Abstract

The dispersive Fourier transform (DFT) technique opens a fascinating pathway to explore ultrafast non-repetitive events and has been employed to study the build-up process of mode-locked lasers. However, the shutting process for the mode-locked fiber laser seems to be beyond the scope of researchers, and the starting dynamics under near-zero dispersion remains unclear. Here, the complete evolution dynamics (from birth to extinction) of the conventional soliton (CS), stretched pulse (SP), and dissipative soliton (DS) are investigated by using the DFT technique. CS, SP, and DS fiber lasers mode locked by single-walled carbon nanotubes (SWNTs) are implemented via engineering the intracavity dispersion map. The relaxation oscillation can always be observed before the formation of stable pulse operation due to the inherent advantage of SWNT, but it exhibits distinct evolution dynamics in the starting and shutting processes. The shutting processes are dependent on the dispersion condition and turn-off time, which is against common sense. Some critical phenomena are also observed, including transient complex spectrum broadening and frequency-shift interaction of SPs and picosecond pulses. These results will further deepen understanding of the mode-locked fiber laser from a real-time point of view and are helpful for laser design and applications.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser

Shuqian Sun, Zhixing Lin, Wei Li, Ninghua Zhu, and Ming Li
Opt. Express 26(16) 20888-20901 (2018)

Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion

Hong-Jie Chen, Meng Liu, Jian Yao, Song Hu, Jian-Bo He, Ai-Ping Luo, Wen-Cheng Xu, and Zhi-Chao Luo
Opt. Express 26(3) 2972-2982 (2018)

Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser

Ling Yun, Xueming Liu, and Dong Mao
Opt. Express 20(19) 20992-20997 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
    [Crossref]
  2. G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
    [Crossref]
  3. C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photon. 2, 121302 (2017).
    [Crossref]
  4. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
    [Crossref]
  5. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Springer, 2005).
  6. Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
    [Crossref]
  7. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
    [Crossref]
  8. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
    [Crossref]
  9. X. X. Han, “Conventional soliton or stretched pulse delivered by nanotube-mode-locked fiber laser,” Appl. Opt. 57, 807–811 (2018).
    [Crossref]
  10. D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
    [Crossref]
  11. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81, 023811 (2010).
    [Crossref]
  12. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012).
    [Crossref]
  13. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
    [Crossref]
  14. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
    [Crossref]
  15. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
    [Crossref]
  16. X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81, 053819 (2010).
    [Crossref]
  17. S. K. Turitsyn and E. G. Shapiro, “Dispersion-managed solitons in optical amplifier transmission systems with zero average dispersion,” Opt. Lett. 23, 682–684 (1998).
    [Crossref]
  18. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100  fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
    [Crossref]
  19. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2008).
  20. E. P. Ippen, L. Y. Liu, and H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15, 183–185 (1990).
    [Crossref]
  21. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref]
  22. H. Li, D. G. Ouzounov, and F. W. Wise, “Starting dynamics of dissipative-soliton fiber laser,” Opt. Lett. 35, 2403–2405 (2010).
    [Crossref]
  23. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
    [Crossref]
  24. G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
    [Crossref]
  25. X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
    [Crossref]
  26. K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118, 243901 (2017).
    [Crossref]
  27. A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2, 36–39 (2015).
    [Crossref]
  28. Z. Wang, Z. Wang, Y. Liu, R. He, J. Zhao, G. Wang, and G. Yang, “Self-organized compound pattern and pulsation of dissipative solitons in a passively mode-locked fiber laser,” Opt. Lett. 43, 478–481 (2018).
    [Crossref]
  29. Y. Du, Z. Xu, and X. Shu, “Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser,” Opt. Lett. 43, 3602–3605 (2018).
    [Crossref]
  30. P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
    [Crossref]
  31. X. Wei, B. Li, Y. Yu, C. Zhang, and K. Tsia, “Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies,” Opt. Express 25, 29098–29120 (2017).
    [Crossref]
  32. H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. Xu, and Z. C. Luo, “Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion,” Opt. Express 26, 2972–2982 (2018).
    [Crossref]
  33. J. Peng and H. Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photon. Rev. 12, 1800009 (2018).
    [Crossref]
  34. S. Hamdi, A. Coillet, and P. Grelu, “Real-time characterization of optical soliton molecule dynamics in an ultrafast thulium fiber laser,” Opt. Lett. 43, 4965–4968 (2018).
    [Crossref]
  35. S. Sun, Z. Lin, W. Li, N. Zhu, and M. Li, “Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser,” Opt. Express 26, 20888–20901 (2018).
    [Crossref]
  36. Y. Yu, B. Li, X. Wei, Y. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
    [Crossref]
  37. X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
    [Crossref]
  38. X. M. Liu and Y. D. Cui, “Revealing the behavior of soliton buildup in a mode-locked laser,” Adv. Photon. 1, 016003 (2019).
    [Crossref]
  39. O. Svelto, Principles of Lasers (Springer, 2010).
  40. S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
    [Crossref]

2019 (1)

X. M. Liu and Y. D. Cui, “Revealing the behavior of soliton buildup in a mode-locked laser,” Adv. Photon. 1, 016003 (2019).
[Crossref]

2018 (10)

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. Xu, and Z. C. Luo, “Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion,” Opt. Express 26, 2972–2982 (2018).
[Crossref]

J. Peng and H. Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photon. Rev. 12, 1800009 (2018).
[Crossref]

S. Hamdi, A. Coillet, and P. Grelu, “Real-time characterization of optical soliton molecule dynamics in an ultrafast thulium fiber laser,” Opt. Lett. 43, 4965–4968 (2018).
[Crossref]

S. Sun, Z. Lin, W. Li, N. Zhu, and M. Li, “Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser,” Opt. Express 26, 20888–20901 (2018).
[Crossref]

Z. Wang, Z. Wang, Y. Liu, R. He, J. Zhao, G. Wang, and G. Yang, “Self-organized compound pattern and pulsation of dissipative solitons in a passively mode-locked fiber laser,” Opt. Lett. 43, 478–481 (2018).
[Crossref]

Y. Du, Z. Xu, and X. Shu, “Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser,” Opt. Lett. 43, 3602–3605 (2018).
[Crossref]

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

X. X. Han, “Conventional soliton or stretched pulse delivered by nanotube-mode-locked fiber laser,” Appl. Opt. 57, 807–811 (2018).
[Crossref]

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

2017 (7)

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photon. 2, 121302 (2017).
[Crossref]

X. Wei, B. Li, Y. Yu, C. Zhang, and K. Tsia, “Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies,” Opt. Express 25, 29098–29120 (2017).
[Crossref]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

Y. Yu, B. Li, X. Wei, Y. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118, 243901 (2017).
[Crossref]

2016 (2)

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

2015 (2)

2013 (2)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

2012 (2)

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

2010 (3)

X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81, 053819 (2010).
[Crossref]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81, 023811 (2010).
[Crossref]

H. Li, D. G. Ouzounov, and F. W. Wise, “Starting dynamics of dissipative-soliton fiber laser,” Opt. Lett. 35, 2403–2405 (2010).
[Crossref]

2009 (2)

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100  fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

2008 (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

1998 (1)

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

1992 (1)

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

1990 (1)

Agrawal, G. P.

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2008).

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Andral, U.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118, 243901 (2017).
[Crossref]

Bai, J.

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Barland, S.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Billet, C.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Bonaccorso, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Broderick, N.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Broderick, N. G. R.

Chen, H. J.

Chen, N.

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photon. 2, 121302 (2017).
[Crossref]

Chong, A.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100  fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Churkin, D. V.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Coillet, A.

Cui, Y.

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

Cui, Y. D.

X. M. Liu and Y. D. Cui, “Revealing the behavior of soliton buildup in a mode-locked laser,” Adv. Photon. 1, 016003 (2019).
[Crossref]

Cundiff, S. T.

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Springer, 2005).

Du, Y.

Dudley, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Erkintalo, M.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Ferrari, A. C.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Genty, G.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Grelu, P.

S. Hamdi, A. Coillet, and P. Grelu, “Real-time characterization of optical soliton molecule dynamics in an ultrafast thulium fiber laser,” Opt. Lett. 43, 4965–4968 (2018).
[Crossref]

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118, 243901 (2017).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Hamdi, S.

Han, D.

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

Han, X. X.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Hasan, T.

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

E. P. Ippen, L. Y. Liu, and H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15, 183–185 (1990).
[Crossref]

He, J. B.

He, R.

Herink, G.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

Howe, R. C.

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Hu, G.

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Hu, S.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

E. P. Ippen, L. Y. Liu, and H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15, 183–185 (1990).
[Crossref]

Jalali, B.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Jussila, H.

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Kang, J.

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photon. 2, 121302 (2017).
[Crossref]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Kelly, S. M.

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

Kieu, K.

Kim, J.

Kong, C.

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photon. 2, 121302 (2017).
[Crossref]

Krupa, K.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118, 243901 (2017).
[Crossref]

Kurtz, F.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

Li, B.

X. Wei, B. Li, Y. Yu, C. Zhang, and K. Tsia, “Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies,” Opt. Express 25, 29098–29120 (2017).
[Crossref]

Y. Yu, B. Li, X. Wei, Y. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Li, C.

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photon. 2, 121302 (2017).
[Crossref]

Li, D.

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Li, H.

Li, M.

Li, W.

Limpert, J.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Lin, Z.

Liu, L. Y.

Liu, M.

Liu, X.

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81, 053819 (2010).
[Crossref]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81, 023811 (2010).
[Crossref]

Liu, X. M.

X. M. Liu and Y. D. Cui, “Revealing the behavior of soliton buildup in a mode-locked laser,” Adv. Photon. 1, 016003 (2019).
[Crossref]

Liu, Y.

Lu, F.

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

Luo, A. P.

Luo, Z. C.

Mahjoubfar, A.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Merolla, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Närhi, M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Nithyanandan, K.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118, 243901 (2017).
[Crossref]

Ouzounov, D. G.

Peng, J.

J. Peng and H. Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photon. Rev. 12, 1800009 (2018).
[Crossref]

Ren, Z.

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Renninger, W. H.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100  fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Ropers, C.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Runge, A. F. J.

Ryczkowski, P.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Shapiro, E. G.

Shu, X.

Solli, D. R.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

Song, Y.

Sun, S.

Sun, Z.

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Svelto, O.

O. Svelto, Principles of Lasers (Springer, 2010).

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Tan, S.

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photon. 2, 121302 (2017).
[Crossref]

Tchofo-Dinda, P.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118, 243901 (2017).
[Crossref]

Tom, A.

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Tsia, K.

Tsia, K. K. M.

Y. Yu, B. Li, X. Wei, Y. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Turitsyn, S. K.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

S. K. Turitsyn and E. G. Shapiro, “Dispersion-managed solitons in optical amplifier transmission systems with zero average dispersion,” Opt. Lett. 23, 682–684 (1998).
[Crossref]

Wang, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Wang, G.

Wang, Y.

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Wang, Z.

Wei, X.

X. Wei, B. Li, Y. Yu, C. Zhang, and K. Tsia, “Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies,” Opt. Express 25, 29098–29120 (2017).
[Crossref]

Y. Yu, B. Li, X. Wei, Y. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photon. 2, 121302 (2017).
[Crossref]

Wise, F. W.

Wong, K. K.

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photon. 2, 121302 (2017).
[Crossref]

Wong, K. K. Y.

Y. Yu, B. Li, X. Wei, Y. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Xu, W.

Xu, Y.

Y. Yu, B. Li, X. Wei, Y. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Xu, Z.

Yamashita, S.

Yang, G.

Yao, J.

Yao, X.

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

Ye, J.

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Springer, 2005).

Yu, Y.

Y. Yu, B. Li, X. Wei, Y. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

X. Wei, B. Li, Y. Yu, C. Zhang, and K. Tsia, “Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies,” Opt. Express 25, 29098–29120 (2017).
[Crossref]

Zeng, H.

J. Peng and H. Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photon. Rev. 12, 1800009 (2018).
[Crossref]

Zhang, C.

Zhao, J.

Zhu, N.

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Adv. Opt. Photon. (1)

Adv. Photon. (1)

X. M. Liu and Y. D. Cui, “Revealing the behavior of soliton buildup in a mode-locked laser,” Adv. Photon. 1, 016003 (2019).
[Crossref]

APL Photon. (1)

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photon. 2, 121302 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Appl. Phys. Lett. (1)

Y. Yu, B. Li, X. Wei, Y. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Electron. Lett. (1)

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (2)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

J. Peng and H. Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photon. Rev. 12, 1800009 (2018).
[Crossref]

Nat. Photonics (6)

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

Optica (1)

Phys. Rev. A (2)

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81, 023811 (2010).
[Crossref]

X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81, 053819 (2010).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118, 243901 (2017).
[Crossref]

Sci. Rep. (3)

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

D. Li, H. Jussila, Y. Wang, G. Hu, A. Tom, R. C. Howe, R. C. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8, 2738 (2018).
[Crossref]

Science (1)

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

Other (3)

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Springer, 2005).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2008).

O. Svelto, Principles of Lasers (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup. EDF, erbium-doped fiber; PC, polarization controller; LD, laser diode; SA, saturable absorber; WDM, wavelength-division-multiplexed coupler; PI-ISO, polarization-independent isolator; OSA, optical spectrum analyzer; DCF, dispersion compensation fiber.
Fig. 2.
Fig. 2. Real-time observation of starting (left) and shutting (right) processes for (a) CSs, (b) SPs, and (c) DSs. These are the detection results of the oscilloscope after transmission in DCF. The relative coordinates are used for time and intensity.
Fig. 3.
Fig. 3. Shutting process of CSs when the turn-off time is more than 5 ms. This is the direct measuring result without DFT.
Fig. 4.
Fig. 4. Starting and shutting dynamics for the CS fiber laser. (a) Real-time spectral evolution dynamics during the formation of CSs. (b) Real-time spectral evolution dynamics during the shutting for CSs. (i) and (ii) show the energy evolution corresponding to (a) and (b), respectively. (c) Optical spectra of solitons measured by the OSA and DFT technique. (d) Close-up of the data in the square of (a), revealing the interference pattern for the beating dynamics and the complex multi-pulse evolution. (e) Fourier transform of each single-shot spectrum corresponds to the field autocorrelation of (d). RT: roundtrip.
Fig. 5.
Fig. 5. Starting and shutting dynamics for the SP fiber laser. (a) Real-time spectral evolution dynamics during the formation of SPs. (b) Real-time spectral evolution dynamics during the shutting process for SPs. (i) and (ii) show the energy evolution corresponding to (a) and (b), respectively. Experimental real-time observation without DFT for the (c) starting and (d) shutting processes, corresponding to (a) and (b), respectively. Results with and without DFT display a time difference due to the delay of DCF. (e) Close-up of the data from region A in (a), revealing the interference pattern for the beating dynamics. (f) Interaction of SPs and picosecond pulses. The data are from region B in (a). (g) Optical spectra of SPs measured by the OSA and DFT technique.
Fig. 6.
Fig. 6. Interaction of SPs and picosecond pulses. Data are from Fig. 5(f).
Fig. 7.
Fig. 7. Starting and shutting dynamics for the DS fiber laser. (a) Real-time spectral evolution dynamics during the starting of DSs. (b) Real-time spectral evolution dynamics during the shutting for DSs. (i) and (ii) show the energy evolution corresponding to (a) and (b), respectively. Experimental real-time observations without DFT for the (c) starting and (d) shutting processes correspond to (a) and (b), respectively. (e) Spectral evolution for the formation of DSs. The data are extracted from the square region in (a). (f) Optical spectra of DSs measured by the OSA and DFT technique.