Abstract

We present a conformal metamaterial with simultaneous optical transparency and broadband millimeter-wave absorption for a curved surface. By tailoring the reflection response of meta-atoms at oblique angles, it is possible to achieve excellent absorption performance from 26.5 to 40.0 GHz within a wide angular range from 0° to 60° for transverse-electric and transverse-magnetic waves. In the meantime, by employing transparent substrates, including polyvinyl chloride and polyethylene terephthalate, good optical transmittance (80.1%) and flexibility are obtained simultaneously. The reflectivity of a curved metallic surface coated with the proposed curved metamaterial is simulated and measured experimentally. Both results demonstrate excellent absorption performance of the metamaterial, which is highly favored for practical applications.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Conformal metamaterial absorber for curved surface

Youngsoo Jang, Minyeong Yoo, and Sungjoon Lim
Opt. Express 21(20) 24163-24170 (2013)

Transparent and flexible broadband absorber for the sub-6G band of 5G mobile communication

Yanghui Wu, Junjie Wang, Senfeng Lai, Xiaobo Zhu, and Wenhua Gu
Opt. Mater. Express 8(11) 3351-3358 (2018)

Dual and broadband terahertz metamaterial absorber based on a compact resonator structure

Yongzhi Cheng, Haijun Zou, Jiaji Yang, Xuesong Mao, and Rongzhou Gong
Opt. Mater. Express 8(10) 3104-3114 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971).
    [Crossref]
  2. S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
    [Crossref]
  3. A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
    [Crossref]
  4. L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
    [Crossref]
  5. H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
    [Crossref]
  6. T. J. Cui, “Microwave metamaterials,” Nat. Sci. Rev. 5, 134–136 (2017).
    [Crossref]
  7. T. J. Cui, “Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
    [Crossref]
  8. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).
    [Crossref]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  10. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
    [Crossref]
  11. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
    [Crossref]
  12. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
    [Crossref]
  13. R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38, 4988–4990 (2013).
    [Crossref]
  14. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
    [Crossref]
  15. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
    [Crossref]
  16. F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
    [Crossref]
  17. Y. C. Fan, F. L. Zhang, Q. Zhao, Z. Y. Wei, and H. Q. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
    [Crossref]
  18. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
    [Crossref]
  19. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
    [Crossref]
  20. Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
    [Crossref]
  21. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
    [Crossref]
  22. J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
    [Crossref]
  23. D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
    [Crossref]
  24. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
    [Crossref]
  25. Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
    [Crossref]
  26. Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
    [Crossref]
  27. Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
    [Crossref]
  28. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
    [Crossref]
  29. Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
    [Crossref]
  30. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
    [Crossref]
  31. B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
    [Crossref]
  32. D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
    [Crossref]
  33. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
    [Crossref]
  34. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
    [Crossref]
  35. X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
    [Crossref]
  36. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [Crossref]
  37. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
    [Crossref]
  38. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
    [Crossref]
  39. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
    [Crossref]
  40. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
    [Crossref]
  41. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998).
  42. B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
    [Crossref]
  43. S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
    [Crossref]

2018 (5)

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

2017 (5)

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

T. J. Cui, “Microwave metamaterials,” Nat. Sci. Rev. 5, 134–136 (2017).
[Crossref]

T. J. Cui, “Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

2015 (4)

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

2014 (4)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Y. C. Fan, F. L. Zhang, Q. Zhao, Z. Y. Wei, and H. Q. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref]

2013 (2)

R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38, 4988–4990 (2013).
[Crossref]

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

2012 (5)

Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref]

2011 (3)

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
[Crossref]

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

2010 (3)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

2008 (3)

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

2007 (2)

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
[Crossref]

2006 (1)

2005 (3)

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

2004 (1)

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

1971 (1)

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971).
[Crossref]

Abshinova, M.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Afsar, M. N.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Averitt, R. D.

Azad, A. K.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Boreman, G. D.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

Caiazzo, M.

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

Cao, J.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Casaletti, M.

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

Chen, H.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
[Crossref]

Chen, H. B.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Chen, X.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Chen, Z. H.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Cheng, Q.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

Cheng, Y.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Cole, M. T.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Cucini, A.

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

Cui, T. J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

T. J. Cui, “Microwave metamaterials,” Nat. Sci. Rev. 5, 134–136 (2017).
[Crossref]

T. J. Cui, “Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

de Miollis, F.

Deng, C. R.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Dong, D. S.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Dong, G.

Fan, K.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Fan, Y.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Fan, Y. C.

Fang, Z.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Feng, S.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Fu, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Gao, L. H.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Goto, Y.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

Grzegorczyk, T. M.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Gu, J.

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Guan, J. G.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Guillet, J. P.

Guo, L. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

Guo, Y. H.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Hachiya, H.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

Han, J.

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Hao, Y.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

He, Q.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Hu, D. W.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Huang, R.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Ishikawa, K.

Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
[Crossref]

Iwaszczuk, K.

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

Jepsen, P. U.

Ji, G. B.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Jiang, W. X.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Kong, J. A.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Kong, L. B.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Korolev, K. A.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Kotter, D.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

Kurahashi, S.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

Kuroki, S.

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Li, H.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Li, H. Q.

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Li, Q. F.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Li, W.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Li, Z. W.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Liu, L.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
[Crossref]

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Liu, W. W.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Liu, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Lv, H. L.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Ma, H.

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Ma, S. J.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Maci, S.

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

Matitsine, S.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Matsumoto, K.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Meng, Y. Y.

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Milne, W. I.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Monacelli, B.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

Mounaix, P.

Munk, B. A.

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
[Crossref]

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

Munk, P.

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
[Crossref]

Naeem, M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Naito, Y.

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971).
[Crossref]

Namai, A.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

O’Hara, J. F.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Ogino, S.

Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
[Crossref]

Ohkoshi, S.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Okano, Y.

Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
[Crossref]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Pang, Y. Q.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Pendry, J. B.

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998).

Pryor, J.

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
[Crossref]

Pryor, J. B.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

Qiu, K.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Qu, S. B.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sakurai, S.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Sasaki, S.

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Sato, K.

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Shen, L. H.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Shen, X. P.

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Shen, Y.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

Shrekenhamer, C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Singh, P. K.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).
[Crossref]

Sonkusale, S.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Strikwerda, A. C.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Suetake, K.

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971).
[Crossref]

Sui, S.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Sun, J.

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Tan, P. K.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Tang, C. B.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Tomita, K.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Tuncer, H. M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Wang, J. F.

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Wang, L. Y. P.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Wang, Y. L.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Wang, Z. L.

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Wei, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Wei, Z. Y.

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Wu, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Wu, B. I.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Wu, B.-I.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

Wu, T. L.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Xu, Z. C. J.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Yahiaoui, R.

Yang, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Yang, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Yang, Y.

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Yang, Z. H.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Zang, Y.

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Zhang, B. S.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Zhang, C.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

Zhang, F.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Zhang, F. L.

Zhang, J. Q.

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Zhang, W.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Zhang, X.

Zhao, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Zhao, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Y. C. Fan, F. L. Zhang, Q. Zhao, Z. Y. Wei, and H. Q. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref]

Zhao, Y.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Zhou, J.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
[Crossref]

Zhou, L.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Zhu, J.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

ACS Photon. (1)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Adv. Opt. Mater. (2)

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Angew. Chem. Int. Ed. (1)

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Appl. Phys. Lett. (9)

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

IEEE Trans. Anntenas Propag. (1)

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

IEEE Trans. Antennas Propag. (2)

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
[Crossref]

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971).
[Crossref]

Int. Mater. Rev. (1)

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

J. Appl. Phys. (1)

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

J. Mater. Chem. C (1)

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

J. Opt. (1)

T. J. Cui, “Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Nat. Sci. Rev. (1)

T. J. Cui, “Microwave metamaterials,” Nat. Sci. Rev. 5, 134–136 (2017).
[Crossref]

New J. Phys. (1)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (2)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Phys. Rev. E (2)

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sci. Rep. (2)

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Other (1)

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the flexible and transparent MMA at millimeter frequencies. (b) Geometry of a unit cell.
Fig. 2.
Fig. 2. (a) Simulated absorptivity spectra of the proposed MMA under normal incidence. (b), (c) Simulated magnetic field distribution and surface current distribution of the meta-atom at 32.0 GHz under normal incidence.
Fig. 3.
Fig. 3. (a) Schematic of the equivalent TL of the MMA. (b) TL model to retrieve the surface impedance of the ITO pattern. (c), (d) Calculated and simulated fr as well as absorptivity with change of incident angle. (e), (f) Dependence of the simulated absorptivity spectra on side length a and line width g. (g), (h) Simulated absorptivity spectra of the proposed MMA at incident angles from 0° to 70° for TE and TM waves.
Fig. 4.
Fig. 4. (a), (b) Schematic of the conformal MMA backed by a conducting cylindrical surface under normal incidence of TE and TM waves. (c)–(h) Scattering patterns on the xoz plane at 32.0 GHz for TE and TM waves with r=75, 150, and 500 mm. (i), (j) Simulated RCS reduction of the MMA coating compared with the control conducting surface of the same size for TE and TM waves with r=75, 150, and 500 mm.
Fig. 5.
Fig. 5. Simulated angular stability of the MMA coating compared with the control conducting surface of the same size for (a) TE and (b) TM waves with r=75  mm.
Fig. 6.
Fig. 6. (a) Photograph of the fabricated sample, where the inset shows the measured light transmittance. (b) The whole experimental setup in a microwave chamber. (c), (d) Measured absorptivity spectra of the proposed MMA from 20.0 to 40.0 GHz at angles of 0°, 15°, 30°, and 45° for TE and TM waves. (e), (f) Measured RCS reduction of the MMA coating compared with the control conducting surface of the same size with r=75  mm under normal incidence of TE and TM waves.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R=ZinZ0TE/TMZin+Z0TE/TM,
1Zin=1ZS+1jZdtanβrd,
βrd=π/2.
fr=c4dεrsin2θ.
RTE=ZScosθZ0ZScosθ+Z0,
RTM=ZSZ0cosθZS+Z0cosθ.
ZS=Z0S2122S21,