 (2018).
[Crossref]

L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
[Crossref]

Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai, and X. Xu, “Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy,” ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Zolyomi, V.

F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
[Crossref]

Zotova, I. B.

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

Zuber, S.

P. Galiy, T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber, and I. Yarovets, “Scanning tunneling microscopy/spectroscopy and low-energy electron diffraction investigations of GaTe layered crystal cleavage surface,” Metallofizika i Noveishie Tekhnologii 37, 789–801 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Huang, L. Zhu, Q. Zhao, Y. Guo, Z. Ren, J. Bai, and X. Xu, “Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy,” ACS Appl. Mater. Interfaces 9, 4956–4965 (2017).
[Crossref]

ACS Nano (4)

R. Ganatra and Q. Zhang, “Few-layer MoS2: a promising layered semiconductor,” ACS Nano 8, 4074–4099 (2014).
[Crossref]

F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano 8, 752–760 (2014).
[Crossref]

S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A. A. Puretzky, D. B. Geohegan, J. Kong, and J. Li, “In-plane optical anisotropy of layered gallium telluride,” ACS Nano 10, 8964–8972 (2016).
[Crossref]

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8, 9089–9096 (2014).
[Crossref]

Adv. Funct. Mater. (1)

N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23, 5511–5517 (2013).
[Crossref]

Appl. Phys. Lett. (3)

J. Susoma, L. Karvonen, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, and J. Riikonen, “Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy,” Appl. Phys. Lett. 108, 073103 (2016).
[Crossref]

A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[Crossref]

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[Crossref]

Appl. Surf. Sci. (1)

K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, and X. Xu, “Terahertz surface emission from layered semiconductor WSe2,” Appl. Surf. Sci. 448, 416–423 (2018).
[Crossref]

Crystals (1)

T. Wang, Q. Zhao, Y. Miao, F. Ma, Y. Xie, and W. Jie, “Lattice vibration of layered GaTe single crystals,” Crystals 8, 74 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, K. C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N. C. Fernelius, “Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals,” IEEE J. Sel. Top. Quantum Electron. 17, 30–37 (2011).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, and J.-P. Hubschman, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

IEICE Electron. Express (1)

K. Fukunaga, Y. Ogawa, S. I. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

J. Appl. Phys. (3)

C. Ho and S. Lin, “Optical properties of the interband transitions of layered gallium sulfide,” J. Appl. Phys. 100, 083508 (2006).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

X. C. Zhang and D. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992).
[Crossref]

J. Lumin. (1)

H. Güder, B. Abay, H. Efeoğlu, and Y. Yoğurtçu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93, 243–248 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

Y. Huang, L. Zhu, Z. Yao, L. Zhang, C. He, Q. Zhao, J. Bai, and X. L. Xu, “Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge,” J. Phys. Chem. C 122, 481–488 (2018).
[Crossref]

J. Therm. Anal. Calorim. (1)

A. Al-Ghamdi, “Thermoelectric power (TEP) of layered chalcogenides GaTe crystals,” J. Therm. Anal. Calorim. 94, 597–600 (2008).
[Crossref]

Laser Phys. (1)

K. Allakhverdiev, M. Yetis, S. Özbek, T. Baykara, and E. Y. Salaev, “Effective nonlinear GaSe crystal: optical properties and applications,” Laser Phys. 19, 1092–1104 (2009).
[Crossref]

Metallofizika i Noveishie Tekhnologii (1)

P. Galiy, T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber, and I. Yarovets, “Scanning tunneling microscopy/spectroscopy and low-energy electron diffraction investigations of GaTe layered crystal cleavage surface,” Metallofizika i Noveishie Tekhnologii 37, 789–801 (2015).
[Crossref]

Nat. Commun. (1)

L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat. Commun. 3, 646 (2012).
[Crossref]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, “Thickness-induced structural phase transformation of layered gallium telluride,” Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).
[Crossref]

Phys. Lett. A (1)

O. Balitskii, B. Jaeckel, and W. Jaegermann, “Surface properties of GaTe single crystals,” Phys. Lett. A 372, 3303–3306 (2008).
[Crossref]

Phys. Rev. B (4)

A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic GaTe single crystals,” Phys. Rev. B 64, 035210 (2001).
[Crossref]

M. B. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Photon-drag-induced terahertz emission from graphene,” Phys. Rev. B 90, 241416 (2014).
[Crossref]

L. Zhang, Y. Huang, Q. Zhao, L. Zhu, Z. Yao, Y. Zhou, W. Du, and X. Xu, “Terahertz surface emission of d-band electrons from a layered tungsten disulfide crystal by the surface field,” Phys. Rev. B 96, 155202 (2017).
[Crossref]

Phys. Rev. Lett. (1)

R. Huber, “Femtosecond formation of coupled phonon-plasmon modes in InP: ultrabroadband THz experiment and quantum kinetic theory,” Phys. Rev. Lett. 94, 027401 (2005).
[Crossref]

Phys. Status Solidi A (1)

J. Sánchez-Royo, A. Segura, and V. Muñoz, “Anisotropy of the refractive index and absorption coefficient in the layer plane of gallium telluride single crystals,” Phys. Status Solidi A 151, 257–265 (1995).
[Crossref]

Sci. Rep. (1)

P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, “All-optical control of ultrafast photocurrents in unbiased graphene,” Sci. Rep. 4, 4007 (2014).
[Crossref]

Science (1)

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[Crossref]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Other (4)

M. Yamashita, C. Otani, H. Okuzaki, and M. Shimizu, “Nondestructive measurement of carrier mobility in conductive polymer PEDOT: PSS using terahertz and infrared spectroscopy,” in 30th URSI General Assembly and Scientific Symposium (IEEE, 2011), pp. 1–4.

K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan, and S. Ma, “Layered GaTe crystals for radiation detectors,” in IEEE Nuclear Science Symposium & Medical Imaging Conference (IEEE, 2010), pp. 3719–3724.

J. J. Fonseca Vega, Bandgap Engineering of Gallium Telluride (University of California, 2017).

R. W. Boyd, Nonlinear Optics (Elsevier, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Characterization of the GaTe crystal by (a) an XRD spectrum; (b) a Raman spectrum with a laser wavelength of 785 nm; (c) optical absorption spectra, with the excitonic absorption observed around 1.62 eV. Inset in (c) shows square root of the absorption as a function of energy, where the linear extrapolation reveals an optical bandgap of 0.76 eV, associated with an indirect bandgap; (d) PL spectrum of GaTe at 10 K under 488 nm laser excitation.
Fig. 2.
Fig. 2. Experimental setup of the THz emission spectroscopy system used. (a) Schematic illustration. GTP, Glan–Taylor prism; HWP, half-wave plate; WGP, wire-grid polarizer. (b) Sample in transmission configuration. XYZ represents the Cartesian laboratory CS.
Fig. 3.
Fig. 3. Typical THz waveform in (a) time domain and (b) frequency domain generated from layered GaTe.
Fig. 4.
Fig. 4. X component of the generated THz waveforms from GaTe under p-polarized (Pin) and s-polarized (Sin) excitation with (a) 0° and (b) 40° incident angle; (c) X component of generated THz waveforms from GaTe under 40°, 40°, 0° incidences; (d) peak-to-valley values of THz pulses from GaTe as a function of incident angle.
Fig. 5.
Fig. 5. THz radiation peak-valley amplitude as a function of (a) azimuthal angle and (b) pump polarization angle under normal incidence. The experimental data and the fitting according to the OR and PS model are depicted by black squares and solid lines, respectively.
Fig. 6.
Fig. 6. THz peak-valley amplitude as a function of (a) azimuthal angle and (b) pump polarization angle under 40° incident angle. The experimental data and the fitting according to the OR and PS model are depicted by black squares and solid lines, respectively.
Fig. 7.
Fig. 7. Pump fluence dependence of THz peak-to-valley amplitude generated from GaTe at (a) 0° and (b) 40° incident angle.

Tables (1)

Tables Icon

Table 1. Resistivity Anisotropy of Bulk GaTe Surface

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

ΔIIprobe=ωn3ETHzr41Lc.
ETHz2Pt2+Jt,
nairsinθ=noptsinθopt=nTHzsinθTHz.
ETHzPZsinθTHz+PXcosθTHz,
ETHzχyyx(2)cos(3φ),
ETHzχyyx(2)cos(2α),
ρij=UklIij×πln2×t,
Elaser=(EXEYEZ)=(E0cosαE0sinα0),
Ry(θ)=(cosθ0sinθ010sinθ0cosθ),
Elaser=Ry(θ)Elaser=(E0cosαcosθE0sinαE0cosαsinθ).
χi1i2in+1(n)=j1j2jn+1Ti1j1Ti2j2Tin+1jn+1χj1j2jn+1(n),
χ(2)=((χyyx00)(0χyyx0)(000)(0χyyx0)(χyyx00)(000)(000)(000)(000)).
R(φ)=(cosφsinφ0sinφcosφ0001).
χ(2)((χyyxcos(3φ)χyyxsin(3φ)0)(χyyxsin(3φ)χyyxcos(3φ)0)(000)(χyyxsin(3φ)χyyxcos(3φ)0)(χyyxcos(3φ)χyyxsin(3φ)0)(000)(000)(000)(000)),
Pi(2)=ε0i,j,k=x,y,zχijk(2)EjEk*.
P=(PXPYPZ)=2χijk(2)E02(cos(3φ)(cos2αcos2θ+sin2θ)+cosθsin(3φ)sin(2α)sin(3φ)(cos2αcos2θsin2θ)+cosθcos(3φ)sin(2α)0)
ETHzPXχijk(2)E02cos(3φ+2α).
ETHzPXχijk(2)E02cos(3φ).
ETHzPXχijk(2)E02cos(2α).
ETHzχyyx(2)E020.98[cos(3φ)(0.58cos2α+sin2α)+0.76sin(3φ)sin(2α)].
ETHzχyyx(2)E020.57cos(3φ).
ETHzχyyx(2)E02[0.200.78cos(2α)].
ETHzORE02χyyx(2)cos2θ(10.09sin2θ)1/2.
ETHzPS(θ)sinθ{1[tan(θθTHz)tan(θ+θTHz)]2}×2cosθsinθTHzsin(θ+θTHz)cos(θθTHz).

Metrics