Abstract

We report, to the best of our knowledge, the first demonstration of solid-state optical refrigeration of a Ho-doped material. A 1 mol% Ho-doped yttrium lithium fluoride (YLF) crystal is cooled by mid-IR laser radiation, and its external quantum efficiency and parasitic background absorption are evaluated. Using detailed temperature-dependent spectroscopic analysis, the minimum achievable temperature of a 1% Ho:YLF sample is estimated. Owing to its narrower ground- and excited-state manifolds, larger absorption cross section, and the coincidence of the optimum cooling wavelength of 2070 nm with commercially available high-power and highly efficient Tm-fiber lasers, Ho3+-doped crystals are superior to Tm3+-doped systems for mid-IR optical refrigeration. With further improvement in material purity and increased doping concentration, they offer great potential towards enhancing the cooling efficiency nearly two-fold over the best current Yb:YLF systems, achieving lower temperatures as well as for the realization of eye-safe mid-IR high-power radiation balanced lasers.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers

Saeid Rostami, Alexander R. Albrecht, Azzurra Volpi, Markus P. Hehlen, Mauro Tonelli, and Mansoor Sheik-Bahae
Opt. Lett. 44(6) 1419-1422 (2019)

Efficient and enhanced optical refrigeration beyond 2  μm in Ho3+-doped solids via copumping scheme

Guang-Zong Dong and Xin-Lu Zhang
J. Opt. Soc. Am. B 31(7) 1712-1718 (2014)

Efficient optical refrigeration in Yb3+:YLiF4 at cryogenic temperatures via pulsed excitation

Guang-Zong Dong, Kai-Shun Zou, and Jun-Cheng Liu
J. Opt. Soc. Am. B 35(7) 1570-1577 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
    [Crossref]
  2. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007).
    [Crossref]
  3. A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
    [Crossref]
  4. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [Crossref]
  5. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
    [Crossref]
  6. N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
    [Crossref]
  7. B. Zhong, J. Yin, Y. Jia, L. Chen, Y. Hang, and J. Yin, “Laser cooling of Yb3+-doped LuLiF4 crystal,” Opt. Lett. 39, 2747–2750 (2014).
    [Crossref]
  8. A. Volpi, G. Cittadino, A. Di Lieto, and M. Tonelli, “Anti-Stokes cooling of Yb-doped KYF4 single crystals,” J. Lumin. 203, 670–675 (2018).
    [Crossref]
  9. D. V. Seletskiy, S. Melgaard, M. Sheik-Bahae, S. Bigotta, A. DiLieto, and M. Tonelli, “Laser cooling of a semiconductor load using a Yb:YLF optical refrigerator,” Proc. SPIE 7614, 761409 (2010).
    [Crossref]
  10. S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
    [Crossref]
  11. A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2016).
    [Crossref]
  12. M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
    [Crossref]
  13. D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, “Laser cooling in solids: advances and prospects,” Rep. Prog. Phys. 79, 096401 (2016).
    [Crossref]
  14. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
    [Crossref]
  15. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
    [Crossref]
  16. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
    [Crossref]
  17. E. E. Brown, U. Hömmerich, E. Kumi-Barimah, A. Bluiett, and S. B. Trivedi, “Comparative spectroscopic studies of Ho:KPb2Cl5, Ho:KPb2Br5, and Ho:YAG for 2  μm laser cooling applications,” Proc. SPIE 9380, 93800O (2015).
    [Crossref]
  18. A. Gragossian, A. Volpi, J. Meng, A. R. Albrecht, S. Rostami, M. P. Hehlen, and M. Sheik-Bahae, “Investigation of temperature dependence of quantum efficiency and parasitic absorption in rare-earth doped crystals,” Proc. SPIE 10550, 1055006 (2018).
    [Crossref]
  19. S. Melgaard, D. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80  K,” Opt. Express 22, 7756–7764 (2014).
    [Crossref]
  20. P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3D transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32–41 (1986).
  21. B. M. Walsh, “Spectroscopy and excitation dynamics of the trivalent lanthanides Tm3+ and Ho3+ in LiYF4,” (1995).
  22. A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408–412, 780–783 (2006).
    [Crossref]
  23. S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration of Tm:YLF and Ho:YLF crystals,” Proc. SPIE 9765, 97650P (2016).
    [Crossref]
  24. S. Rostami, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Advances in laser cooling of Tm:YLF crystals,” Proc. SPIE 10121, 1012101 (2017).
    [Crossref]
  25. S. D. Melgaard, “Cryogenic optical refrigeration: laser cooling of solids below 123  K,” Ph.D. thesis (University of New Mexico, 2013).
  26. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
    [Crossref]
  27. F. Cornacchia, A. Toncelli, and M. Tonelli, “2  μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron. 33, 61–109 (2009).
    [Crossref]
  28. S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
    [Crossref]
  29. K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2  μm,” Opt. Express 22, 19947–19952 (2014).
    [Crossref]
  30. N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24, 13946–13956 (2016).
    [Crossref]
  31. W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWT1.
  32. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [Crossref]
  33. B. Anderson, A. Flores, J. Grosek, and I. Dajani, “High power Tm-doped all-fiber amplifier at 2130  nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper SM1L.3.
  34. A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
    [Crossref]
  35. G.-Z. Dong and X.-L. Zhang, “Role of upconversion in optical refrigeration: a theoretical study of laser cooling with Ho3+ doped fluoride crystals,” J. Opt. Soc. Am. B 30, 3041–3047 (2013).
    [Crossref]
  36. G.-Z. Dong, X.-L. Zhang, and L. Li, “Energy transfer enhanced laser cooling in Ho3+ and Tm3+-codoped lithium yttrium fluoride,” J. Opt. Soc. Am. B 30, 939–944 (2013).
    [Crossref]
  37. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
    [Crossref]
  38. O. Graydon, “Payload success,” Nat. Photonics 12, 315 (2018).
    [Crossref]
  39. M. P. Hehlen, M. Sheik-Bahae, and R. I. Epstein, “Solid-state optical refrigeration,” in Handbook on the Physics and Chemistry of Rare Earths (2014), Vol. 45, pp. 179–260.
  40. G. Nemova, Laser Cooling: Fundamental Properties and Applications (Pan Stanford, 2017).
  41. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
    [Crossref]
  42. S. R. Bowman, S. O. Connor, S. Biswal, and N. J. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO 2011—Laser Science to Photonic Applications (2011), paper CMH4.
  43. S. Rostami, A. R. Albrecht, A. Volpi, M. P. Hehlen, M. Tonelli, and M. Sheik-Bahae, “Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers,” arXiv:1901.07737 (2019).
  44. G. Nemova and R. Kashyap, “Radiation-balanced amplifier with two pumps and a single system of ions,” J. Opt. Soc. Am. B 28, 2191–2194 (2011).
    [Crossref]
  45. J. Powers and P. Haus, Fundamentals of Nonlinear Optics, 2nd ed. (CRC Press, 2017).

2018 (5)

A. Volpi, G. Cittadino, A. Di Lieto, and M. Tonelli, “Anti-Stokes cooling of Yb-doped KYF4 single crystals,” J. Lumin. 203, 670–675 (2018).
[Crossref]

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

A. Gragossian, A. Volpi, J. Meng, A. R. Albrecht, S. Rostami, M. P. Hehlen, and M. Sheik-Bahae, “Investigation of temperature dependence of quantum efficiency and parasitic absorption in rare-earth doped crystals,” Proc. SPIE 10550, 1055006 (2018).
[Crossref]

O. Graydon, “Payload success,” Nat. Photonics 12, 315 (2018).
[Crossref]

2017 (1)

S. Rostami, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Advances in laser cooling of Tm:YLF crystals,” Proc. SPIE 10121, 1012101 (2017).
[Crossref]

2016 (5)

S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration of Tm:YLF and Ho:YLF crystals,” Proc. SPIE 9765, 97650P (2016).
[Crossref]

D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, “Laser cooling in solids: advances and prospects,” Rep. Prog. Phys. 79, 096401 (2016).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2016).
[Crossref]

N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24, 13946–13956 (2016).
[Crossref]

2015 (1)

E. E. Brown, U. Hömmerich, E. Kumi-Barimah, A. Bluiett, and S. B. Trivedi, “Comparative spectroscopic studies of Ho:KPb2Cl5, Ho:KPb2Br5, and Ho:YAG for 2  μm laser cooling applications,” Proc. SPIE 9380, 93800O (2015).
[Crossref]

2014 (3)

2013 (2)

2012 (1)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

2011 (1)

2010 (2)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[Crossref]

D. V. Seletskiy, S. Melgaard, M. Sheik-Bahae, S. Bigotta, A. DiLieto, and M. Tonelli, “Laser cooling of a semiconductor load using a Yb:YLF optical refrigerator,” Proc. SPIE 7614, 761409 (2010).
[Crossref]

2009 (3)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[Crossref]

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
[Crossref]

F. Cornacchia, A. Toncelli, and M. Tonelli, “2  μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron. 33, 61–109 (2009).
[Crossref]

2008 (1)

2007 (2)

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007).
[Crossref]

2006 (2)

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408–412, 780–783 (2006).
[Crossref]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[Crossref]

2000 (1)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref]

1999 (1)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[Crossref]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

1986 (1)

P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3D transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32–41 (1986).

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[Crossref]

1950 (1)

A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
[Crossref]

1929 (1)

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Alam, S.-U.

Albercht, A. R.

S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration of Tm:YLF and Ho:YLF crystals,” Proc. SPIE 9765, 97650P (2016).
[Crossref]

Albrecht, A. R.

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

A. Gragossian, A. Volpi, J. Meng, A. R. Albrecht, S. Rostami, M. P. Hehlen, and M. Sheik-Bahae, “Investigation of temperature dependence of quantum efficiency and parasitic absorption in rare-earth doped crystals,” Proc. SPIE 10550, 1055006 (2018).
[Crossref]

S. Rostami, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Advances in laser cooling of Tm:YLF crystals,” Proc. SPIE 10121, 1012101 (2017).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2016).
[Crossref]

S. Rostami, A. R. Albrecht, A. Volpi, M. P. Hehlen, M. Tonelli, and M. Sheik-Bahae, “Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers,” arXiv:1901.07737 (2019).

Anderson, B.

B. Anderson, A. Flores, J. Grosek, and I. Dajani, “High power Tm-doped all-fiber amplifier at 2130  nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper SM1L.3.

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref]

Anzai, Y.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408–412, 780–783 (2006).
[Crossref]

Asmerom, Y.

Balda, R.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[Crossref]

Barua, P.

Bigotta, S.

D. V. Seletskiy, S. Melgaard, M. Sheik-Bahae, S. Bigotta, A. DiLieto, and M. Tonelli, “Laser cooling of a semiconductor load using a Yb:YLF optical refrigerator,” Proc. SPIE 7614, 761409 (2010).
[Crossref]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
[Crossref]

Biswal, S.

S. R. Bowman, S. O. Connor, S. Biswal, and N. J. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO 2011—Laser Science to Photonic Applications (2011), paper CMH4.

Bluiett, A.

E. E. Brown, U. Hömmerich, E. Kumi-Barimah, A. Bluiett, and S. B. Trivedi, “Comparative spectroscopic studies of Ho:KPb2Cl5, Ho:KPb2Br5, and Ho:YAG for 2  μm laser cooling applications,” Proc. SPIE 9380, 93800O (2015).
[Crossref]

Bowman, S. R.

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
[Crossref]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[Crossref]

S. R. Bowman, S. O. Connor, S. Biswal, and N. J. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO 2011—Laser Science to Photonic Applications (2011), paper CMH4.

Boyland, A. J.

W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWT1.

Brown, E. E.

E. E. Brown, U. Hömmerich, E. Kumi-Barimah, A. Bluiett, and S. B. Trivedi, “Comparative spectroscopic studies of Ho:KPb2Cl5, Ho:KPb2Br5, and Ho:YAG for 2  μm laser cooling applications,” Proc. SPIE 9380, 93800O (2015).
[Crossref]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Carter, S. F.

P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3D transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32–41 (1986).

Chen, L.

B. Zhong, J. Yin, Y. Jia, L. Chen, Y. Hang, and J. Yin, “Laser cooling of Yb3+-doped LuLiF4 crystal,” Opt. Lett. 39, 2747–2750 (2014).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Cittadino, G.

A. Volpi, G. Cittadino, A. Di Lieto, and M. Tonelli, “Anti-Stokes cooling of Yb-doped KYF4 single crystals,” J. Lumin. 203, 670–675 (2018).
[Crossref]

Clarkson, W. A.

N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24, 13946–13956 (2016).
[Crossref]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[Crossref]

W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWT1.

Condon, N. J.

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
[Crossref]

S. R. Bowman, S. O. Connor, S. Biswal, and N. J. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO 2011—Laser Science to Photonic Applications (2011), paper CMH4.

Connor, S. O.

S. R. Bowman, S. O. Connor, S. Biswal, and N. J. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO 2011—Laser Science to Photonic Applications (2011), paper CMH4.

Cornacchia, F.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2  μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron. 33, 61–109 (2009).
[Crossref]

Dajani, I.

B. Anderson, A. Flores, J. Grosek, and I. Dajani, “High power Tm-doped all-fiber amplifier at 2130  nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper SM1L.3.

Daniel, J. M. O.

Di Lieto, A.

A. Volpi, G. Cittadino, A. Di Lieto, and M. Tonelli, “Anti-Stokes cooling of Yb-doped KYF4 single crystals,” J. Lumin. 203, 670–675 (2018).
[Crossref]

DiLieto, A.

D. V. Seletskiy, S. Melgaard, M. Sheik-Bahae, S. Bigotta, A. DiLieto, and M. Tonelli, “Laser cooling of a semiconductor load using a Yb:YLF optical refrigerator,” Proc. SPIE 7614, 761409 (2010).
[Crossref]

Dong, G.-Z.

Edwards, B. C.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Epstein, R.

D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, “Laser cooling in solids: advances and prospects,” Rep. Prog. Phys. 79, 096401 (2016).
[Crossref]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
[Crossref]

Epstein, R. I.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007).
[Crossref]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

M. P. Hehlen, M. Sheik-Bahae, and R. I. Epstein, “Solid-state optical refrigeration,” in Handbook on the Physics and Chemistry of Rare Earths (2014), Vol. 45, pp. 179–260.

Fernandez, J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[Crossref]

Flores, A.

B. Anderson, A. Flores, J. Grosek, and I. Dajani, “High power Tm-doped all-fiber amplifier at 2130  nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper SM1L.3.

France, P. W.

P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3D transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32–41 (1986).

Garcia-Adeva, A. J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[Crossref]

Ghasemkhani, M.

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2016).
[Crossref]

Ghasemkhani, M. R.

S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration of Tm:YLF and Ho:YLF crystals,” Proc. SPIE 9765, 97650P (2016).
[Crossref]

Gomes, L.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Gragossian, A.

A. Gragossian, A. Volpi, J. Meng, A. R. Albrecht, S. Rostami, M. P. Hehlen, and M. Sheik-Bahae, “Investigation of temperature dependence of quantum efficiency and parasitic absorption in rare-earth doped crystals,” Proc. SPIE 10550, 1055006 (2018).
[Crossref]

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration of Tm:YLF and Ho:YLF crystals,” Proc. SPIE 9765, 97650P (2016).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2016).
[Crossref]

Graydon, O.

O. Graydon, “Payload success,” Nat. Photonics 12, 315 (2018).
[Crossref]

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Grosek, J.

B. Anderson, A. Flores, J. Grosek, and I. Dajani, “High power Tm-doped all-fiber amplifier at 2130  nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper SM1L.3.

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Hamilton, C. E.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

Hang, Y.

Haus, P.

J. Powers and P. Haus, Fundamentals of Nonlinear Optics, 2nd ed. (CRC Press, 2017).

Hehlen, M. P.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

A. Gragossian, A. Volpi, J. Meng, A. R. Albrecht, S. Rostami, M. P. Hehlen, and M. Sheik-Bahae, “Investigation of temperature dependence of quantum efficiency and parasitic absorption in rare-earth doped crystals,” Proc. SPIE 10550, 1055006 (2018).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref]

S. Rostami, A. R. Albrecht, A. Volpi, M. P. Hehlen, M. Tonelli, and M. Sheik-Bahae, “Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers,” arXiv:1901.07737 (2019).

M. P. Hehlen, M. Sheik-Bahae, and R. I. Epstein, “Solid-state optical refrigeration,” in Handbook on the Physics and Chemistry of Rare Earths (2014), Vol. 45, pp. 179–260.

Hemming, A.

Hömmerich, U.

E. E. Brown, U. Hömmerich, E. Kumi-Barimah, A. Bluiett, and S. B. Trivedi, “Comparative spectroscopic studies of Ho:KPb2Cl5, Ho:KPb2Br5, and Ho:YAG for 2  μm laser cooling applications,” Proc. SPIE 9380, 93800O (2015).
[Crossref]

Hou, J.

Hoyt, C. W.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref]

Ibsen, M.

W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWT1.

Jackson, S. D.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Jagosich, F. H.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Jia, Y.

Jung, Y.

Kashyap, R.

Kastler, A.

A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
[Crossref]

Katsurayama, M.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408–412, 780–783 (2006).
[Crossref]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Kim, J. W.

W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWT1.

Kumi-Barimah, E.

E. E. Brown, U. Hömmerich, E. Kumi-Barimah, A. Bluiett, and S. B. Trivedi, “Comparative spectroscopic studies of Ho:KPb2Cl5, Ho:KPb2Br5, and Ho:YAG for 2  μm laser cooling applications,” Proc. SPIE 9380, 93800O (2015).
[Crossref]

Lee, E. R.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Li, L.

Li, Z.

Liang, S.

Librantz, A. F. H.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Love, S. P.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[Crossref]

Melgaard, S.

S. Melgaard, D. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80  K,” Opt. Express 22, 7756–7764 (2014).
[Crossref]

D. V. Seletskiy, S. Melgaard, M. Sheik-Bahae, S. Bigotta, A. DiLieto, and M. Tonelli, “Laser cooling of a semiconductor load using a Yb:YLF optical refrigerator,” Proc. SPIE 7614, 761409 (2010).
[Crossref]

Melgaard, S. D.

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref]

S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration of Tm:YLF and Ho:YLF crystals,” Proc. SPIE 9765, 97650P (2016).
[Crossref]

S. D. Melgaard, “Cryogenic optical refrigeration: laser cooling of solids below 123  K,” Ph.D. thesis (University of New Mexico, 2013).

Meng, J.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

A. Gragossian, A. Volpi, J. Meng, A. R. Albrecht, S. Rostami, M. P. Hehlen, and M. Sheik-Bahae, “Investigation of temperature dependence of quantum efficiency and parasitic absorption in rare-earth doped crystals,” Proc. SPIE 10550, 1055006 (2018).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2016).
[Crossref]

Messaddeq, Y.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Mungan, C. E.

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Nemova, G.

Nilsson, J.

O’Connor, S. P.

Parisi, D.

Parker, J. M.

P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3D transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32–41 (1986).

Patterson, W.

Pearson, L.

W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWT1.

Peysokhan, M.

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

Poirier, G.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Polyak, V.

Powers, J.

J. Powers and P. Haus, Fundamentals of Nonlinear Optics, 2nd ed. (CRC Press, 2017).

Pringsheim, P.

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Quimby, R. S.

Ribeiro, S. J. L.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Richardson, D. J.

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Rostami, S.

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

A. Gragossian, A. Volpi, J. Meng, A. R. Albrecht, S. Rostami, M. P. Hehlen, and M. Sheik-Bahae, “Investigation of temperature dependence of quantum efficiency and parasitic absorption in rare-earth doped crystals,” Proc. SPIE 10550, 1055006 (2018).
[Crossref]

S. Rostami, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Advances in laser cooling of Tm:YLF crystals,” Proc. SPIE 10121, 1012101 (2017).
[Crossref]

S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration of Tm:YLF and Ho:YLF crystals,” Proc. SPIE 9765, 97650P (2016).
[Crossref]

S. Rostami, A. R. Albrecht, A. Volpi, M. P. Hehlen, M. Tonelli, and M. Sheik-Bahae, “Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers,” arXiv:1901.07737 (2019).

Sahu, J. K.

N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24, 13946–13956 (2016).
[Crossref]

W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWT1.

Seletskiy, D.

Seletskiy, D. V.

D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, “Laser cooling in solids: advances and prospects,” Rep. Prog. Phys. 79, 096401 (2016).
[Crossref]

D. V. Seletskiy, S. Melgaard, M. Sheik-Bahae, S. Bigotta, A. DiLieto, and M. Tonelli, “Laser cooling of a semiconductor load using a Yb:YLF optical refrigerator,” Proc. SPIE 7614, 761409 (2010).
[Crossref]

Shardlow, P. C.

Sheik-Bahae, M.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

A. Gragossian, A. Volpi, J. Meng, A. R. Albrecht, S. Rostami, M. P. Hehlen, and M. Sheik-Bahae, “Investigation of temperature dependence of quantum efficiency and parasitic absorption in rare-earth doped crystals,” Proc. SPIE 10550, 1055006 (2018).
[Crossref]

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

S. Rostami, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Advances in laser cooling of Tm:YLF crystals,” Proc. SPIE 10121, 1012101 (2017).
[Crossref]

S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration of Tm:YLF and Ho:YLF crystals,” Proc. SPIE 9765, 97650P (2016).
[Crossref]

D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, “Laser cooling in solids: advances and prospects,” Rep. Prog. Phys. 79, 096401 (2016).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2016).
[Crossref]

S. Melgaard, D. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80  K,” Opt. Express 22, 7756–7764 (2014).
[Crossref]

D. V. Seletskiy, S. Melgaard, M. Sheik-Bahae, S. Bigotta, A. DiLieto, and M. Tonelli, “Laser cooling of a semiconductor load using a Yb:YLF optical refrigerator,” Proc. SPIE 7614, 761409 (2010).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[Crossref]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007).
[Crossref]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref]

S. Rostami, A. R. Albrecht, A. Volpi, M. P. Hehlen, M. Tonelli, and M. Sheik-Bahae, “Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers,” arXiv:1901.07737 (2019).

M. P. Hehlen, M. Sheik-Bahae, and R. I. Epstein, “Solid-state optical refrigeration,” in Handbook on the Physics and Chemistry of Rare Earths (2014), Vol. 45, pp. 179–260.

Shen, D.

W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWT1.

Simakov, N.

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Sugiyama, A.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408–412, 780–783 (2006).
[Crossref]

Toncelli, A.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2  μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron. 33, 61–109 (2009).
[Crossref]

Tonelli, M.

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

A. Volpi, G. Cittadino, A. Di Lieto, and M. Tonelli, “Anti-Stokes cooling of Yb-doped KYF4 single crystals,” J. Lumin. 203, 670–675 (2018).
[Crossref]

S. Rostami, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Advances in laser cooling of Tm:YLF crystals,” Proc. SPIE 10121, 1012101 (2017).
[Crossref]

S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration of Tm:YLF and Ho:YLF crystals,” Proc. SPIE 9765, 97650P (2016).
[Crossref]

D. V. Seletskiy, S. Melgaard, M. Sheik-Bahae, S. Bigotta, A. DiLieto, and M. Tonelli, “Laser cooling of a semiconductor load using a Yb:YLF optical refrigerator,” Proc. SPIE 7614, 761409 (2010).
[Crossref]

F. Cornacchia, A. Toncelli, and M. Tonelli, “2  μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron. 33, 61–109 (2009).
[Crossref]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
[Crossref]

S. Rostami, A. R. Albrecht, A. Volpi, M. P. Hehlen, M. Tonelli, and M. Sheik-Bahae, “Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers,” arXiv:1901.07737 (2019).

Trivedi, S. B.

E. E. Brown, U. Hömmerich, E. Kumi-Barimah, A. Bluiett, and S. B. Trivedi, “Comparative spectroscopic studies of Ho:KPb2Cl5, Ho:KPb2Br5, and Ho:YAG for 2  μm laser cooling applications,” Proc. SPIE 9380, 93800O (2015).
[Crossref]

Tsuboi, T.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408–412, 780–783 (2006).
[Crossref]

Volpi, A.

A. Gragossian, A. Volpi, J. Meng, A. R. Albrecht, S. Rostami, M. P. Hehlen, and M. Sheik-Bahae, “Investigation of temperature dependence of quantum efficiency and parasitic absorption in rare-earth doped crystals,” Proc. SPIE 10550, 1055006 (2018).
[Crossref]

A. Volpi, G. Cittadino, A. Di Lieto, and M. Tonelli, “Anti-Stokes cooling of Yb-doped KYF4 single crystals,” J. Lumin. 203, 670–675 (2018).
[Crossref]

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

S. Rostami, A. R. Albrecht, A. Volpi, M. P. Hehlen, M. Tonelli, and M. Sheik-Bahae, “Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers,” arXiv:1901.07737 (2019).

Walsh, B. M.

B. M. Walsh, “Spectroscopy and excitation dynamics of the trivalent lanthanides Tm3+ and Ho3+ in LiYF4,” (1995).

Xue, G.

Yang, Z.

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

Ye, J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Yin, J.

Yin, K.

Zhang, B.

Zhang, X.-L.

Zhang, Z.

W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWT1.

Zhong, B.

IEEE J. Quantum Electron. (1)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[Crossref]

J. Alloys Compd. (1)

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408–412, 780–783 (2006).
[Crossref]

J. Appl. Phys. (1)

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[Crossref]

J. Lumin. (1)

A. Volpi, G. Cittadino, A. Di Lieto, and M. Tonelli, “Anti-Stokes cooling of Yb-doped KYF4 single crystals,” J. Lumin. 203, 670–675 (2018).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Radium (1)

A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
[Crossref]

Laser Photon. Rev. (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[Crossref]

Light Sci. Appl. (1)

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light Sci. Appl. 7, 15 (2018).
[Crossref]

Nat. Photonics (3)

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

O. Graydon, “Payload success,” Nat. Photonics 12, 315 (2018).
[Crossref]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Opt. Eng. (1)

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Chem. Glasses (1)

P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3D transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32–41 (1986).

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[Crossref]

Phys. Rev. Lett. (2)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[Crossref]

Proc. SPIE (6)

D. V. Seletskiy, S. Melgaard, M. Sheik-Bahae, S. Bigotta, A. DiLieto, and M. Tonelli, “Laser cooling of a semiconductor load using a Yb:YLF optical refrigerator,” Proc. SPIE 7614, 761409 (2010).
[Crossref]

E. E. Brown, U. Hömmerich, E. Kumi-Barimah, A. Bluiett, and S. B. Trivedi, “Comparative spectroscopic studies of Ho:KPb2Cl5, Ho:KPb2Br5, and Ho:YAG for 2  μm laser cooling applications,” Proc. SPIE 9380, 93800O (2015).
[Crossref]

A. Gragossian, A. Volpi, J. Meng, A. R. Albrecht, S. Rostami, M. P. Hehlen, and M. Sheik-Bahae, “Investigation of temperature dependence of quantum efficiency and parasitic absorption in rare-earth doped crystals,” Proc. SPIE 10550, 1055006 (2018).
[Crossref]

S. Rostami, Z. Yang, A. R. Albrecht, A. Gragossian, M. Peysokhan, M. Ghasemkhani, A. Volpi, M. Tonelli, and M. Sheik-Bahae, “Advances in mid-IR solid-state optical cooling and radiation-balanced lasers,” Proc. SPIE 10550, 105500Q (2018).
[Crossref]

S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration of Tm:YLF and Ho:YLF crystals,” Proc. SPIE 9765, 97650P (2016).
[Crossref]

S. Rostami, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Advances in laser cooling of Tm:YLF crystals,” Proc. SPIE 10121, 1012101 (2017).
[Crossref]

Prog. Quantum Electron. (1)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2  μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron. 33, 61–109 (2009).
[Crossref]

Rep. Prog. Phys. (1)

D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, “Laser cooling in solids: advances and prospects,” Rep. Prog. Phys. 79, 096401 (2016).
[Crossref]

Sci. Rep. (1)

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref]

Z. Phys. (1)

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Other (9)

B. M. Walsh, “Spectroscopy and excitation dynamics of the trivalent lanthanides Tm3+ and Ho3+ in LiYF4,” (1995).

S. D. Melgaard, “Cryogenic optical refrigeration: laser cooling of solids below 123  K,” Ph.D. thesis (University of New Mexico, 2013).

W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWT1.

B. Anderson, A. Flores, J. Grosek, and I. Dajani, “High power Tm-doped all-fiber amplifier at 2130  nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper SM1L.3.

M. P. Hehlen, M. Sheik-Bahae, and R. I. Epstein, “Solid-state optical refrigeration,” in Handbook on the Physics and Chemistry of Rare Earths (2014), Vol. 45, pp. 179–260.

G. Nemova, Laser Cooling: Fundamental Properties and Applications (Pan Stanford, 2017).

J. Powers and P. Haus, Fundamentals of Nonlinear Optics, 2nd ed. (CRC Press, 2017).

S. R. Bowman, S. O. Connor, S. Biswal, and N. J. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO 2011—Laser Science to Photonic Applications (2011), paper CMH4.

S. Rostami, A. R. Albrecht, A. Volpi, M. P. Hehlen, M. Tonelli, and M. Sheik-Bahae, “Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers,” arXiv:1901.07737 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Anti-Stokes fluorescence cooling process in Ho3+ ions; (b) emission (red line) and absorption (blue line) spectra of 1% Ho:YLF crystal at T=300  K (λ=c/ν). The shaded region denotes the cooling tail (λ>λf=2015  nm). Emission spectrum is measured with a scanning optical spectrum analyzer under laser excitation at 1890 nm. The absorption spectrum is directly measured with an FTIR spectrometer under Ec configuration (c is the optical axis).
Fig. 2.
Fig. 2. (a) Schematic of mid-IR laser cooling and LITMoS test setup for Ho-doped crystals. (b) LITMoS test result for 1% Ho:YLF crystal; the theoretical fit to the data, using Eq. (1), gives the external quantum efficiency (ηext) and the parasitic (background) absorption coefficient (αb). The insets show two thermal images corresponding to heating and cooling regimes.
Fig. 3.
Fig. 3. (a) Temperature dependence of the mean fluorescence wavelength (λf) for cooling grade 1% Ho:YLF and 1% Tm:YLF crystals. For comparison, data are normalized to room temperature values. (b) Temperature dependence of the resonant absorption coefficient of the I85I75 transition in 1% Ho:YLF from 300 K to 80 K in 20 K steps (Ec). (c) Cooling efficiency ηc(λ,T) versus excitation wavelength and crystal temperature. The blue and red regions correspond to the cooling (ηc>0) and heating (ηc<0) regimes, respectively, with the white transition line indicating the local minimum achievable temperature (MAT) at a given wavelength. The global MAT (as indicated by dashed lines) is 130±10  K at λ=2070±0.5  nm, which corresponds to the E12E13 transition in Ho3+ (Ref. [21]). (d) Ratio of maximum cooling efficiency of the Ho:YLF sample over the optimal 10% Yb:YLF sample assuming various ηext and doping concentrations for Ho:YLF.
Fig. 4.
Fig. 4. (a) Schematic of the CW-OPO design for mid-IR optical refrigeration in Tm- and Ho-doped crystals. (b) Phase-matching curve of the mid-IR CW-OPO. (c) Typical normalized narrow linewidth signal and idler spectra of the CW-OPO.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ηc=phνfhν1,

Metrics