Abstract

The ability to control the energy transfer in rare-earth ion-doped luminescent materials is very important for various related application areas such as color display, bio-labeling, and new light sources. Here, a phase-shaped femtosecond laser field is first proposed to control the transfer of multiphoton excited energy from Tm3+ to Yb3+ ions in co-doped glass ceramics. Tm3+ ions are first sensitized by femtosecond laser-induced multiphoton absorption, and then a highly efficient energy transfer occurs between the highly excited state Tm3+ sensitizers and the ground-state Yb3+ activators. The laser peak intensity and polarization dependences of the laser-induced luminescence intensities are shown to serve as proof of the multiphoton excited energy transfer pathway. The efficiency of the multiphoton excited energy transfer can be efficiently enhanced or completely suppressed by optimizing the spectral phase of the femtosecond laser with a feedback control strategy based on a genetic algorithm. A (1+2) resonance-mediated three-photon excitation model is presented to explain the experimental observations. This study provides a new way to induce and control the energy transfer in rare-earth ion-doped luminescent materials, and should have a positive contribution to the development of related applications.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Valence state manipulation of Sm3+ ions via a phase-shaped femtosecond laser field

Ye Zheng, Yunhua Yao, Lianzhong Deng, Wenjing Cheng, Jianping Li, Tianqing Jia, Jianrong Qiu, Zhenrong Sun, and Shian Zhang
Photon. Res. 6(2) 144-148 (2018)

Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er3+/Tm3+

M. Kochanowicz, J. Zmojda, A. Baranowska, P. Miluski, M. Lesniak, M. Kuwik, J. Pisarska, W. A. Pisarski, J. Dorosz, and D. Dorosz
Opt. Mater. Express 9(12) 4772-4781 (2019)

Temperature dependence of energy transfer between Nd3+ and Yb3+ ions in phosphate glass

Lisi Xia, Zhiquan Lin, Shiyu Sun, Qiang He, Fan Wang, Chunlei Yu, Lili Hu, and Qiuhong Yang
Appl. Opt. 58(19) 5262-5266 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
    [Crossref]
  2. A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, and E. B. da Costa, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
    [Crossref]
  3. D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, and P. Huang, “Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals,” Appl. Phys. Lett. 91, 251903 (2007).
    [Crossref]
  4. Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980  nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth–lead glasses,” Appl. Phys. Lett. 87, 171911 (2005).
    [Crossref]
  5. G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation,” Opt. Commun. 242, 215–219 (2004).
    [Crossref]
  6. G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin. 122, 128–130 (2007).
    [Crossref]
  7. S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+–Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989–8994 (2008).
    [Crossref]
  8. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+(RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
    [Crossref]
  9. L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
    [Crossref]
  10. J. Li, J. Zhang, X. Zhang, Z. Hao, and Y. Luo, “Cooperative downconversion and near infrared luminescence of Tm3+/Yb3+ codoped calcium scandate phosphor,” J. Alloys Compd. 583, 96–99 (2014).
    [Crossref]
  11. X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+–RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33, 2858–2860 (2008).
    [Crossref]
  12. R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
    [Crossref]
  13. N. K. Giri, A. K. Singh, D. K. Rai, and S. B. Rai, “Role of Yb3+ and Tm3+ ions in upconversion emission of Tb3+ under 798 and 980  nm laser excitations in Tb3+–Tm3+–Yb3+ doped tellurite glass,” Opt. Commun. 281, 3547–3552 (2008).
    [Crossref]
  14. F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130, 5642–5643 (2008).
    [Crossref]
  15. X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
    [Crossref]
  16. Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, and M. C. Tan, “Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging,” ACS Biomater. Sci. Eng. 2, 809–817 (2016).
    [Crossref]
  17. Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals,” Nanotechnology 18, 275609 (2007).
    [Crossref]
  18. J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, “The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors,” J. Phys. Chem. B 105, 948–953 (2001).
    [Crossref]
  19. Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
    [Crossref]
  20. G. S. Yi and G. M. Chow, “Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19, 341–343 (2007).
    [Crossref]
  21. X. Xue, M. Thitsa, T. Cheng, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “Laser power density dependent energy transfer between Tm3+ and Tb3+: tunable upconversion emissions in NaYF4:Tm3+, Tb3+, Yb3+ microcrystals,” Opt. Express 24, 26307–26321 (2016).
    [Crossref]
  22. C. F. Gainer, G. S. Joshua, and M. Romanowski, “Toward the use of two-color emission control in upconverting NaYF4:Er3+, Yb3+ nanoparticles for biomedical imaging,” Proc. SPIE 8231, 82310I (2012).
    [Crossref]
  23. C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, “Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation,” J. Mater. Chem. 21, 18530–18533 (2011).
    [Crossref]
  24. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
    [Crossref]
  25. R. M. El-Agmy, N. M. Al-Hosiny, S. Abdallah, and M. S. Abdel-Aal, “Generation of short wavelength in up-conversion of Tm3+ doped fluoride glass and its application in fiber lasers,” J. Mod. Phys. 5, 123–127 (2014).
    [Crossref]
  26. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
    [Crossref]
  27. D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
    [Crossref]
  28. A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, “Coherent phase control of resonance-mediated (2+1) three-photon absorption,” Phys. Rev. A 75, 031401 (2007).
    [Crossref]
  29. S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, and Z. Sun, “Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process,” J. Phys. B 48, 135402 (2015).
    [Crossref]
  30. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
    [Crossref]
  31. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
    [Crossref]
  32. C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
    [Crossref]
  33. N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
    [Crossref]

2018 (1)

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

2016 (2)

Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, and M. C. Tan, “Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging,” ACS Biomater. Sci. Eng. 2, 809–817 (2016).
[Crossref]

X. Xue, M. Thitsa, T. Cheng, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “Laser power density dependent energy transfer between Tm3+ and Tb3+: tunable upconversion emissions in NaYF4:Tm3+, Tb3+, Yb3+ microcrystals,” Opt. Express 24, 26307–26321 (2016).
[Crossref]

2015 (1)

S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, and Z. Sun, “Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process,” J. Phys. B 48, 135402 (2015).
[Crossref]

2014 (3)

Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
[Crossref]

R. M. El-Agmy, N. M. Al-Hosiny, S. Abdallah, and M. S. Abdel-Aal, “Generation of short wavelength in up-conversion of Tm3+ doped fluoride glass and its application in fiber lasers,” J. Mod. Phys. 5, 123–127 (2014).
[Crossref]

J. Li, J. Zhang, X. Zhang, Z. Hao, and Y. Luo, “Cooperative downconversion and near infrared luminescence of Tm3+/Yb3+ codoped calcium scandate phosphor,” J. Alloys Compd. 583, 96–99 (2014).
[Crossref]

2012 (1)

C. F. Gainer, G. S. Joshua, and M. Romanowski, “Toward the use of two-color emission control in upconverting NaYF4:Er3+, Yb3+ nanoparticles for biomedical imaging,” Proc. SPIE 8231, 82310I (2012).
[Crossref]

2011 (1)

C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, “Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation,” J. Mater. Chem. 21, 18530–18533 (2011).
[Crossref]

2010 (1)

C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
[Crossref]

2009 (1)

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[Crossref]

2008 (4)

X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+–RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33, 2858–2860 (2008).
[Crossref]

N. K. Giri, A. K. Singh, D. K. Rai, and S. B. Rai, “Role of Yb3+ and Tm3+ ions in upconversion emission of Tb3+ under 798 and 980  nm laser excitations in Tb3+–Tm3+–Yb3+ doped tellurite glass,” Opt. Commun. 281, 3547–3552 (2008).
[Crossref]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130, 5642–5643 (2008).
[Crossref]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+–Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989–8994 (2008).
[Crossref]

2007 (9)

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+(RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[Crossref]

G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin. 122, 128–130 (2007).
[Crossref]

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, and E. B. da Costa, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, and P. Huang, “Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals,” Appl. Phys. Lett. 91, 251903 (2007).
[Crossref]

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals,” Nanotechnology 18, 275609 (2007).
[Crossref]

A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, “Coherent phase control of resonance-mediated (2+1) three-photon absorption,” Phys. Rev. A 75, 031401 (2007).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

G. S. Yi and G. M. Chow, “Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19, 341–343 (2007).
[Crossref]

2005 (1)

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980  nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth–lead glasses,” Appl. Phys. Lett. 87, 171911 (2005).
[Crossref]

2004 (2)

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation,” Opt. Commun. 242, 215–219 (2004).
[Crossref]

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref]

2002 (1)

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

2001 (2)

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[Crossref]

J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, “The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors,” J. Phys. Chem. B 105, 948–953 (2001).
[Crossref]

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

1999 (1)

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[Crossref]

1970 (1)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

Abdallah, S.

R. M. El-Agmy, N. M. Al-Hosiny, S. Abdallah, and M. S. Abdel-Aal, “Generation of short wavelength in up-conversion of Tm3+ doped fluoride glass and its application in fiber lasers,” J. Mod. Phys. 5, 123–127 (2014).
[Crossref]

Abdel-Aal, M. S.

R. M. El-Agmy, N. M. Al-Hosiny, S. Abdallah, and M. S. Abdel-Aal, “Generation of short wavelength in up-conversion of Tm3+ doped fluoride glass and its application in fiber lasers,” J. Mod. Phys. 5, 123–127 (2014).
[Crossref]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Al-Hosiny, N. M.

R. M. El-Agmy, N. M. Al-Hosiny, S. Abdallah, and M. S. Abdel-Aal, “Generation of short wavelength in up-conversion of Tm3+ doped fluoride glass and its application in fiber lasers,” J. Mod. Phys. 5, 123–127 (2014).
[Crossref]

Amitay, Z.

A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, “Coherent phase control of resonance-mediated (2+1) three-photon absorption,” Phys. Rev. A 75, 031401 (2007).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref]

Bai, X.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Bai, Z.

Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
[Crossref]

Bandla, A.

Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, and M. C. Tan, “Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging,” ACS Biomater. Sci. Eng. 2, 809–817 (2016).
[Crossref]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Brif, C.

C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
[Crossref]

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Buddhudu, S.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980  nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth–lead glasses,” Appl. Phys. Lett. 87, 171911 (2005).
[Crossref]

Bueno, L. A.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, and E. B. da Costa, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

Cao, C.

G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin. 122, 128–130 (2007).
[Crossref]

Chakrabarti, R.

C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
[Crossref]

Chen, D.

X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+–RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33, 2858–2860 (2008).
[Crossref]

D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, and P. Huang, “Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals,” Appl. Phys. Lett. 91, 251903 (2007).
[Crossref]

Chen, J.

Chen, Y.

Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals,” Nanotechnology 18, 275609 (2007).
[Crossref]

Chen, Z.

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

Cheng, T.

Chow, G. M.

G. S. Yi and G. M. Chow, “Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19, 341–343 (2007).
[Crossref]

Chuntonov, L.

A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, “Coherent phase control of resonance-mediated (2+1) three-photon absorption,” Phys. Rev. A 75, 031401 (2007).
[Crossref]

Cogdell, R. J.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

Cui, Y.

G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin. 122, 128–130 (2007).
[Crossref]

da Costa, E. B.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, and E. B. da Costa, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

da Silva, E. A.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, and E. B. da Costa, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

Dai, Q.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Dayan, B.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[Crossref]

De, G.

G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin. 122, 128–130 (2007).
[Crossref]

De Silva, C. R.

C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, “Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation,” J. Mater. Chem. 21, 18530–18533 (2011).
[Crossref]

Deng, D.

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

Ding, J.

S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, and Z. Sun, “Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process,” J. Phys. B 48, 135402 (2015).
[Crossref]

Do Nascimento, R. F.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, and E. B. da Costa, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

Dong, B.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Dong, G.

Dudovich, N.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[Crossref]

El-Agmy, R. M.

R. M. El-Agmy, N. M. Al-Hosiny, S. Abdallah, and M. S. Abdel-Aal, “Generation of short wavelength in up-conversion of Tm3+ doped fluoride glass and its application in fiber lasers,” J. Mod. Phys. 5, 123–127 (2014).
[Crossref]

Faeder, S. M. G.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[Crossref]

Fan, L.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Fern, G. R.

J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, “The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors,” J. Phys. Chem. B 105, 948–953 (2001).
[Crossref]

Fujii, M.

Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
[Crossref]

Gainer, C. F.

C. F. Gainer, G. S. Joshua, and M. Romanowski, “Toward the use of two-color emission control in upconverting NaYF4:Er3+, Yb3+ nanoparticles for biomedical imaging,” Proc. SPIE 8231, 82310I (2012).
[Crossref]

C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, “Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation,” J. Mater. Chem. 21, 18530–18533 (2011).
[Crossref]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

Gandman, A.

A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, “Coherent phase control of resonance-mediated (2+1) three-photon absorption,” Phys. Rev. A 75, 031401 (2007).
[Crossref]

Gao, W.

Giri, N. K.

N. K. Giri, A. K. Singh, D. K. Rai, and S. B. Rai, “Role of Yb3+ and Tm3+ ions in upconversion emission of Tb3+ under 798 and 980  nm laser excitations in Tb3+–Tm3+–Yb3+ doped tellurite glass,” Opt. Commun. 281, 3547–3552 (2008).
[Crossref]

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, and E. B. da Costa, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

Gui, S. C. R.

Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
[Crossref]

Guo, T.

D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, and P. Huang, “Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals,” Appl. Phys. Lett. 91, 251903 (2007).
[Crossref]

Hao, Z.

J. Li, J. Zhang, X. Zhang, Z. Hao, and Y. Luo, “Cooperative downconversion and near infrared luminescence of Tm3+/Yb3+ codoped calcium scandate phosphor,” J. Alloys Compd. 583, 96–99 (2014).
[Crossref]

Hashemi, N.

Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
[Crossref]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

Herek, J. L.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

Huang, P.

D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, and P. Huang, “Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals,” Appl. Phys. Lett. 91, 251903 (2007).
[Crossref]

Huang, S.

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation,” Opt. Commun. 242, 215–219 (2004).
[Crossref]

Huang, Y.

S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, and Z. Sun, “Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process,” J. Phys. B 48, 135402 (2015).
[Crossref]

Imakita, K.

Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
[Crossref]

Ireland, T. G.

J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, “The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors,” J. Phys. Chem. B 105, 948–953 (2001).
[Crossref]

Javier García de Abajo, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Ji, X. H.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980  nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth–lead glasses,” Appl. Phys. Lett. 87, 171911 (2005).
[Crossref]

Jia, T.

S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, and Z. Sun, “Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process,” J. Phys. B 48, 135402 (2015).
[Crossref]

Jiang, Z. H.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+(RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[Crossref]

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980  nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth–lead glasses,” Appl. Phys. Lett. 87, 171911 (2005).
[Crossref]

Johnson, J.

Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
[Crossref]

Joshua, G. S.

C. F. Gainer, G. S. Joshua, and M. Romanowski, “Toward the use of two-color emission control in upconverting NaYF4:Er3+, Yb3+ nanoparticles for biomedical imaging,” Proc. SPIE 8231, 82310I (2012).
[Crossref]

C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, “Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation,” J. Mater. Chem. 21, 18530–18533 (2011).
[Crossref]

Kong, X.

Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals,” Nanotechnology 18, 275609 (2007).
[Crossref]

Lakshminarayana, G.

Lei, Y.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Li, J.

J. Li, J. Zhang, X. Zhang, Z. Hao, and Y. Luo, “Cooperative downconversion and near infrared luminescence of Tm3+/Yb3+ codoped calcium scandate phosphor,” J. Alloys Compd. 583, 96–99 (2014).
[Crossref]

Li, T.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980  nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth–lead glasses,” Appl. Phys. Lett. 87, 171911 (2005).
[Crossref]

Li, Z.

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

Liao, L. D.

Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, and M. C. Tan, “Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging,” ACS Biomater. Sci. Eng. 2, 809–817 (2016).
[Crossref]

Lin, H.

Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
[Crossref]

Liu, X.

X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+–RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33, 2858–2860 (2008).
[Crossref]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130, 5642–5643 (2008).
[Crossref]

Liu, Y.-H.

Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, and M. C. Tan, “Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging,” ACS Biomater. Sci. Eng. 2, 809–817 (2016).
[Crossref]

Lu, S.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation,” Opt. Commun. 242, 215–219 (2004).
[Crossref]

Luo, J.

Luo, Y.

J. Li, J. Zhang, X. Zhang, Z. Hao, and Y. Luo, “Cooperative downconversion and near infrared luminescence of Tm3+/Yb3+ codoped calcium scandate phosphor,” J. Alloys Compd. 583, 96–99 (2014).
[Crossref]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

Martinez-Rubio, M. I.

J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, “The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors,” J. Phys. Chem. B 105, 948–953 (2001).
[Crossref]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[Crossref]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

Montazami, R.

Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
[Crossref]

Motzkus, M.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

Ohishi, Y.

Pan, G.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

Qiao, Y.

Qin, G.

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation,” Opt. Commun. 242, 215–219 (2004).
[Crossref]

Qin, W.

G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin. 122, 128–130 (2007).
[Crossref]

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation,” Opt. Commun. 242, 215–219 (2004).
[Crossref]

Qiu, J.

Rabitz, H.

C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
[Crossref]

Rai, D. K.

N. K. Giri, A. K. Singh, D. K. Rai, and S. B. Rai, “Role of Yb3+ and Tm3+ ions in upconversion emission of Tb3+ under 798 and 980  nm laser excitations in Tb3+–Tm3+–Yb3+ doped tellurite glass,” Opt. Commun. 281, 3547–3552 (2008).
[Crossref]

Rai, S. B.

N. K. Giri, A. K. Singh, D. K. Rai, and S. B. Rai, “Role of Yb3+ and Tm3+ ions in upconversion emission of Tb3+ under 798 and 980  nm laser excitations in Tb3+–Tm3+–Yb3+ doped tellurite glass,” Opt. Commun. 281, 3547–3552 (2008).
[Crossref]

Ren, X.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Romanowski, M.

C. F. Gainer, G. S. Joshua, and M. Romanowski, “Toward the use of two-color emission control in upconverting NaYF4:Er3+, Yb3+ nanoparticles for biomedical imaging,” Proc. SPIE 8231, 82310I (2012).
[Crossref]

C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, “Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation,” J. Mater. Chem. 21, 18530–18533 (2011).
[Crossref]

Rybak, L.

A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, “Coherent phase control of resonance-mediated (2+1) three-photon absorption,” Phys. Rev. A 75, 031401 (2007).
[Crossref]

Sheng, Y.

Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, and M. C. Tan, “Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging,” ACS Biomater. Sci. Eng. 2, 809–817 (2016).
[Crossref]

Silberberg, Y.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[Crossref]

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[Crossref]

Silver, J.

J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, “The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors,” J. Phys. Chem. B 105, 948–953 (2001).
[Crossref]

Singh, A. K.

N. K. Giri, A. K. Singh, D. K. Rai, and S. B. Rai, “Role of Yb3+ and Tm3+ ions in upconversion emission of Tb3+ under 798 and 980  nm laser excitations in Tb3+–Tm3+–Yb3+ doped tellurite glass,” Opt. Commun. 281, 3547–3552 (2008).
[Crossref]

Song, H.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Sun, Y.

Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals,” Nanotechnology 18, 275609 (2007).
[Crossref]

Sun, Z.

S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, and Z. Sun, “Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process,” J. Phys. B 48, 135402 (2015).
[Crossref]

Suzuki, T.

Tan, M. C.

Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, and M. C. Tan, “Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging,” ACS Biomater. Sci. Eng. 2, 809–817 (2016).
[Crossref]

Thakor, N.

Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, and M. C. Tan, “Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging,” ACS Biomater. Sci. Eng. 2, 809–817 (2016).
[Crossref]

Thitsa, M.

Tian, L.

Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals,” Nanotechnology 18, 275609 (2007).
[Crossref]

Wang, F.

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130, 5642–5643 (2008).
[Crossref]

Wang, R.

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

Wang, T.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Wang, Y.

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[Crossref]

D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, and P. Huang, “Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals,” Appl. Phys. Lett. 91, 251903 (2007).
[Crossref]

G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin. 122, 128–130 (2007).
[Crossref]

Withnall, R.

J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, “The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors,” J. Phys. Chem. B 105, 948–953 (2001).
[Crossref]

Wohlleben, W.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

Wu, C.

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation,” Opt. Commun. 242, 215–219 (2004).
[Crossref]

Xie, L.

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[Crossref]

Xu, S.

S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, and Z. Sun, “Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process,” J. Phys. B 48, 135402 (2015).
[Crossref]

Xue, X.

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+(RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[Crossref]

Yao, Y.

S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, and Z. Sun, “Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process,” J. Phys. B 48, 135402 (2015).
[Crossref]

Ye, S.

Yi, G. S.

G. S. Yi and G. M. Chow, “Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19, 341–343 (2007).
[Crossref]

Yin, H.

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

Yu, J.

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

Yu, Y.

D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, and P. Huang, “Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals,” Appl. Phys. Lett. 91, 251903 (2007).
[Crossref]

Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals,” Nanotechnology 18, 275609 (2007).
[Crossref]

Zeidler, D.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

Zhang, H.

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[Crossref]

Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals,” Nanotechnology 18, 275609 (2007).
[Crossref]

Zhang, J.

J. Li, J. Zhang, X. Zhang, Z. Hao, and Y. Luo, “Cooperative downconversion and near infrared luminescence of Tm3+/Yb3+ codoped calcium scandate phosphor,” J. Alloys Compd. 583, 96–99 (2014).
[Crossref]

G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin. 122, 128–130 (2007).
[Crossref]

G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin. 122, 128–130 (2007).
[Crossref]

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation,” Opt. Commun. 242, 215–219 (2004).
[Crossref]

Zhang, P.

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

Zhang, Q. Y.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+(RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[Crossref]

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980  nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth–lead glasses,” Appl. Phys. Lett. 87, 171911 (2005).
[Crossref]

Zhang, S.

S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, and Z. Sun, “Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process,” J. Phys. B 48, 135402 (2015).
[Crossref]

Zhang, X.

J. Li, J. Zhang, X. Zhang, Z. Hao, and Y. Luo, “Cooperative downconversion and near infrared luminescence of Tm3+/Yb3+ codoped calcium scandate phosphor,” J. Alloys Compd. 583, 96–99 (2014).
[Crossref]

Zhao, D.

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation,” Opt. Commun. 242, 215–219 (2004).
[Crossref]

Zhao, J.

Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals,” Nanotechnology 18, 275609 (2007).
[Crossref]

Zheng, K.

D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, and P. Huang, “Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals,” Appl. Phys. Lett. 91, 251903 (2007).
[Crossref]

Zheng, Y.

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

Zhou, G.

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

Zhu, B.

Zhu, S.

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

ACS Biomater. Sci. Eng. (1)

Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, and M. C. Tan, “Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging,” ACS Biomater. Sci. Eng. 2, 809–817 (2016).
[Crossref]

Appl. Phys. Lett. (5)

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, and E. B. da Costa, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, and P. Huang, “Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals,” Appl. Phys. Lett. 91, 251903 (2007).
[Crossref]

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980  nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth–lead glasses,” Appl. Phys. Lett. 87, 171911 (2005).
[Crossref]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+(RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[Crossref]

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[Crossref]

Chem. Mater. (1)

G. S. Yi and G. M. Chow, “Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19, 341–343 (2007).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref]

Infrared Phys. Technol. (1)

R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, and J. Yu, “Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications,” Infrared Phys. Technol. 94, 1–6 (2018).
[Crossref]

J. Alloys Compd. (1)

J. Li, J. Zhang, X. Zhang, Z. Hao, and Y. Luo, “Cooperative downconversion and near infrared luminescence of Tm3+/Yb3+ codoped calcium scandate phosphor,” J. Alloys Compd. 583, 96–99 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130, 5642–5643 (2008).
[Crossref]

J. Lumin. (1)

G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin. 122, 128–130 (2007).
[Crossref]

J. Mater. Chem. (1)

C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, “Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation,” J. Mater. Chem. 21, 18530–18533 (2011).
[Crossref]

J. Mater. Chem. C (1)

Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C 2, 1736–1741 (2014).
[Crossref]

J. Mod. Phys. (1)

R. M. El-Agmy, N. M. Al-Hosiny, S. Abdallah, and M. S. Abdel-Aal, “Generation of short wavelength in up-conversion of Tm3+ doped fluoride glass and its application in fiber lasers,” J. Mod. Phys. 5, 123–127 (2014).
[Crossref]

J. Phys. B (1)

S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, and Z. Sun, “Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process,” J. Phys. B 48, 135402 (2015).
[Crossref]

J. Phys. Chem. B (1)

J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, “The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors,” J. Phys. Chem. B 105, 948–953 (2001).
[Crossref]

J. Phys. Chem. C (1)

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects,” J. Phys. Chem. C 111, 13611–13617 (2007).
[Crossref]

Nanotechnology (1)

Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals,” Nanotechnology 18, 275609 (2007).
[Crossref]

Nature (2)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

New J. Phys. (1)

C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
[Crossref]

Opt. Commun. (2)

N. K. Giri, A. K. Singh, D. K. Rai, and S. B. Rai, “Role of Yb3+ and Tm3+ ions in upconversion emission of Tb3+ under 798 and 980  nm laser excitations in Tb3+–Tm3+–Yb3+ doped tellurite glass,” Opt. Commun. 281, 3547–3552 (2008).
[Crossref]

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation,” Opt. Commun. 242, 215–219 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (2)

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[Crossref]

A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, “Coherent phase control of resonance-mediated (2+1) three-photon absorption,” Phys. Rev. A 75, 031401 (2007).
[Crossref]

Phys. Rev. B (2)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

Phys. Rev. Lett. (1)

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[Crossref]

Proc. SPIE (1)

C. F. Gainer, G. S. Joshua, and M. Romanowski, “Toward the use of two-color emission control in upconverting NaYF4:Er3+, Yb3+ nanoparticles for biomedical imaging,” Proc. SPIE 8231, 82310I (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the experimental setup. G1 and G2 are two diffraction gratings of 1200 lines/mm each. C1 and C2 are two cylindrical concave mirrors each of focus length 200 mm. SLM, spatial light modulator; λ/4, quarter-wave plate; L1, focusing lens; GA, genetic algorithm.
Fig. 2.
Fig. 2. Characterization of the Tm3+/Yb3+ co-doped glass ceramic sample. (a) XRD pattern. (b), (c) TEM images.
Fig. 3.
Fig. 3. (a) Absorption spectrum of the Tm3+/Yb3+ co-doped glass ceramics in the UV–VIS–NIR region and (b) the luminescence spectrum of the same sample with the excitation of an 800 nm femtosecond laser pulse.
Fig. 4.
Fig. 4. Laser peak intensity dependences of (a) luminescence intensities at 355, 454, 473, and 975 nm for the Tm3+/Yb3+ co-doped glass ceramics and (b) luminescence intensity at 975 nm for the Yb3+ single-doped glass ceramics, together with the absorption (lower right) and luminescence (upper left) spectra.
Fig. 5.
Fig. 5. Energy level structures of Tm3+ and Yb3+ ions, together with the proposed mechanisms for explaining the luminescence processes and the energy transfer from Tm3+ to Yb3+ ions.
Fig. 6.
Fig. 6. Dependences of luminescence intensities on the value of θ, the angle between the direction of input laser polarization and the optical axis of the λ/4 plate. (a) Luminescence signals at 454 nm (red squares) and 975 nm (blue circles) for the Tm3+/Yb3+ co-doped glass ceramics. (b) Luminescence signal at 975 nm (rose squares) for the Yb3+ single-doped glass ceramics.
Fig. 7.
Fig. 7. Optimization processes for (a-1) enhancing and (a-2) suppressing the luminescence signal at 975 nm. Luminescence spectra of the Tm3+/Yb3+ sample with (blue curve) and without (red curve) phase optimization for (b-1) optimal enhancement and (b-2) suppression. Phase masks (blue curve) and laser spectra (red curve) for (c-1) optimal enhancement and (c-2) suppression. Time profiles of the shaped (blue curve) and TL (red curve) femtosecond pulses for (d-1) optimal enhancement and (d-2) suppression.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W(ΔE)=W(0)exp(βΔE),
Af16{[cos2(θ)+sin2(θ)]×[cos4(θ)+sin4(θ)]}×G(ωf)μgiμif|Aon-res+Anear-res|2dωf,
Aon_resiπ+dωiG(ωi)E(ωi)A(2)(ωfωi),
Anear_res+dΔ1ΔE(ωiΔ)A(2)(ωfωi+Δ),
A(2)(Ω)=+dωE(ω)E(Ωω).

Metrics