Abstract

Submicron-meter size GaAsBi disk resonators were fabricated with the GaAsBi/GaAs single-quantum-well (QW)-structure grown by molecular beam epitaxy. The GaAsBi/GaAs QW revealed very broad photoluminescence signals in the wavelength range of 1100–1400 nm at 300 K. The 750 nm diameter and 220 nm thick disk resonators were optically pumped and exhibited lasing characteristics with continuous wave operation at room temperature. To our knowledge, it is the first demonstration of a lasing wavelength longer than 1.3 μm with a maximum value of 1.4 μm in a GaAsBi/GaAs material system. The lasing wavelength spans about 130 nm by adjusting the disk diameter, covering almost the entire O band. The ultrasmall GaAsBi disk lasers may have great potential for highly dense on-chip integration with large tunability in the O band.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
GaN-based ultraviolet microdisk laser diode grown on Si

Jin Wang, Meixin Feng, Rui Zhou, Qian Sun, Jianxun Liu, Yingnan Huang, Yu Zhou, Hongwei Gao, Xinhe Zheng, Masao Ikeda, and Hui Yang
Photon. Res. 7(6) B32-B35 (2019)

Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots

N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudryavtsev, A. N. Yablonskiy, S. V. Morozov, Yu. Berdnikov, S. Rouvimov, and A. E. Zhukov
Photon. Res. 7(6) 664-668 (2019)

Room temperature III–V nanolasers with distributed Bragg reflectors epitaxially grown on (001) silicon-on-insulators

Yu Han, Wai Kit Ng, Ying Xue, Kam Sing Wong, and Kei May Lau
Photon. Res. 7(9) 1081-1086 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
    [Crossref]
  2. C. F. Lin, Y. S. Su, and B. R. Wu, “External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication,” IEEE Photon. Technol. Lett. 14, 3–5 (2002).
    [Crossref]
  3. S. Mokkapati and C. Jagadish, “III-V compound SC for optoelectronic devices,” Mater. Today 12, 22–32 (2009).
    [Crossref]
  4. R. Wang, S. Sprengel, A. Vasiliev, G. Boehm, J. Van Campenhout, G. Lepage, P. Verheyen, R. Baets, M.-C. Amann, and G. Roelkens, “Widely tunable 23  μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing,” Photon. Res. 6, 858–866 (2018).
    [Crossref]
  5. N. Zhang, X. Cai, and S. Yu, “Optical generation of tunable and narrow linewidth radio frequency signal based on mutual locking between integrated semiconductor lasers,” Photon. Res. 2, B11–B17 (2014).
    [Crossref]
  6. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
    [Crossref]
  7. K. K. Nagaraja, Y. A. Mityagin, M. P. Telenkov, and I. P. Kazakov, “GaAs(1-x)Bix: a promising material for optoelectronics applications,” Crit. Rev. Solid State Mater. Sci. 42, 239–265 (2017).
    [Crossref]
  8. D. L. Young, J. F. Geisz, and T. J. Coutts, “Nitrogen-induced decrease of the electron effective mass in GaAs1-xNx thin films measured by thermomagnetic transport phenomena,” Appl. Phys. Lett. 82, 1236–1238 (2003).
    [Crossref]
  9. S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
    [Crossref]
  10. P. Carrier and S.-H. Wei, “Calculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends,” Phys. Rev. B 70, 035212 (2004).
    [Crossref]
  11. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1–xBix,” Phys. Rev. Lett. 97, 067205 (2006).
    [Crossref]
  12. L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
    [Crossref]
  13. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
    [Crossref]
  14. C.-Z. Ning, L. Dou, and P. Yang, “Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions,” Nat. Rev. Mater. 2, 17070 (2017).
    [Crossref]
  15. M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
    [Crossref]
  16. S. H. Pan, S. S. Deka, A. E. Amili, Q. Gu, and Y. Fainman, “Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures,” Prog. Quantum Electron. 59, 1–18 (2018).
    [Crossref]
  17. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  18. N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
    [Crossref]
  19. Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.
  20. F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
    [Crossref]
  21. C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
    [Crossref]
  22. X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
    [Crossref]
  23. S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75, 1538–1540 (1999).
    [Crossref]
  24. V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with AsSb nanoclusters in GaAs,” J. Appl. Phys. 97, 024309 (2005).
    [Crossref]
  25. D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
    [Crossref]
  26. Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).
    [Crossref]
  27. T. Zhou, J. Zhou, Y. Cui, X. Liu, J. Li, K. He, X. Fang, and Z. Zhang, “Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate,” Opt. Express 26, 16797–16804 (2018).
    [Crossref]
  28. T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
    [Crossref]
  29. K. Yamashita, M. Yoshimoto, and K. Oe, “Temperature-insensitive refractive index of GaAsBi alloy for laser diode in WDM optical communication,” Phys. Status Solidi C 3, 693–696 (2006).
    [Crossref]
  30. Q. Gu and Y. Fainman, Semiconductor Nanolasers (Cambridge University, 2017).
  31. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).
  32. B. E. A. Saleh, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  33. Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−xBix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
    [Crossref]
  34. T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, “Long-wavelength emission in photo-pumped GaAs1−xBix laser with low temperature dependence of lasing wavelength,” Appl. Phys. Lett. 103, 202105 (2013).
    [Crossref]
  35. P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
    [Crossref]
  36. R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
    [Crossref]
  37. T. Fuyuki, K. Yoshida, R. Yoshioka, and M. Yoshimoto, “Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength,” Appl. Phys. Express 7, 082101 (2014).
    [Crossref]
  38. H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, and L. J. Mawst, “Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing,” J. Appl. Phys. 123, 113102 (2018).
    [Crossref]

2018 (6)

R. Wang, S. Sprengel, A. Vasiliev, G. Boehm, J. Van Campenhout, G. Lepage, P. Verheyen, R. Baets, M.-C. Amann, and G. Roelkens, “Widely tunable 23  μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing,” Photon. Res. 6, 858–866 (2018).
[Crossref]

S. H. Pan, S. S. Deka, A. E. Amili, Q. Gu, and Y. Fainman, “Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures,” Prog. Quantum Electron. 59, 1–18 (2018).
[Crossref]

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

T. Zhou, J. Zhou, Y. Cui, X. Liu, J. Li, K. He, X. Fang, and Z. Zhang, “Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate,” Opt. Express 26, 16797–16804 (2018).
[Crossref]

T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[Crossref]

H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, and L. J. Mawst, “Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing,” J. Appl. Phys. 123, 113102 (2018).
[Crossref]

2017 (4)

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

C.-Z. Ning, L. Dou, and P. Yang, “Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions,” Nat. Rev. Mater. 2, 17070 (2017).
[Crossref]

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

K. K. Nagaraja, Y. A. Mityagin, M. P. Telenkov, and I. P. Kazakov, “GaAs(1-x)Bix: a promising material for optoelectronics applications,” Crit. Rev. Solid State Mater. Sci. 42, 239–265 (2017).
[Crossref]

2015 (1)

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[Crossref]

2014 (4)

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

T. Fuyuki, K. Yoshida, R. Yoshioka, and M. Yoshimoto, “Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength,” Appl. Phys. Express 7, 082101 (2014).
[Crossref]

N. Zhang, X. Cai, and S. Yu, “Optical generation of tunable and narrow linewidth radio frequency signal based on mutual locking between integrated semiconductor lasers,” Photon. Res. 2, B11–B17 (2014).
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

2013 (3)

T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, “Long-wavelength emission in photo-pumped GaAs1−xBix laser with low temperature dependence of lasing wavelength,” Appl. Phys. Lett. 103, 202105 (2013).
[Crossref]

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

2010 (1)

Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−xBix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[Crossref]

2009 (2)

S. Mokkapati and C. Jagadish, “III-V compound SC for optoelectronic devices,” Mater. Today 12, 22–32 (2009).
[Crossref]

S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[Crossref]

2008 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

2007 (2)

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).
[Crossref]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[Crossref]

2006 (2)

K. Yamashita, M. Yoshimoto, and K. Oe, “Temperature-insensitive refractive index of GaAsBi alloy for laser diode in WDM optical communication,” Phys. Status Solidi C 3, 693–696 (2006).
[Crossref]

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1–xBix,” Phys. Rev. Lett. 97, 067205 (2006).
[Crossref]

2005 (1)

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with AsSb nanoclusters in GaAs,” J. Appl. Phys. 97, 024309 (2005).
[Crossref]

2004 (1)

P. Carrier and S.-H. Wei, “Calculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends,” Phys. Rev. B 70, 035212 (2004).
[Crossref]

2003 (3)

D. L. Young, J. F. Geisz, and T. J. Coutts, “Nitrogen-induced decrease of the electron effective mass in GaAs1-xNx thin films measured by thermomagnetic transport phenomena,” Appl. Phys. Lett. 82, 1236–1238 (2003).
[Crossref]

S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

2002 (1)

C. F. Lin, Y. S. Su, and B. R. Wu, “External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication,” IEEE Photon. Technol. Lett. 14, 3–5 (2002).
[Crossref]

2000 (1)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[Crossref]

1999 (1)

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75, 1538–1540 (1999).
[Crossref]

Adamcyk, M.

S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
[Crossref]

Adolfsson, G.

S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[Crossref]

Amann, M.-C.

Amili, A. E.

S. H. Pan, S. S. Deka, A. E. Amili, Q. Gu, and Y. Fainman, “Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures,” Prog. Quantum Electron. 59, 1–18 (2018).
[Crossref]

Babcock, S. E.

H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, and L. J. Mawst, “Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing,” J. Appl. Phys. 123, 113102 (2018).
[Crossref]

Baets, R.

Batool, Z.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Beanland, R.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[Crossref]

Bert, N. A.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with AsSb nanoclusters in GaAs,” J. Appl. Phys. 97, 024309 (2005).
[Crossref]

Boehm, G.

Bukauskas, V.

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

Burnett, M. T.

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[Crossref]

Butkute, R.

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

Cai, X.

Cao, C.

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

Carrier, P.

P. Carrier and S.-H. Wei, “Calculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends,” Phys. Rev. B 70, 035212 (2004).
[Crossref]

Cechaviccius, B.

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

Chaldyshev, V. V.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with AsSb nanoclusters in GaAs,” J. Appl. Phys. 97, 024309 (2005).
[Crossref]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

Chatterjee, S.

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Chen, X.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

Cheng, Y.

T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[Crossref]

Chernikov, A.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Chuang, S. L.

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).

Coldren, L. A.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[Crossref]

Coutts, T. J.

D. L. Young, J. F. Geisz, and T. J. Coutts, “Nitrogen-induced decrease of the electron effective mass in GaAs1-xNx thin films measured by thermomagnetic transport phenomena,” Appl. Phys. Lett. 82, 1236–1238 (2003).
[Crossref]

Cui, Y.

T. Zhou, J. Zhou, Y. Cui, X. Liu, J. Li, K. He, X. Fang, and Z. Zhang, “Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate,” Opt. Express 26, 16797–16804 (2018).
[Crossref]

T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[Crossref]

de Leon, N.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Deka, S. S.

S. H. Pan, S. S. Deka, A. E. Amili, Q. Gu, and Y. Fainman, “Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures,” Prog. Quantum Electron. 59, 1–18 (2018).
[Crossref]

Dou, L.

C.-Z. Ning, L. Dou, and P. Yang, “Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions,” Nat. Rev. Mater. 2, 17070 (2017).
[Crossref]

Duzik, A.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Fainman, Y.

S. H. Pan, S. S. Deka, A. E. Amili, Q. Gu, and Y. Fainman, “Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures,” Prog. Quantum Electron. 59, 1–18 (2018).
[Crossref]

Q. Gu and Y. Fainman, Semiconductor Nanolasers (Cambridge University, 2017).

Fang, X.

T. Zhou, J. Zhou, Y. Cui, X. Liu, J. Li, K. He, X. Fang, and Z. Zhang, “Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate,” Opt. Express 26, 16797–16804 (2018).
[Crossref]

T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[Crossref]

Fluegel, B.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1–xBix,” Phys. Rev. Lett. 97, 067205 (2006).
[Crossref]

Francoeur, S.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1–xBix,” Phys. Rev. Lett. 97, 067205 (2006).
[Crossref]

S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
[Crossref]

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75, 1538–1540 (1999).
[Crossref]

Frank, I. W.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Fritz, R.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Fuyuki, T.

T. Fuyuki, K. Yoshida, R. Yoshioka, and M. Yoshimoto, “Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength,” Appl. Phys. Express 7, 082101 (2014).
[Crossref]

T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, “Long-wavelength emission in photo-pumped GaAs1−xBix laser with low temperature dependence of lasing wavelength,” Appl. Phys. Lett. 103, 202105 (2013).
[Crossref]

Gather, M. C.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

Geisz, J. F.

D. L. Young, J. F. Geisz, and T. J. Coutts, “Nitrogen-induced decrease of the electron effective mass in GaAs1-xNx thin films measured by thermomagnetic transport phenomena,” Appl. Phys. Lett. 82, 1236–1238 (2003).
[Crossref]

Geizutis, A.

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

Gogineni, C.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

González, D.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[Crossref]

Gu, Q.

S. H. Pan, S. S. Deka, A. E. Amili, Q. Gu, and Y. Fainman, “Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures,” Prog. Quantum Electron. 59, 1–18 (2018).
[Crossref]

Q. Gu and Y. Fainman, Semiconductor Nanolasers (Cambridge University, 2017).

Guan, Y.

H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, and L. J. Mawst, “Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing,” J. Appl. Phys. 123, 113102 (2018).
[Crossref]

Gustavsson, J.

S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[Crossref]

Guzman, A.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[Crossref]

Hao, F.

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[Crossref]

He, K.

Hierro, A.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[Crossref]

Hild, K.

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Hill, M. T.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

Hong, T.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).
[Crossref]

Hosea, T. J. C.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Hossain, N.

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

Imhof, S.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Jagadish, C.

S. Mokkapati and C. Jagadish, “III-V compound SC for optoelectronic devices,” Mater. Today 12, 22–32 (2009).
[Crossref]

Jiang, Z.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Jin, C.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75, 1538–1540 (1999).
[Crossref]

Jin, S.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Jin, S. R.

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Johnson, S. R.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Kazakov, I. P.

K. K. Nagaraja, Y. A. Mityagin, M. P. Telenkov, and I. P. Kazakov, “GaAs(1-x)Bix: a promising material for optoelectronics applications,” Crit. Rev. Solid State Mater. Sci. 42, 239–265 (2017).
[Crossref]

Kim, H.

H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, and L. J. Mawst, “Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing,” J. Appl. Phys. 123, 113102 (2018).
[Crossref]

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Knaub, N.

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Koch, M.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Koch, S. W.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Kolata, K.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Kolesnikova, A. L.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with AsSb nanoclusters in GaAs,” J. Appl. Phys. 97, 024309 (2005).
[Crossref]

Krotkus, A.

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

Kuech, T. F.

H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, and L. J. Mawst, “Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing,” J. Appl. Phys. 123, 113102 (2018).
[Crossref]

Kundrotas, R.

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

Larsson, A.

S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[Crossref]

Lepage, G.

Lewis, R. B.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Li, J.

Li, M.

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

Li, W.

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

Li, Y.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

Liang, D.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

Lin, C. F.

C. F. Lin, Y. S. Su, and B. R. Wu, “External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication,” IEEE Photon. Technol. Lett. 14, 3–5 (2002).
[Crossref]

Liu, J.

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

Liu, M.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Liu, V.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).
[Crossref]

Liu, X.

T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[Crossref]

T. Zhou, J. Zhou, Y. Cui, X. Liu, J. Li, K. He, X. Fang, and Z. Zhang, “Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate,” Opt. Express 26, 16797–16804 (2018).
[Crossref]

Liu, Y.

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

Loncar, M.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Lu, P.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

Lu, X.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Ludewig, P.

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Lukin, M. D.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Maier, S. A.

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[Crossref]

Marko, I. P.

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Mascarenhas, A.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1–xBix,” Phys. Rev. Lett. 97, 067205 (2006).
[Crossref]

S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
[Crossref]

Masnadi-Shirazi, M.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Mawst, L. J.

H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, and L. J. Mawst, “Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing,” J. Appl. Phys. 123, 113102 (2018).
[Crossref]

McCutcheon, M.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Millunchick, J. M.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Mityagin, Y. A.

K. K. Nagaraja, Y. A. Mityagin, M. P. Telenkov, and I. P. Kazakov, “GaAs(1-x)Bix: a promising material for optoelectronics applications,” Crit. Rev. Solid State Mater. Sci. 42, 239–265 (2017).
[Crossref]

Mokkapati, S.

S. Mokkapati and C. Jagadish, “III-V compound SC for optoelectronic devices,” Mater. Today 12, 22–32 (2009).
[Crossref]

Mooney, P. M.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Nagaraja, K. K.

K. K. Nagaraja, Y. A. Mityagin, M. P. Telenkov, and I. P. Kazakov, “GaAs(1-x)Bix: a promising material for optoelectronics applications,” Crit. Rev. Solid State Mater. Sci. 42, 239–265 (2017).
[Crossref]

Nattermann, L.

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Nikishin, S. A.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75, 1538–1540 (1999).
[Crossref]

Ning, C.-Z.

C.-Z. Ning, L. Dou, and P. Yang, “Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions,” Nat. Rev. Mater. 2, 17070 (2017).
[Crossref]

Nordlander, P.

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[Crossref]

Oe, K.

Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−xBix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[Crossref]

K. Yamashita, M. Yoshimoto, and K. Oe, “Temperature-insensitive refractive index of GaAsBi alloy for laser diode in WDM optical communication,” Phys. Status Solidi C 3, 693–696 (2006).
[Crossref]

Ou, H.

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

Paccebutas, V.

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

Pan, S. H.

S. H. Pan, S. S. Deka, A. E. Amili, Q. Gu, and Y. Fainman, “Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures,” Prog. Quantum Electron. 59, 1–18 (2018).
[Crossref]

Pan, W.

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

Park, H.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Qiu, Y.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75, 1538–1540 (1999).
[Crossref]

Reinhard, S.

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Reyes, D. F.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[Crossref]

Riordan, N. A.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Robinson, J. T.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Roelkens, G.

Romanov, A. E.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with AsSb nanoclusters in GaAs,” J. Appl. Phys. 97, 024309 (2005).
[Crossref]

Rubel, O.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Sadeghi, M.

S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Sales, D. L.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[Crossref]

Sanchez, A. M.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[Crossref]

Scherer, A.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).
[Crossref]

Schiettekatte, F.

S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
[Crossref]

Shao, J.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

Shi, Z.

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

Song, Y.

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

Sprengel, S.

Stolz, W.

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Su, Y. S.

C. F. Lin, Y. S. Su, and B. R. Wu, “External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication,” IEEE Photon. Technol. Lett. 14, 3–5 (2002).
[Crossref]

Sweeney, S. J.

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Telenkov, M. P.

K. K. Nagaraja, Y. A. Mityagin, M. P. Telenkov, and I. P. Kazakov, “GaAs(1-x)Bix: a promising material for optoelectronics applications,” Crit. Rev. Solid State Mater. Sci. 42, 239–265 (2017).
[Crossref]

Temkin, H.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75, 1538–1540 (1999).
[Crossref]

Thomas, J. C.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Thränhardt, A.

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Tiedje, T.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1–xBix,” Phys. Rev. Lett. 97, 067205 (2006).
[Crossref]

S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
[Crossref]

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Tixier, S.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1–xBix,” Phys. Rev. Lett. 97, 067205 (2006).
[Crossref]

S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
[Crossref]

Tominaga, Y.

Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−xBix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[Crossref]

Ulloa, J. M.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[Crossref]

Vahala, K.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Van Campenhout, J.

Vasiliev, A.

Verheyen, P.

Volz, K.

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Wang, L.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

Wang, R.

Wang, S.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

Wang, S. M.

S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[Crossref]

Wei, P.

S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
[Crossref]

Wei, S.-H.

P. Carrier and S.-H. Wei, “Calculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends,” Phys. Rev. B 70, 035212 (2004).
[Crossref]

Wei, Y. Q.

S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[Crossref]

Wu, B. R.

C. F. Lin, Y. S. Su, and B. R. Wu, “External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication,” IEEE Photon. Technol. Lett. 14, 3–5 (2002).
[Crossref]

Wu, X.

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

Xiang, B.

T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[Crossref]

Yamashita, K.

K. Yamashita, M. Yoshimoto, and K. Oe, “Temperature-insensitive refractive index of GaAsBi alloy for laser diode in WDM optical communication,” Phys. Status Solidi C 3, 693–696 (2006).
[Crossref]

Yang, L.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).
[Crossref]

Yang, P.

C.-Z. Ning, L. Dou, and P. Yang, “Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions,” Nat. Rev. Mater. 2, 17070 (2017).
[Crossref]

Yoshida, K.

T. Fuyuki, K. Yoshida, R. Yoshioka, and M. Yoshimoto, “Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength,” Appl. Phys. Express 7, 082101 (2014).
[Crossref]

T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, “Long-wavelength emission in photo-pumped GaAs1−xBix laser with low temperature dependence of lasing wavelength,” Appl. Phys. Lett. 103, 202105 (2013).
[Crossref]

Yoshimoto, M.

T. Fuyuki, K. Yoshida, R. Yoshioka, and M. Yoshimoto, “Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength,” Appl. Phys. Express 7, 082101 (2014).
[Crossref]

T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, “Long-wavelength emission in photo-pumped GaAs1−xBix laser with low temperature dependence of lasing wavelength,” Appl. Phys. Lett. 103, 202105 (2013).
[Crossref]

Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−xBix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[Crossref]

K. Yamashita, M. Yoshimoto, and K. Oe, “Temperature-insensitive refractive index of GaAsBi alloy for laser diode in WDM optical communication,” Phys. Status Solidi C 3, 693–696 (2006).
[Crossref]

Yoshioka, R.

T. Fuyuki, K. Yoshida, R. Yoshioka, and M. Yoshimoto, “Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength,” Appl. Phys. Express 7, 082101 (2014).
[Crossref]

T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, “Long-wavelength emission in photo-pumped GaAs1−xBix laser with low temperature dependence of lasing wavelength,” Appl. Phys. Lett. 103, 202105 (2013).
[Crossref]

Young, D. L.

D. L. Young, J. F. Geisz, and T. J. Coutts, “Nitrogen-induced decrease of the electron effective mass in GaAs1-xNx thin films measured by thermomagnetic transport phenomena,” Appl. Phys. Lett. 82, 1236–1238 (2003).
[Crossref]

Young, E. C.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1–xBix,” Phys. Rev. Lett. 97, 067205 (2006).
[Crossref]

Yu, C. L.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Yu, S.

Yue, L.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

Zhang, L.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

Zhang, N.

Zhang, W.

T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[Crossref]

Zhang, Y. M.

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

Zhang, Z.

T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[Crossref]

T. Zhou, J. Zhou, Y. Cui, X. Liu, J. Li, K. He, X. Fang, and Z. Zhang, “Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate,” Opt. Express 26, 16797–16804 (2018).
[Crossref]

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).
[Crossref]

Zhang, Z. K.

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

Zhao, H.

S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[Crossref]

Zhao, Q. X.

S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[Crossref]

Zhao, Z. P.

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

Zhou, J.

Zhou, T.

T. Zhou, J. Zhou, Y. Cui, X. Liu, J. Li, K. He, X. Fang, and Z. Zhang, “Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate,” Opt. Express 26, 16797–16804 (2018).
[Crossref]

T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[Crossref]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

Zhu, N. H.

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

Zou, C. W.

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

ACS Photon. (1)

X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[Crossref]

AIP Adv. (1)

T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[Crossref]

Appl. Phys. Express (2)

Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−xBix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[Crossref]

T. Fuyuki, K. Yoshida, R. Yoshioka, and M. Yoshimoto, “Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength,” Appl. Phys. Express 7, 082101 (2014).
[Crossref]

Appl. Phys. Lett. (6)

T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, “Long-wavelength emission in photo-pumped GaAs1−xBix laser with low temperature dependence of lasing wavelength,” Appl. Phys. Lett. 103, 202105 (2013).
[Crossref]

P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[Crossref]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).
[Crossref]

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75, 1538–1540 (1999).
[Crossref]

D. L. Young, J. F. Geisz, and T. J. Coutts, “Nitrogen-induced decrease of the electron effective mass in GaAs1-xNx thin films measured by thermomagnetic transport phenomena,” Appl. Phys. Lett. 82, 1236–1238 (2003).
[Crossref]

S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
[Crossref]

Crit. Rev. Solid State Mater. Sci. (1)

K. K. Nagaraja, Y. A. Mityagin, M. P. Telenkov, and I. P. Kazakov, “GaAs(1-x)Bix: a promising material for optoelectronics applications,” Crit. Rev. Solid State Mater. Sci. 42, 239–265 (2017).
[Crossref]

Crystals (1)

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[Crossref]

Electron. Lett. (1)

R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[Crossref]

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. F. Lin, Y. S. Su, and B. R. Wu, “External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication,” IEEE Photon. Technol. Lett. 14, 3–5 (2002).
[Crossref]

J. Appl. Phys. (2)

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with AsSb nanoclusters in GaAs,” J. Appl. Phys. 97, 024309 (2005).
[Crossref]

H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, and L. J. Mawst, “Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing,” J. Appl. Phys. 123, 113102 (2018).
[Crossref]

J. Cryst. Growth (1)

S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[Crossref]

Mater. Today (1)

S. Mokkapati and C. Jagadish, “III-V compound SC for optoelectronic devices,” Mater. Today 12, 22–32 (2009).
[Crossref]

Nano Lett. (1)

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Nat. Photonics (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

Nat. Rev. Mater. (1)

C.-Z. Ning, L. Dou, and P. Yang, “Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions,” Nat. Rev. Mater. 2, 17070 (2017).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Opt. Express (1)

Photon. Res. (2)

Phys. Rev. B (2)

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[Crossref]

P. Carrier and S.-H. Wei, “Calculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends,” Phys. Rev. B 70, 035212 (2004).
[Crossref]

Phys. Rev. Lett. (1)

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1–xBix,” Phys. Rev. Lett. 97, 067205 (2006).
[Crossref]

Phys. Status Solidi C (1)

K. Yamashita, M. Yoshimoto, and K. Oe, “Temperature-insensitive refractive index of GaAsBi alloy for laser diode in WDM optical communication,” Phys. Status Solidi C 3, 693–696 (2006).
[Crossref]

Prog. Quantum Electron. (1)

S. H. Pan, S. S. Deka, A. E. Amili, Q. Gu, and Y. Fainman, “Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures,” Prog. Quantum Electron. 59, 1–18 (2018).
[Crossref]

Semicond. Sci. Technol. (1)

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[Crossref]

Other (4)

Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.

Q. Gu and Y. Fainman, Semiconductor Nanolasers (Cambridge University, 2017).

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).

B. E. A. Saleh, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic diagram of the GaAsBi/GaAs single QW structure. (b) TEM image showing the as-grown 15 nm thick single GaAsBi/GaAs QW. (c) TEM image showing the same QW after RTA.
Fig. 2.
Fig. 2. Fabrication process of the GaAsBi microdisk. The electron beam lithography resist Zep520 is directly spin-coated on the wafer, with subsequent inductively coupled plasma-reactive ion etching transferring the disk pattern down to the active layer. Finally, the AlGaAs sacrificial layer is oxidized and then undercut by hydrofluoric acid for the free-standing disk.
Fig. 3.
Fig. 3. (a) Cold disk cavity oscillates with the gain QW structure resulting in the lasing behavior with a good consistency of FSR between theoretical and experimental (pumping of 101.2 μW) results. The inset is the FDTD simulation for mode profiles of lasing wavelengths 1276 nm and 1407 nm, respectively. (b) GaAsBi QW PL well covers the wavelength range from 1100 to 1400 nm. (c) The evolution of PL spectra of the GaAsBi microdisk laser of radius 0.75 μm at various pumping power.
Fig. 4.
Fig. 4. (a) Scanning electron microscopy images of a fabricated GaAsBi microdisk laser at different radii. (b) The collected PL spectra for the GaAsBi microdisk laser with a radius of 0.75, 1.00, and 1.50 μm with related L–L curves and FWHMs. The chosen peak is indicated by a black arrow. For the smallest radius of 0.75 μm, the lasing threshold is 1.2 μW and the FWHM is 2.5 ± 0.3    nm .

Tables (1)

Tables Icon

Table 1. Brief Summary of GaAsBi-Based Infrared Lasers

Metrics