Abstract

For crystals, depressed cladding waveguides have advantages such as preservation of the spectroscopic as well as non-linear properties and the capability to guide both horizontal and vertical polarization modes, but fabrication is always quite time consuming. In addition, it is usually difficult to couple modes propagating in different depressed cladding waveguides through evanescent field overlap, so it is often required to dynamically reconfigure photonic waveguide devices using external fields for classical or quantum applications. Here, we experimentally demonstrate the single-scan femtosecond laser transverse writing of depressed cladding waveguides to form a 2×2 directional coupler inside lithium niobate crystal, which is integrated with two deeply embedded microelectrodes on both sides of the interaction region to reconfigure the coupling. By focal field engineering of the femtosecond laser, we specially generate a three-dimensional longitudinally oriented ring-shaped focal intensity profile composed of 16 discrete spots to simultaneously write the entire cladding region. The fabricated waveguides exhibit good single guided modes in two orthogonal polarizations at 1550 nm. By applying voltage to the deeply embedded microelectrodes fabricated with the femtosecond laser ablation followed by selective electroless plating, we successfully facilitate the light coupling from the input arm to the cross arm and thus actively tune the splitting ratio. These results open new important perspectives in the efficient fabrication of reconfigurable complex three-dimensional devices in crystals based on depressed cladding waveguides.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering

Qian Zhang, Dong Yang, Jia Qi, Ya Cheng, Qihuang Gong, and Yan Li
Opt. Express 25(12) 13263-13270 (2017)

Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses

Jia Qi, Peng Wang, Yang Liao, Wei Chu, Zhengming Liu, Zhaohui Wang, Lingling Qiao, and Ya Cheng
Opt. Mater. Express 6(8) 2554-2559 (2016)

Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching

Jinman Lv, Binbin Hong, Yang Tan, Feng Chen, Javier Rodríguez Vázquez de Aldana, and Guo Ping Wang
Photon. Res. 8(3) 257-262 (2020)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  2. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26, 42–43 (2001).
    [Crossref]
  3. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photon. Rev. 2, 100–111 (2008).
    [Crossref]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref]
  5. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
    [Crossref]
  6. A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
    [Crossref]
  7. Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
    [Crossref]
  8. G. A. Shafeev, “Laser activation and metallisation of insulators,” Quantum Electron. 27, 1104–1110 (1997).
    [Crossref]
  9. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
    [Crossref]
  10. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
    [Crossref]
  11. F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
    [Crossref]
  12. R. He, Q. An, Y. Jia, G. R. Castillo-Vega, J. R. V. Aldana, and F. Chen, “Femtosecond laser micromachining of lithium niobate depressed cladding waveguides,” Opt. Mater. Express 3, 1378–1384 (2013).
    [Crossref]
  13. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG: Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248–2250 (2005).
    [Crossref]
  14. H. D. Nguyen, A. Ródenas, J. R. V. Aldana, G. Martín, J. Martínez, M. Aguiló, M. C. Pujol, and F. Díaz, “Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations,” Opt. Express 25, 3722–3736 (2017).
    [Crossref]
  15. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18, 24994–24999 (2010).
    [Crossref]
  16. J. Qi, P. Wang, Y. Liao, W. Chu, Z. Liu, Z. Wang, L. Qiao, and Y. Cheng, “Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses,” Opt. Mater. Express 6, 2554–2559 (2016).
    [Crossref]
  17. Q. Zhang, D. Yang, J. Qi, Y. Cheng, Q. Gong, and Y. Li, “Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering,” Opt. Express 25, 13263–13270 (2017).
    [Crossref]
  18. F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
    [Crossref]
  19. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
    [Crossref]
  20. M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
    [Crossref]
  21. G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, “40  GHz, low half-wave voltage Ti:LiNbO3, intensity modulator,” Electron. Lett. 28, 826–827 (1992).
    [Crossref]
  22. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [Crossref]
  23. X. Yu, K. Chen, and Y. Zhang, “Optimization design of diffractive phase elements for beam shaping,” Appl. Opt. 50, 5938–5943 (2011).
    [Crossref]
  24. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).
    [Crossref]
  25. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+ ZBLAN waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
    [Crossref]
  26. L. Huang, P. S. Salter, F. Payne, and M. J. Booth, “Aberration correction for direct laser written waveguides in a transverse geometry,” Opt. Express 24, 10565–10574 (2016).
    [Crossref]
  27. R. Zhang, J. Wang, G. Zhao, and J. Lv, “Fiber-based free-space optical coherent receiver with vibration compensation mechanism,” Opt. Express 21, 18434–18441 (2013).
    [Crossref]
  28. J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
    [Crossref]
  29. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
    [Crossref]
  30. J. Xu, Y. Liao, H. Zeng, Z. Zhou, H. Sun, J. Song, X. Wang, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Selective metallization on insulator surfaces with femtosecond laser pulses,” Opt. Express 15, 12743–12748 (2007).
    [Crossref]
  31. Y. Liao, J. Xu, H. Sun, J. Song, X. Wang, and Y. Cheng, “Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser,” Appl. Surf. Sci. 254, 7018–7021 (2008).
    [Crossref]
  32. J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Adv. 5, 24072–24080 (2015).
    [Crossref]
  33. L. N. Binh, “Lithium niobate optical modulators: devices and applications,” J. Cryst. Growth 288, 180–187 (2006).
    [Crossref]
  34. S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22, 23339–23348 (2014).
    [Crossref]

2017 (2)

2016 (2)

2015 (2)

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Adv. 5, 24072–24080 (2015).
[Crossref]

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

2014 (2)

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22, 23339–23348 (2014).
[Crossref]

2013 (2)

2011 (4)

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
[Crossref]

X. Yu, K. Chen, and Y. Zhang, “Optimization design of diffractive phase elements for beam shaping,” Appl. Opt. 50, 5938–5943 (2011).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+ ZBLAN waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
[Crossref]

2010 (3)

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18, 24994–24999 (2010).
[Crossref]

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

2008 (4)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photon. Rev. 2, 100–111 (2008).
[Crossref]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]

Y. Liao, J. Xu, H. Sun, J. Song, X. Wang, and Y. Cheng, “Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser,” Appl. Surf. Sci. 254, 7018–7021 (2008).
[Crossref]

2007 (2)

2006 (1)

L. N. Binh, “Lithium niobate optical modulators: devices and applications,” J. Cryst. Growth 288, 180–187 (2006).
[Crossref]

2005 (1)

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

2001 (1)

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

1997 (1)

G. A. Shafeev, “Laser activation and metallisation of insulators,” Quantum Electron. 27, 1104–1110 (1997).
[Crossref]

1996 (1)

1995 (1)

1992 (1)

G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, “40  GHz, low half-wave voltage Ti:LiNbO3, intensity modulator,” Electron. Lett. 28, 826–827 (1992).
[Crossref]

1982 (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
[Crossref]

1975 (1)

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
[Crossref]

Aguiló, M.

Aldana, J. R. V.

Ams, M.

An, Q.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Bhatnagar, A.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
[Crossref]

Binh, L. N.

L. N. Binh, “Lithium niobate optical modulators: devices and applications,” J. Cryst. Growth 288, 180–187 (2006).
[Crossref]

Bongioanni, I.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Booker, G. R.

Booth, M. J.

Borrelli, N. F.

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Bulmer, C. H.

G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, “40  GHz, low half-wave voltage Ti:LiNbO3, intensity modulator,” Electron. Lett. 28, 826–827 (1992).
[Crossref]

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

Burns, W. K.

G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, “40  GHz, low half-wave voltage Ti:LiNbO3, intensity modulator,” Electron. Lett. 28, 826–827 (1992).
[Crossref]

Castillo-Vega, G. R.

Cerullo, G.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Chalapathi, K.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
[Crossref]

Chen, F.

Chen, K.

Chen, Q.

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Cheng, Y.

Chu, W.

Combemale, Y.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
[Crossref]

Crespi, A.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

D’Ambrosio, V.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

Davis, K. M.

Denz, C.

Dhaman, R. K.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
[Crossref]

Dharmadhikari, A. K.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
[Crossref]

Dharmadhikari, J. A.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
[Crossref]

Díaz, F.

Dongre, C.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Ebendorff-Heidepriem, H.

Flamini, F.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

Fourkas, J. T.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photon. Rev. 2, 100–111 (2008).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Fuerbach, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Gong, Q.

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, “40  GHz, low half-wave voltage Ti:LiNbO3, intensity modulator,” Electron. Lett. 28, 826–827 (1992).
[Crossref]

Greenblatt, A. S.

G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, “40  GHz, low half-wave voltage Ti:LiNbO3, intensity modulator,” Electron. Lett. 28, 826–827 (1992).
[Crossref]

Gross, S.

Gu, Y.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

He, F.

He, R.

Hirao, K.

Hoekstra, H. J. W. M.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Horn, W.

Huang, L.

Imbrock, J.

Ip, J. Y.

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Adv. 5, 24072–24080 (2015).
[Crossref]

Jaque, D.

Jia, Y.

Kar, A. K.

Khrushchev, I.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Kroesen, S.

Kuan, K.

Laczik, Z.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Lancaster, D. G.

Levenson, M. D.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
[Crossref]

Li, Y.

Liao, Y.

Liu, Z.

Lu, Q.

Lv, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Magrini, L.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

Mallik, A.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
[Crossref]

Martín, G.

Martínez, J.

Maruo, S.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photon. Rev. 2, 100–111 (2008).
[Crossref]

Mataloni, P.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Mathieu, X.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
[Crossref]

Mathur, D.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

McElhanon, R. W.

G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, “40  GHz, low half-wave voltage Ti:LiNbO3, intensity modulator,” Electron. Lett. 28, 826–827 (1992).
[Crossref]

Midorikawa, K.

Mitchell, J.

Miura, K.

Monro, T. M.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Ngamsom, B.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Nguyen, H. D.

Nolte, S.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

Okhrimchuk, A. G.

Osellame, R.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Ostrowsky, D. B.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
[Crossref]

Papuchon, M.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
[Crossref]

Payne, F.

Pollnau, M.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Pujol, M. C.

Qi, J.

Qiao, L.

Rab, A. S.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

Ramponi, R.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Reiber, L.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
[Crossref]

Rodenas, A.

Ródenas, A.

Roy, A. M.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
[Crossref]

Salter, P. S.

Sansoni, L.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Sciarrino, F.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Sejourne, B.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
[Crossref]

Shafeev, G. A.

G. A. Shafeev, “Laser activation and metallisation of insulators,” Quantum Electron. 27, 1104–1110 (1997).
[Crossref]

Shestakov, A. V.

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
[Crossref]

Singh, P. C.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
[Crossref]

Song, J.

Spagnolo, N.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

Streltsov, A. M.

Sugimoto, N.

Sugioka, K.

Sun, H.

Tan, Y.

Thomson, R. R.

Török, P.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

Vallone, G.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Varga, P.

Vazquez de Aldana, J. R.

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
[Crossref]

Vlekkert, H. H. V. D.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Wang, J.

Wang, P.

Wang, X.

Wang, Z.

Watts, P.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Werner, M.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
[Crossref]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

Withford, M. J.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Wu, D.

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Adv. 5, 24072–24080 (2015).
[Crossref]

Xia, H.

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Xu, J.

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Adv. 5, 24072–24080 (2015).
[Crossref]

Y. Liao, J. Xu, H. Sun, J. Song, X. Wang, and Y. Cheng, “Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser,” Appl. Surf. Sci. 254, 7018–7021 (2008).
[Crossref]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]

J. Xu, Y. Liao, H. Zeng, Z. Zhou, H. Sun, J. Song, X. Wang, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Selective metallization on insulator surfaces with femtosecond laser pulses,” Opt. Express 15, 12743–12748 (2007).
[Crossref]

Xu, Z.

Yang, D.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Yu, X.

Zandrini, T.

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

Zeng, H.

Zhang, Q.

Zhang, R.

Zhang, Y.

X. Yu, K. Chen, and Y. Zhang, “Optimization design of diffractive phase elements for beam shaping,” Appl. Opt. 50, 5938–5943 (2011).
[Crossref]

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Zhao, G.

Zhou, Z.

Appl. Opt. (1)

Appl. Phys. A (2)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

Appl. Phys. Lett. (1)

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: cobra,” Appl. Phys. Lett. 27, 289–291 (1975).
[Crossref]

Appl. Surf. Sci. (1)

Y. Liao, J. Xu, H. Sun, J. Song, X. Wang, and Y. Cheng, “Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser,” Appl. Surf. Sci. 254, 7018–7021 (2008).
[Crossref]

Electron. Lett. (1)

G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, “40  GHz, low half-wave voltage Ti:LiNbO3, intensity modulator,” Electron. Lett. 28, 826–827 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

IEEE Trans. Electron. Devices (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
[Crossref]

J. Cryst. Growth (1)

L. N. Binh, “Lithium niobate optical modulators: devices and applications,” J. Cryst. Growth 288, 180–187 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Lab Chip (1)

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. V. D. Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10, 1167–1173 (2010).
[Crossref]

Laser Photon. Rev. (2)

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photon. Rev. 2, 100–111 (2008).
[Crossref]

Light Sci. Appl. (1)

F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, and R. Osellame, “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl. 4, e354 (2015).
[Crossref]

Nano Today (1)

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Nat. Commun. (1)

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Opt. Commun. (1)

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun. 284, 630–634 (2011).
[Crossref]

Opt. Express (7)

H. D. Nguyen, A. Ródenas, J. R. V. Aldana, G. Martín, J. Martínez, M. Aguiló, M. C. Pujol, and F. Díaz, “Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations,” Opt. Express 25, 3722–3736 (2017).
[Crossref]

Q. Zhang, D. Yang, J. Qi, Y. Cheng, Q. Gong, and Y. Li, “Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering,” Opt. Express 25, 13263–13270 (2017).
[Crossref]

R. Zhang, J. Wang, G. Zhao, and J. Lv, “Fiber-based free-space optical coherent receiver with vibration compensation mechanism,” Opt. Express 21, 18434–18441 (2013).
[Crossref]

S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22, 23339–23348 (2014).
[Crossref]

L. Huang, P. S. Salter, F. Payne, and M. J. Booth, “Aberration correction for direct laser written waveguides in a transverse geometry,” Opt. Express 24, 10565–10574 (2016).
[Crossref]

J. Xu, Y. Liao, H. Zeng, Z. Zhou, H. Sun, J. Song, X. Wang, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Selective metallization on insulator surfaces with femtosecond laser pulses,” Opt. Express 15, 12743–12748 (2007).
[Crossref]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18, 24994–24999 (2010).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (2)

Quantum Electron. (1)

G. A. Shafeev, “Laser activation and metallisation of insulators,” Quantum Electron. 27, 1104–1110 (1997).
[Crossref]

RSC Adv. (1)

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Adv. 5, 24072–24080 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic for transverse writing of reconfigurable 2 × 2 DC based on depressed cladding waveguides. Circular cladding composed of dozens of parallel filaments formed through single scan using a longitudinal discrete ring-shaped focal intensity profile. The ring is tilted 10° with respect to x axis.
Fig. 2.
Fig. 2. (a) 3D isosurface of the targeted 3D focal intensity profile (the isosurface is given by the intensity at 45% of the peak value). (b) Calculated phase mask. (c) Corresponding simulated 3D isosurface intensity profile. The sample is translated along y axis.
Fig. 3.
Fig. 3. Optical micrographs and guided modes of a waveguide written through the discrete ring-shaped focal field. (a) Cross section of the depressed cladding. (b) Top view of the waveguide. (c), (d) 2D intensity distribution images of the guided H and V polarization modes at 1550 nm, respectively.
Fig. 4.
Fig. 4. Optical micrographs; numerical simulation of the electric field between the two electrodes and guided mode of a DC written by using the discrete ring-shaped focal field. (a) Top views of the straight interaction region (middle) and two curved segments (left and right) of the DC without the integrated electrodes. (b) Top view of the electrodes and their connecting lines. Inset: connecting line with a pad at the end. (c) Equipotential contour of the electric field around the electrodes. (d) Splitting ratio with the increase in applied voltage to the electrode. (e) Output intensity of the DC for the guided V mode at 1550 nm with three voltages.

Metrics