Abstract

Developing a low-cost, room-temperature operated and complementary metal-oxide-semiconductor (CMOS) compatible visible-blind short-wavelength infrared (SWIR) silicon photodetector is of interest for security, telecommunications, and environmental sensing. Here, we present a silver-supersaturated silicon (Si:Ag)-based photodetector that exhibits a visible-blind and highly enhanced sub-bandgap photoresponse. The visible-blind response is caused by the strong surface-recombination-induced quenching of charge collection for short-wavelength excitation, and the enhanced sub-bandgap response is attributed to the deep-level electron-traps-induced band-bending and two-stage carrier excitation. The responsivity of the Si:Ag photodetector reaches 504  mA·W1 at 1310 nm and 65  mA·W1 at 1550 nm under 3  V bias, which stands on the stage as the highest level in the hyperdoped silicon devices previously reported. The high performance and mechanism understanding clearly demonstrate that the hyperdoped silicon shows great potential for use in optical interconnect and power-monitoring applications.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared photoresponse of femtosecond-laser processed Se-doped silicon n+ − n photodiodes

Lingyan Du, Zhiming Wu, Rui Li, Fei Tang, and Yadong Jiang
Opt. Lett. 41(21) 5031-5034 (2016)

Photon-assisted tunneling for sub-bandgap light detection in silicon PN-doped waveguides

Jong-Bum You, Hyeokbin Kwon, Jonghoon Kim, Hyo-Hoon Park, and Kyoungsik Yu
Opt. Express 25(4) 4284-4297 (2017)

Planar InAs photodiodes fabricated using He ion implantation

Ian Sandall, Chee Hing Tan, Andrew Smith, and Russell Gwilliam
Opt. Express 20(8) 8575-8583 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28, 4912–4919 (2016).
    [Crossref]
  2. X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
    [Crossref]
  3. X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6, 1700638 (2018).
    [Crossref]
  4. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
    [Crossref]
  5. M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008).
    [Crossref]
  6. D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5, 7748–7753 (2011).
    [Crossref]
  7. X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, and C. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express. 20, 5518–5523 (2012).
    [Crossref]
  8. Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
    [Crossref]
  9. J. F. Reintjes and J. C. McGroddy, “Indirect two-photon transitions in Si at 1.06  μm,” Phys. Rev. Lett. 30, 901–903 (1973).
    [Crossref]
  10. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
    [Crossref]
  11. A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5  μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004).
    [Crossref]
  12. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [Crossref]
  13. H. Chen, X. S. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
    [Crossref]
  14. T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16, 1659–1668 (2008).
    [Crossref]
  15. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
    [Crossref]
  16. A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95, 021104 (2009).
    [Crossref]
  17. S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection,” Appl. Phys. Lett. 92, 081103 (2008).
    [Crossref]
  18. M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96, 241112 (2010).
    [Crossref]
  19. A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24, 783–786 (2006).
    [Crossref]
  20. J. Bradley, P. Jessop, and A. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
    [Crossref]
  21. J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
    [Crossref]
  22. L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, and J. Huang, “A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain,” Nanoscale 8, 12990–12997 (2016).
    [Crossref]
  23. Z. Guo, S. Park, J. Yoon, and I. Shin, “Recent progress in the development of near-infrared fluorescent probes for bioimaging applications,” Chem. Soc. Rev. 43, 16–29 (2014).
    [Crossref]
  24. A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, and P. Meredith, “Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes,” Nat. Commun. 6, 6343 (2015).
    [Crossref]
  25. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref]
  26. R. Chen, B. Fan, M. Pan, Q. Cheng, and C. Chen, “Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation,” Mater. Lett. 163, 90–93 (2016).
    [Crossref]
  27. E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, “Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector,” Appl. Phys. Lett. 104, 211105 (2014).
    [Crossref]
  28. Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
    [Crossref]
  29. C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, and T. Buonassisi, “Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band,” Adv. Funct. Mater. 24, 2852–2858 (2014).
    [Crossref]
  30. E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
    [Crossref]
  31. E. Mazur, “Black silicon: engineering an intermediate band in silicon for photovoltaic applications,” in Abstracts of Papers of the American Chemical Society, Vol. 240, (2010).
  32. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
    [Crossref]
  33. J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, “Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon,” J. Appl. Phys. 114, 103701 (2013).
    [Crossref]
  34. M. J. Sher and E. Mazur, “Intermediate band conduction in femtosecond-laser hyperdoped silicon,” Appl. Phys. Lett. 105, 032103 (2014).
    [Crossref]
  35. I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
    [Crossref]
  36. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
    [Crossref]
  37. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
    [Crossref]
  38. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
    [Crossref]
  39. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
    [Crossref]
  40. M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, and A. Asenbaum, “Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation,” J. Appl. Phys. 113, 063520 (2013).
    [Crossref]
  41. J. T. Sullivan, C. B. Simmons, T. Buonassisi, and J. J. Krich, “Targeted search for effective intermediate band solar cell materials,” IEEE J. Photovolt. 5, 212–218 (2015).
    [Crossref]
  42. F. Rollert, N. A. Stolwijk, and H. Mehrer, “Solubility, diffusion and thermodynamic properties of silver in silicon,” J. Phys. D 20, 1148–1155 (1987).
    [Crossref]
  43. A. Fazzio, M. J. Caldas, and A. Zunger, “Electronic-structure of copper, silver, and gold impurities in silicon,” Phys. Rev. B 32, 934–954 (1985).
    [Crossref]
  44. K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18, 113–122 (1979).
    [Crossref]
  45. Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
    [Crossref]
  46. L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
    [Crossref]
  47. J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30, 1773–1775 (2005).
    [Crossref]
  48. R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
    [Crossref]
  49. F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
    [Crossref]

2018 (1)

X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6, 1700638 (2018).
[Crossref]

2017 (2)

L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
[Crossref]

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

2016 (3)

R. Chen, B. Fan, M. Pan, Q. Cheng, and C. Chen, “Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation,” Mater. Lett. 163, 90–93 (2016).
[Crossref]

L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, and J. Huang, “A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain,” Nanoscale 8, 12990–12997 (2016).
[Crossref]

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28, 4912–4919 (2016).
[Crossref]

2015 (6)

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

J. T. Sullivan, C. B. Simmons, T. Buonassisi, and J. J. Krich, “Targeted search for effective intermediate band solar cell materials,” IEEE J. Photovolt. 5, 212–218 (2015).
[Crossref]

A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, and P. Meredith, “Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes,” Nat. Commun. 6, 6343 (2015).
[Crossref]

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

2014 (5)

C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, and T. Buonassisi, “Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band,” Adv. Funct. Mater. 24, 2852–2858 (2014).
[Crossref]

E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, “Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector,” Appl. Phys. Lett. 104, 211105 (2014).
[Crossref]

Z. Guo, S. Park, J. Yoon, and I. Shin, “Recent progress in the development of near-infrared fluorescent probes for bioimaging applications,” Chem. Soc. Rev. 43, 16–29 (2014).
[Crossref]

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

M. J. Sher and E. Mazur, “Intermediate band conduction in femtosecond-laser hyperdoped silicon,” Appl. Phys. Lett. 105, 032103 (2014).
[Crossref]

2013 (5)

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, “Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon,” J. Appl. Phys. 114, 103701 (2013).
[Crossref]

M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, and A. Asenbaum, “Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation,” J. Appl. Phys. 113, 063520 (2013).
[Crossref]

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

2012 (2)

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, and C. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express. 20, 5518–5523 (2012).
[Crossref]

2011 (1)

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5, 7748–7753 (2011).
[Crossref]

2010 (1)

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96, 241112 (2010).
[Crossref]

2009 (2)

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95, 021104 (2009).
[Crossref]

H. Chen, X. S. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

2008 (3)

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008).
[Crossref]

T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16, 1659–1668 (2008).
[Crossref]

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection,” Appl. Phys. Lett. 92, 081103 (2008).
[Crossref]

2007 (1)

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

2006 (2)

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24, 783–786 (2006).
[Crossref]

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[Crossref]

2005 (2)

J. Bradley, P. Jessop, and A. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
[Crossref]

J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30, 1773–1775 (2005).
[Crossref]

2004 (3)

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5  μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[Crossref]

2003 (2)

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

2002 (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

2001 (1)

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

1998 (1)

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

1987 (1)

F. Rollert, N. A. Stolwijk, and H. Mehrer, “Solubility, diffusion and thermodynamic properties of silver in silicon,” J. Phys. D 20, 1148–1155 (1987).
[Crossref]

1985 (1)

A. Fazzio, M. J. Caldas, and A. Zunger, “Electronic-structure of copper, silver, and gold impurities in silicon,” Phys. Rev. B 32, 934–954 (1985).
[Crossref]

1979 (1)

K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18, 113–122 (1979).
[Crossref]

1973 (1)

J. F. Reintjes and J. C. McGroddy, “Indirect two-photon transitions in Si at 1.06  μm,” Phys. Rev. Lett. 30, 901–903 (1973).
[Crossref]

Akbari, A.

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95, 021104 (2009).
[Crossref]

Akey, A. J.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, and T. Buonassisi, “Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band,” Adv. Funct. Mater. 24, 2852–2858 (2014).
[Crossref]

J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, “Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon,” J. Appl. Phys. 114, 103701 (2013).
[Crossref]

Armin, A.

A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, and P. Meredith, “Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes,” Nat. Commun. 6, 6343 (2015).
[Crossref]

Asenbaum, A.

M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, and A. Asenbaum, “Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation,” J. Appl. Phys. 113, 063520 (2013).
[Crossref]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Aziz, M. J.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, and T. Buonassisi, “Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band,” Adv. Funct. Mater. 24, 2852–2858 (2014).
[Crossref]

J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, “Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon,” J. Appl. Phys. 114, 103701 (2013).
[Crossref]

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[Crossref]

Baehr-Jones, T.

Bai, Y.

L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, and J. Huang, “A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain,” Nanoscale 8, 12990–12997 (2016).
[Crossref]

Bailón, L.

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

Bao, C.

L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
[Crossref]

Berencén, Y.

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Berini, P.

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95, 021104 (2009).
[Crossref]

Bi, Y.

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Bradley, J.

J. Bradley, P. Jessop, and A. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
[Crossref]

Bradley, J. D. B.

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24, 783–786 (2006).
[Crossref]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Buonassisi, T.

J. T. Sullivan, C. B. Simmons, T. Buonassisi, and J. J. Krich, “Targeted search for effective intermediate band solar cell materials,” IEEE J. Photovolt. 5, 212–218 (2015).
[Crossref]

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, and T. Buonassisi, “Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band,” Adv. Funct. Mater. 24, 2852–2858 (2014).
[Crossref]

J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, “Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon,” J. Appl. Phys. 114, 103701 (2013).
[Crossref]

Burn, P. L.

A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, and P. Meredith, “Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes,” Nat. Commun. 6, 6343 (2015).
[Crossref]

Caldas, M. J.

A. Fazzio, M. J. Caldas, and A. Zunger, “Electronic-structure of copper, silver, and gold impurities in silicon,” Phys. Rev. B 32, 934–954 (1985).
[Crossref]

Campbell, J. C.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[Crossref]

Carey, J.

X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, and C. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express. 20, 5518–5523 (2012).
[Crossref]

Carey, J. E.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[Crossref]

J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30, 1773–1775 (2005).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[Crossref]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

Casalino, M.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96, 241112 (2010).
[Crossref]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008).
[Crossref]

Castán, H.

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

Centrone, A.

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Chae, J.

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Chang, H.-C.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5, 7748–7753 (2011).
[Crossref]

Charnvanichborikarn, S.

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

Chen, C.

R. Chen, B. Fan, M. Pan, Q. Cheng, and C. Chen, “Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation,” Mater. Lett. 163, 90–93 (2016).
[Crossref]

Chen, H.

H. Chen, X. S. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

Chen, R.

R. Chen, B. Fan, M. Pan, Q. Cheng, and C. Chen, “Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation,” Mater. Lett. 163, 90–93 (2016).
[Crossref]

Chen, Z.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Cheng, Q.

R. Chen, B. Fan, M. Pan, Q. Cheng, and C. Chen, “Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation,” Mater. Lett. 163, 90–93 (2016).
[Crossref]

Cheng, Z.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Coppola, G.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96, 241112 (2010).
[Crossref]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008).
[Crossref]

Cowan, A. R.

Crouch, C. H.

J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30, 1773–1775 (2005).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

Dai, J.

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

del Prado, A.

E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, “Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector,” Appl. Phys. Lett. 104, 211105 (2014).
[Crossref]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Deneault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Deng, Y.

L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Dong, Q. F.

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Dong, R.

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Dueñas, S.

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

Fan, B.

R. Chen, B. Fan, M. Pan, Q. Cheng, and C. Chen, “Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation,” Mater. Lett. 163, 90–93 (2016).
[Crossref]

Fang, Y.

L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
[Crossref]

Fang, Y. J.

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

Fazzio, A.

A. Fazzio, M. J. Caldas, and A. Zunger, “Electronic-structure of copper, silver, and gold impurities in silicon,” Phys. Rev. B 32, 934–954 (1985).
[Crossref]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Friend, C. M.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[Crossref]

Gan, F.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Gao, Y.

X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6, 1700638 (2018).
[Crossref]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

García, H.

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

García-Hemme, E.

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, “Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector,” Appl. Phys. Lett. 104, 211105 (2014).
[Crossref]

García-Hernansanz, R.

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, “Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector,” Appl. Phys. Lett. 104, 211105 (2014).
[Crossref]

Geis, M. W.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Genin, F. Y.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[Crossref]

Gioffre, M.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96, 241112 (2010).
[Crossref]

Gioffrè, M.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008).
[Crossref]

González-Díaz, G.

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, “Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector,” Appl. Phys. Lett. 104, 211105 (2014).
[Crossref]

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

Gou, S. H.

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24, 783–786 (2006).
[Crossref]

Grein, M. E.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Guo, F. W.

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Guo, X.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[Crossref]

Guo, Z.

Z. Guo, S. Park, J. Yoon, and I. Shin, “Recent progress in the development of near-infrared fluorescent probes for bioimaging applications,” Chem. Soc. Rev. 43, 16–29 (2014).
[Crossref]

Halas, N. J.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

He, J.-H.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5, 7748–7753 (2011).
[Crossref]

Helm, M.

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Ho, H. P.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Hochberg, M.

Huang, J.

L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
[Crossref]

L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, and J. Huang, “A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain,” Nanoscale 8, 12990–12997 (2016).
[Crossref]

Huang, J. S.

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Huang, Z.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[Crossref]

Hübner, R.

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Hutchinson, D.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

Iodice, M.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96, 241112 (2010).
[Crossref]

Jansen-van Vuuren, R. D.

A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, and P. Meredith, “Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes,” Nat. Commun. 6, 6343 (2015).
[Crossref]

Jessop, P.

J. Bradley, P. Jessop, and A. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
[Crossref]

Jessop, P. E.

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24, 783–786 (2006).
[Crossref]

Kaertner, F. X.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Knight, M. W.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Knights, A.

J. Bradley, P. Jessop, and A. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
[Crossref]

Knights, A. P.

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24, 783–786 (2006).
[Crossref]

Kohno, A.

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

Kopidakis, N.

A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, and P. Meredith, “Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes,” Nat. Commun. 6, 6343 (2015).
[Crossref]

Krich, J. J.

J. T. Sullivan, C. B. Simmons, T. Buonassisi, and J. J. Krich, “Targeted search for effective intermediate band solar cell materials,” IEEE J. Photovolt. 5, 212–218 (2015).
[Crossref]

J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, “Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon,” J. Appl. Phys. 114, 103701 (2013).
[Crossref]

Kwong, D. L.

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection,” Appl. Phys. Lett. 92, 081103 (2008).
[Crossref]

Lennon, D. M.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Levinson, J. A.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

Li, L.

L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
[Crossref]

Li, X.

X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, and C. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express. 20, 5518–5523 (2012).
[Crossref]

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Lien, W.-C.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5, 7748–7753 (2011).
[Crossref]

Lin, C.-A.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5, 7748–7753 (2011).
[Crossref]

Lin, Y.-T.

M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, and A. Asenbaum, “Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation,” J. Appl. Phys. 113, 063520 (2013).
[Crossref]

Liu, F.

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Liu, M.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[Crossref]

Liu, X.

X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6, 1700638 (2018).
[Crossref]

Lo, G. Q.

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection,” Appl. Phys. Lett. 92, 081103 (2008).
[Crossref]

Luo, X. S.

H. Chen, X. S. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Ma, L.

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28, 4912–4919 (2016).
[Crossref]

Mailoa, J. P.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, and T. Buonassisi, “Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band,” Adv. Funct. Mater. 24, 2852–2858 (2014).
[Crossref]

Mártil, I.

E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, “Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector,” Appl. Phys. Lett. 104, 211105 (2014).
[Crossref]

Mathews, J.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

Mazur, E.

M. J. Sher and E. Mazur, “Intermediate band conduction in femtosecond-laser hyperdoped silicon,” Appl. Phys. Lett. 105, 032103 (2014).
[Crossref]

M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, and A. Asenbaum, “Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation,” J. Appl. Phys. 113, 063520 (2013).
[Crossref]

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[Crossref]

J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30, 1773–1775 (2005).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[Crossref]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

E. Mazur, “Black silicon: engineering an intermediate band in silicon for photovoltaic applications,” in Abstracts of Papers of the American Chemical Society, Vol. 240, (2010).

McGroddy, J. C.

J. F. Reintjes and J. C. McGroddy, “Indirect two-photon transitions in Si at 1.06  μm,” Phys. Rev. Lett. 30, 901–903 (1973).
[Crossref]

Mehrer, H.

F. Rollert, N. A. Stolwijk, and H. Mehrer, “Solubility, diffusion and thermodynamic properties of silver in silicon,” J. Phys. D 20, 1148–1155 (1987).
[Crossref]

Meredith, P.

A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, and P. Meredith, “Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes,” Nat. Commun. 6, 6343 (2015).
[Crossref]

Montero, D.

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

Moretti, L.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008).
[Crossref]

Nordlander, P.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Olea, J.

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, “Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector,” Appl. Phys. Lett. 104, 211105 (2014).
[Crossref]

Palsule, C.

X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, and C. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express. 20, 5518–5523 (2012).
[Crossref]

Pan, M.

R. Chen, B. Fan, M. Pan, Q. Cheng, and C. Chen, “Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation,” Mater. Lett. 163, 90–93 (2016).
[Crossref]

Papazoglou, D. G.

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

Park, S.

Z. Guo, S. Park, J. Yoon, and I. Shin, “Recent progress in the development of near-infrared fluorescent probes for bioimaging applications,” Chem. Soc. Rev. 43, 16–29 (2014).
[Crossref]

Pastor, D.

E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, “Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector,” Appl. Phys. Lett. 104, 211105 (2014).
[Crossref]

Pérez, E.

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

Persans, P. D.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

Pi, X.

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28, 4912–4919 (2016).
[Crossref]

Poon, A. W.

H. Chen, X. S. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

Pralle, M.

X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, and C. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express. 20, 5518–5523 (2012).
[Crossref]

Prucnal, S.

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Pruner, C.

M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, and A. Asenbaum, “Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation,” J. Appl. Phys. 113, 063520 (2013).
[Crossref]

Qiu, X.

X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6, 1700638 (2018).
[Crossref]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Rebohle, L.

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Recht, D.

C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, and T. Buonassisi, “Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band,” Adv. Funct. Mater. 24, 2852–2858 (2014).
[Crossref]

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, “Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon,” J. Appl. Phys. 114, 103701 (2013).
[Crossref]

Reintjes, J. F.

J. F. Reintjes and J. C. McGroddy, “Indirect two-photon transitions in Si at 1.06  μm,” Phys. Rev. Lett. 30, 901–903 (1973).
[Crossref]

Rendina, I.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96, 241112 (2010).
[Crossref]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008).
[Crossref]

Rieger, G. W.

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Rollert, F.

F. Rollert, N. A. Stolwijk, and H. Mehrer, “Solubility, diffusion and thermodynamic properties of silver in silicon,” J. Phys. D 20, 1148–1155 (1987).
[Crossref]

Saffioti, N.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96, 241112 (2010).
[Crossref]

Scherer, A.

Schneider, H.

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Schulein, R. T.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Shao, Y. C.

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Shen, L.

L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, and J. Huang, “A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain,” Nanoscale 8, 12990–12997 (2016).
[Crossref]

Shen, M.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[Crossref]

Shen, M. Y.

Sher, M. J.

M. J. Sher and E. Mazur, “Intermediate band conduction in femtosecond-laser hyperdoped silicon,” Appl. Phys. Lett. 105, 032103 (2014).
[Crossref]

Sher, M.-J.

M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, and A. Asenbaum, “Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation,” J. Appl. Phys. 113, 063520 (2013).
[Crossref]

Shin, I.

Z. Guo, S. Park, J. Yoon, and I. Shin, “Recent progress in the development of near-infrared fluorescent probes for bioimaging applications,” Chem. Soc. Rev. 43, 16–29 (2014).
[Crossref]

Shu, C.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Sickler, J.

X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, and C. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express. 20, 5518–5523 (2012).
[Crossref]

Simmons, C. B.

J. T. Sullivan, C. B. Simmons, T. Buonassisi, and J. J. Krich, “Targeted search for effective intermediate band solar cell materials,” IEEE J. Photovolt. 5, 212–218 (2015).
[Crossref]

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, and T. Buonassisi, “Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band,” Adv. Funct. Mater. 24, 2852–2858 (2014).
[Crossref]

J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, “Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon,” J. Appl. Phys. 114, 103701 (2013).
[Crossref]

Sirleto, L.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96, 241112 (2010).
[Crossref]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008).
[Crossref]

Skorupa, I.

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Skorupa, W.

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Spector, S. J.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Stolwijk, N. A.

F. Rollert, N. A. Stolwijk, and H. Mehrer, “Solubility, diffusion and thermodynamic properties of silver in silicon,” J. Phys. D 20, 1148–1155 (1987).
[Crossref]

Sugano, T.

K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18, 113–122 (1979).
[Crossref]

Sullivan, J. T.

J. T. Sullivan, C. B. Simmons, T. Buonassisi, and J. J. Krich, “Targeted search for effective intermediate band solar cell materials,” IEEE J. Photovolt. 5, 212–218 (2015).
[Crossref]

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, “Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon,” J. Appl. Phys. 114, 103701 (2013).
[Crossref]

Tabbal, M.

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

Tang, S.

L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
[Crossref]

Tsai, D.-S.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5, 7748–7753 (2011).
[Crossref]

Tsang, H. K.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Umezu, I.

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

Vineis, C.

X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, and C. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express. 20, 5518–5523 (2012).
[Crossref]

Wan, X.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Wang, F.

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28, 4912–4919 (2016).
[Crossref]

Wang, J.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Wang, Q.

L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, and J. Huang, “A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain,” Nanoscale 8, 12990–12997 (2016).
[Crossref]

Wang, X.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Wang, Y.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Wang, Y.-L.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5, 7748–7753 (2011).
[Crossref]

Warrender, J. M.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[Crossref]

Wei, H.

L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
[Crossref]

Williams, J. S.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

Winkler, M. T.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, and A. Asenbaum, “Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation,” J. Appl. Phys. 113, 063520 (2013).
[Crossref]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Xiao, Z. G.

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Xu, J. B.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Xu, J.-B.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Xu, K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Xu, Y.

X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6, 1700638 (2018).
[Crossref]

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28, 4912–4919 (2016).
[Crossref]

Yamasaki, K.

K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18, 113–122 (1979).
[Crossref]

Yang, B.

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Yang, D.

X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6, 1700638 (2018).
[Crossref]

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28, 4912–4919 (2016).
[Crossref]

Yoon, J.

Z. Guo, S. Park, J. Yoon, and I. Shin, “Recent progress in the development of near-infrared fluorescent probes for bioimaging applications,” Chem. Soc. Rev. 43, 16–29 (2014).
[Crossref]

Yoon, J. U.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Yoshida, M.

K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18, 113–122 (1979).
[Crossref]

Young, J. F.

Younkin, R.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

Yu, M. B.

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection,” Appl. Phys. Lett. 92, 081103 (2008).
[Crossref]

Yu, T.

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28, 4912–4919 (2016).
[Crossref]

Yu, X.

X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6, 1700638 (2018).
[Crossref]

Yuan, S.

X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6, 1700638 (2018).
[Crossref]

Yuan, Y. B.

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Zeng, X. C.

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Zhang, F.

L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
[Crossref]

Zhang, X.-C.

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

Zhang, Y.

L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, and J. Huang, “A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain,” Nanoscale 8, 12990–12997 (2016).
[Crossref]

Zhao, L.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Zheng, X.

L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, and J. Huang, “A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain,” Nanoscale 8, 12990–12997 (2016).
[Crossref]

Zhou, S.

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Zhu, S. Y.

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection,” Appl. Phys. Lett. 92, 081103 (2008).
[Crossref]

Zunger, A.

A. Fazzio, M. J. Caldas, and A. Zunger, “Electronic-structure of copper, silver, and gold impurities in silicon,” Phys. Rev. B 32, 934–954 (1985).
[Crossref]

ACS Nano (1)

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5, 7748–7753 (2011).
[Crossref]

Adv. Funct. Mater. (1)

C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, and T. Buonassisi, “Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band,” Adv. Funct. Mater. 24, 2852–2858 (2014).
[Crossref]

Adv. Mater. (2)

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28, 4912–4919 (2016).
[Crossref]

R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, and J. S. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Adv. Opt. Mater. (3)

L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, and J. Huang, “Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response,” Adv. Opt. Mater. 5, 1700672 (2017).
[Crossref]

X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6, 1700638 (2018).
[Crossref]

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Appl. Phys. A (1)

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[Crossref]

Appl. Phys. Lett. (15)

E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, “Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications,” Appl. Phys. Lett. 106, 022105 (2015).
[Crossref]

M. J. Sher and E. Mazur, “Intermediate band conduction in femtosecond-laser hyperdoped silicon,” Appl. Phys. Lett. 105, 032103 (2014).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852 (2001).
[Crossref]

J. Bradley, P. Jessop, and A. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
[Crossref]

E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, “Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector,” Appl. Phys. Lett. 104, 211105 (2014).
[Crossref]

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[Crossref]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008).
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

H. Chen, X. S. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95, 021104 (2009).
[Crossref]

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection,” Appl. Phys. Lett. 92, 081103 (2008).
[Crossref]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96, 241112 (2010).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[Crossref]

Chem. Soc. Rev. (1)

Z. Guo, S. Park, J. Yoon, and I. Shin, “Recent progress in the development of near-infrared fluorescent probes for bioimaging applications,” Chem. Soc. Rev. 43, 16–29 (2014).
[Crossref]

IEEE J. Photovolt. (1)

J. T. Sullivan, C. B. Simmons, T. Buonassisi, and J. J. Krich, “Targeted search for effective intermediate band solar cell materials,” IEEE J. Photovolt. 5, 212–218 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

J. Appl. Phys. (4)

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[Crossref]

I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, and M. J. Aziz, “Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens,” J. Appl. Phys. 113, 213501 (2013).
[Crossref]

J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, “Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon,” J. Appl. Phys. 114, 103701 (2013).
[Crossref]

M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, and A. Asenbaum, “Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation,” J. Appl. Phys. 113, 063520 (2013).
[Crossref]

J. Phys. D (1)

F. Rollert, N. A. Stolwijk, and H. Mehrer, “Solubility, diffusion and thermodynamic properties of silver in silicon,” J. Phys. D 20, 1148–1155 (1987).
[Crossref]

J. Vac. Sci. Technol. A (1)

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24, 783–786 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18, 113–122 (1979).
[Crossref]

Mater. Lett. (1)

R. Chen, B. Fan, M. Pan, Q. Cheng, and C. Chen, “Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation,” Mater. Lett. 163, 90–93 (2016).
[Crossref]

Nanoscale (1)

L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, and J. Huang, “A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain,” Nanoscale 8, 12990–12997 (2016).
[Crossref]

Nat. Commun. (3)

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5, 3011 (2014).
[Crossref]

A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, and P. Meredith, “Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes,” Nat. Commun. 6, 6343 (2015).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Nat. Nanotechnol. (1)

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Nat. Photonics (2)

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Opt. Express (2)

Opt. Express. (1)

X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, and C. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express. 20, 5518–5523 (2012).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

A. Fazzio, M. J. Caldas, and A. Zunger, “Electronic-structure of copper, silver, and gold impurities in silicon,” Phys. Rev. B 32, 934–954 (1985).
[Crossref]

Phys. Rev. Lett. (1)

J. F. Reintjes and J. C. McGroddy, “Indirect two-photon transitions in Si at 1.06  μm,” Phys. Rev. Lett. 30, 901–903 (1973).
[Crossref]

Sci. Rep. (1)

Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7, 43688 (2017).
[Crossref]

Other (1)

E. Mazur, “Black silicon: engineering an intermediate band in silicon for photovoltaic applications,” in Abstracts of Papers of the American Chemical Society, Vol. 240, (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Fabrication diagram of a Si:Ag sample. (b) Simulation and SIMS data of the silver concentration depth profiles after the ion implantation and after the PLM. (c) The Raman spectra of the Si:Ag samples after the ion implantation and after the PLM. For the samples after PLM, the spectra with and without 950°C annealing are both shown. (d) Spectral absorptance (1-transmittance-reflectance) of the Si:Ag samples after 950°C annealing. The absorptance of the silicon substrate is also shown for comparison.
Fig. 2.
Fig. 2. (a) Schematic diagram of fabricated photodetector device components. (b) EQE spectra (900–1600 nm) of the Si:Ag photodetector under reverse bias from 0 V to 3  V with an interval of 0.5 V. (c) EQE increases with the applied reverse bias for 1310 nm and 1550 nm, respectively. (d) The current density-voltage curves of the Si:Ag photodetector in the dark and under the 1310 nm infrared light illumination (0.6  mW·cm2).
Fig. 3.
Fig. 3. (a) DLTS spectra of the Si:Ag MOS diode for the reverse bias voltage of 3  V, 4  V, and 5  V, respectively. The pulse voltage was set as 1  V. (b) Normalized DLTS signals of the Si:Ag samples subjected to different energy fluence fs-PLM processing.
Fig. 4.
Fig. 4. (a) Illustration of the vilible-blind photodetector working mechanism. (b) Spectral absorptance and EQE of the Si:Ag photodetector. (c) Effect of the fs-laser fluence on the normalized EQE spectra (300–1800 nm) of the Si:Ag photodetectors.
Fig. 5.
Fig. 5. Illustration of the sub-bandgap and high-gain photoresponse working mechanism.
Fig. 6.
Fig. 6. (a) Transient photocurrent of the Si:Ag photodetector measured at 3  V under 1310 nm light illumination. (b) Net photocurrent versus incident photon intensity for 1310 nm wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G=τfallttransimittime=τfalld2/μV,