Abstract

We have studied a switchable hyperbolic metamaterial composed of a graphene–dielectric periodic structure. By tuning the chemical potential of all graphene sheets simultaneously, the isofrequency curve can switch between an ellipse and a hyperbola conveniently. In particular, a special hyperbolic isofrequency curve with its asymptote perpendicular to the interface is obtained and used to realize the zero reflection effect. Furthermore, a zero-reflection-based optical switch working in the terahertz spectrum is demonstrated. Its bandwidth can be efficiently adjusted by geometric parameters such as permittivity and period. Such an optical switch possesses the merits of low loss, high transmittance contrast, high response speed, compact size, high tolerance of chemical potential, and having all incident angles (0°–90°) simultaneously. Such an optical switch holds great potential in many fields, such as data storage, beam steering, and integrated photonic circuits.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Functionality-switchable terahertz polarization converter based on a graphene-integrated planar metamaterial

Wei Zhang, Jianli Jiang, Jing Yuan, Shuang Liang, Jisong Qian, Jing Shu, and Liyong Jiang
OSA Continuum 1(1) 124-135 (2018)

Tunable deflection and asymmetric transmission of THz waves using a thin slab of graphene-dielectric metamaterial, with and without ENZ components

Andriy E. Serebryannikov, Hodjat Hajian, Miguel Beruete, Ekmel Ozbay, and Guy A. E. Vandenbosch
Opt. Mater. Express 8(12) 3887-3898 (2018)

Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency

Yin Zhang, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 22(19) 22743-22752 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref]
  3. Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
    [Crossref]
  4. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
    [Crossref]
  5. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012, 452502 (2012).
    [Crossref]
  6. K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103, 023107 (2013).
    [Crossref]
  7. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
    [Crossref]
  8. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21, 15037–15047 (2013).
    [Crossref]
  9. A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015).
    [Crossref]
  10. S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, and D. W. Zhang, “Plasmonic slow light waveguide with hyperbolic metamaterials claddings,” J. Opt. 20, 065001 (2018).
    [Crossref]
  11. T. F. Li, V. Nagai, D. H. Gracias, and J. B. Khurgin, “Limits of imaging with multilayer hyperbolic metamaterials,” Opt. Express 25, 13588–13601 (2017).
    [Crossref]
  12. D. Lu, J. J. Kan, E. E. Fullerton, and Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9, 48–53 (2014).
    [Crossref]
  13. K. J. Lee, Y. U. Lee, S. J. Kim, and P. André, “Hyperbolic dispersion dominant regime identified through spontaneous emission variations near metamaterial interfaces,” Adv. Mater. Interfaces 5, 1701629 (2018).
    [Crossref]
  14. T. A. Morgado, S. I. Maslovski, and M. G. Silveirinha, “Ultrahigh Casimir interaction torque in nanowire systems,” Opt. Express 21, 14943–14955 (2013).
    [Crossref]
  15. M. Kim, S. Kim, and S. Kim, “Optical bistability based on hyperbolic metamaterials,” Opt. Express 26, 11620–11632 (2018).
    [Crossref]
  16. X. Li, Z. X. Liang, X. H. Liu, X. Y. Jiang, and J. Zi, “All-angle zero reflection at metamaterial surfaces,” Appl. Phys. Lett. 93, 171111 (2008).
    [Crossref]
  17. W. Li, Z. Liu, X. Zhang, and X. Y. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 161108 (2012).
    [Crossref]
  18. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [Crossref]
  19. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
    [Crossref]
  20. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
    [Crossref]
  21. H. Deng, F. Ye, B. A. Malomed, X. Chen, and N. C. Panoiu, “Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices,” Phys. Rev. B 91, 201402 (2015).
    [Crossref]
  22. H. Deng, X. Chen, B. A. Malomed, N. C. Panoiu, and F. Ye, “Tunability and robustness of Dirac points of photonic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 22, 98–106 (2016).
    [Crossref]
  23. Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
    [Crossref]
  24. T. Gric and O. Hess, “Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials,” Opt. Express 25, 11466–11476 (2017).
    [Crossref]
  25. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21, 17089–17096 (2013).
    [Crossref]
  26. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87, 075416 (2013).
    [Crossref]
  27. H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, and Y. W. Chen, “Electrically tunable terahertz metamaterials based on graphene stacks array,” Superlattices Microstruct. 112, 470–479 (2017).
    [Crossref]
  28. B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24, 24129–24136 (2016).
    [Crossref]
  29. M. Shoaei, M. K. Moravvej-Farshi, and L. Yousefi, “Nanostructured graphene-based hyperbolic metamaterial performing as a wide-angle near infrared electro-optical switch,” Appl. Opt. 54, 1206–1211 (2015).
    [Crossref]
  30. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophoton. 7, 073089 (2013).
    [Crossref]
  31. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
    [Crossref]
  32. S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Mater. Express 5, 2385–2394 (2015).
    [Crossref]
  33. F. H. Shi, Y. H. Chen, P. Han, and P. Tassin, “Broadband, spectrally flat, graphene-based terahertz modulators,” Small 11, 6044–6050 (2015).
    [Crossref]
  34. W. G. Liu, B. Hu, Z. D. Huang, H. Y. Guan, H. T. Li, X. K. Wang, Y. Zhang, H. X. Yin, X. L. Xiong, J. Liu, and Y. T. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photon. Res. 6, 703–708 (2018).
    [Crossref]
  35. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86, 205130 (2012).
    [Crossref]
  36. Y. Zhang, Y. Shi, and C. H. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6, 3036–3044 (2016).
    [Crossref]
  37. Y. T. Zhao, B. A. Wu, B. J. Huang, and Q. A. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25, 7161–7169 (2017).
    [Crossref]
  38. Y. Shi and Y. Zhang, “Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray,” IEEE Access 6, 5341–5347 (2018).
    [Crossref]
  39. Z. Li, W. Y. Liang, and W. H. Chen, “Switchable hyperbolic metamaterials based on the graphene-dielectric stacking structure and optical switches design,” Europhys. Lett. 120, 37001 (2017).
    [Crossref]
  40. H. N. S. Krishnamoorthy, B. Gholipour, N. I. Zheludev, and C. Soci, “A non-volatile chalcogenide switchable hyperbolic metamaterial,” Adv. Opt. Mater. 6, 1800332 (2018).
    [Crossref]
  41. M. Shoaei, M. K. Moravvej-Farshi, and L. Yousefi, “All-optical switching of nonlinear hyperbolic metamaterials in visible and near-infrared regions,” J. Opt. Soc. Am. B 32, 2358–2365 (2015).
    [Crossref]
  42. J. Qin, H. M. Dong, K. Han, and X. F. Wang, “Ultrafast dynamic optical properties of graphene,” Acta Phys. Sin. 64, 237801 (2015).
    [Crossref]
  43. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 026222 (2007).
    [Crossref]
  44. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21, 7614–7632 (2013).
    [Crossref]

2018 (6)

S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, and D. W. Zhang, “Plasmonic slow light waveguide with hyperbolic metamaterials claddings,” J. Opt. 20, 065001 (2018).
[Crossref]

K. J. Lee, Y. U. Lee, S. J. Kim, and P. André, “Hyperbolic dispersion dominant regime identified through spontaneous emission variations near metamaterial interfaces,” Adv. Mater. Interfaces 5, 1701629 (2018).
[Crossref]

M. Kim, S. Kim, and S. Kim, “Optical bistability based on hyperbolic metamaterials,” Opt. Express 26, 11620–11632 (2018).
[Crossref]

W. G. Liu, B. Hu, Z. D. Huang, H. Y. Guan, H. T. Li, X. K. Wang, Y. Zhang, H. X. Yin, X. L. Xiong, J. Liu, and Y. T. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photon. Res. 6, 703–708 (2018).
[Crossref]

Y. Shi and Y. Zhang, “Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray,” IEEE Access 6, 5341–5347 (2018).
[Crossref]

H. N. S. Krishnamoorthy, B. Gholipour, N. I. Zheludev, and C. Soci, “A non-volatile chalcogenide switchable hyperbolic metamaterial,” Adv. Opt. Mater. 6, 1800332 (2018).
[Crossref]

2017 (6)

Z. Li, W. Y. Liang, and W. H. Chen, “Switchable hyperbolic metamaterials based on the graphene-dielectric stacking structure and optical switches design,” Europhys. Lett. 120, 37001 (2017).
[Crossref]

Y. T. Zhao, B. A. Wu, B. J. Huang, and Q. A. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25, 7161–7169 (2017).
[Crossref]

H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, and Y. W. Chen, “Electrically tunable terahertz metamaterials based on graphene stacks array,” Superlattices Microstruct. 112, 470–479 (2017).
[Crossref]

T. Gric and O. Hess, “Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials,” Opt. Express 25, 11466–11476 (2017).
[Crossref]

T. F. Li, V. Nagai, D. H. Gracias, and J. B. Khurgin, “Limits of imaging with multilayer hyperbolic metamaterials,” Opt. Express 25, 13588–13601 (2017).
[Crossref]

Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
[Crossref]

2016 (4)

H. Deng, X. Chen, B. A. Malomed, N. C. Panoiu, and F. Ye, “Tunability and robustness of Dirac points of photonic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 22, 98–106 (2016).
[Crossref]

Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24, 24129–24136 (2016).
[Crossref]

Y. Zhang, Y. Shi, and C. H. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6, 3036–3044 (2016).
[Crossref]

2015 (7)

M. Shoaei, M. K. Moravvej-Farshi, and L. Yousefi, “All-optical switching of nonlinear hyperbolic metamaterials in visible and near-infrared regions,” J. Opt. Soc. Am. B 32, 2358–2365 (2015).
[Crossref]

J. Qin, H. M. Dong, K. Han, and X. F. Wang, “Ultrafast dynamic optical properties of graphene,” Acta Phys. Sin. 64, 237801 (2015).
[Crossref]

M. Shoaei, M. K. Moravvej-Farshi, and L. Yousefi, “Nanostructured graphene-based hyperbolic metamaterial performing as a wide-angle near infrared electro-optical switch,” Appl. Opt. 54, 1206–1211 (2015).
[Crossref]

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Mater. Express 5, 2385–2394 (2015).
[Crossref]

F. H. Shi, Y. H. Chen, P. Han, and P. Tassin, “Broadband, spectrally flat, graphene-based terahertz modulators,” Small 11, 6044–6050 (2015).
[Crossref]

A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015).
[Crossref]

H. Deng, F. Ye, B. A. Malomed, X. Chen, and N. C. Panoiu, “Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices,” Phys. Rev. B 91, 201402 (2015).
[Crossref]

2014 (1)

D. Lu, J. J. Kan, E. E. Fullerton, and Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9, 48–53 (2014).
[Crossref]

2013 (7)

T. A. Morgado, S. I. Maslovski, and M. G. Silveirinha, “Ultrahigh Casimir interaction torque in nanowire systems,” Opt. Express 21, 14943–14955 (2013).
[Crossref]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103, 023107 (2013).
[Crossref]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21, 15037–15047 (2013).
[Crossref]

B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21, 17089–17096 (2013).
[Crossref]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87, 075416 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophoton. 7, 073089 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21, 7614–7632 (2013).
[Crossref]

2012 (4)

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86, 205130 (2012).
[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012, 452502 (2012).
[Crossref]

W. Li, Z. Liu, X. Zhang, and X. Y. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 161108 (2012).
[Crossref]

2011 (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

2008 (2)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

X. Li, Z. X. Liang, X. H. Liu, X. Y. Jiang, and J. Zi, “All-angle zero reflection at metamaterial surfaces,” Appl. Phys. Lett. 93, 171111 (2008).
[Crossref]

2007 (2)

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 026222 (2007).
[Crossref]

2006 (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

2004 (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref]

Alekseyev, L.

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Alù, A.

André, P.

K. J. Lee, Y. U. Lee, S. J. Kim, and P. André, “Hyperbolic dispersion dominant regime identified through spontaneous emission variations near metamaterial interfaces,” Adv. Mater. Interfaces 5, 1701629 (2018).
[Crossref]

Argyropoulos, C.

Belov, P. A.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87, 075416 (2013).
[Crossref]

Bian, L. A.

H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, and Y. W. Chen, “Electrically tunable terahertz metamaterials based on graphene stacks array,” Superlattices Microstruct. 112, 470–479 (2017).
[Crossref]

Campione, S.

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Mater. Express 5, 2385–2394 (2015).
[Crossref]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86, 205130 (2012).
[Crossref]

Capolino, F.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21, 7614–7632 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophoton. 7, 073089 (2013).
[Crossref]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86, 205130 (2012).
[Crossref]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 026222 (2007).
[Crossref]

Chang, Y. C.

Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Chen, W. H.

Z. Li, W. Y. Liang, and W. H. Chen, “Switchable hyperbolic metamaterials based on the graphene-dielectric stacking structure and optical switches design,” Europhys. Lett. 120, 37001 (2017).
[Crossref]

Chen, X.

H. Deng, X. Chen, B. A. Malomed, N. C. Panoiu, and F. Ye, “Tunability and robustness of Dirac points of photonic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 22, 98–106 (2016).
[Crossref]

H. Deng, F. Ye, B. A. Malomed, X. Chen, and N. C. Panoiu, “Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices,” Phys. Rev. B 91, 201402 (2015).
[Crossref]

Chen, Y. H.

F. H. Shi, Y. H. Chen, P. Han, and P. Tassin, “Broadband, spectrally flat, graphene-based terahertz modulators,” Small 11, 6044–6050 (2015).
[Crossref]

Chen, Y. W.

H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, and Y. W. Chen, “Electrically tunable terahertz metamaterials based on graphene stacks array,” Superlattices Microstruct. 112, 470–479 (2017).
[Crossref]

Cheng, Q. A.

Cortes, C. L.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012, 452502 (2012).
[Crossref]

De Luca, A.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103, 023107 (2013).
[Crossref]

Deng, H.

H. Deng, X. Chen, B. A. Malomed, N. C. Panoiu, and F. Ye, “Tunability and robustness of Dirac points of photonic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 22, 98–106 (2016).
[Crossref]

H. Deng, F. Ye, B. A. Malomed, X. Chen, and N. C. Panoiu, “Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices,” Phys. Rev. B 91, 201402 (2015).
[Crossref]

Dong, H. M.

J. Qin, H. M. Dong, K. Han, and X. F. Wang, “Ultrafast dynamic optical properties of graphene,” Acta Phys. Sin. 64, 237801 (2015).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Estakhri, N. M.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Franz, K. J.

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Fullerton, E. E.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9, 48–53 (2014).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Gholipour, B.

H. N. S. Krishnamoorthy, B. Gholipour, N. I. Zheludev, and C. Soci, “A non-volatile chalcogenide switchable hyperbolic metamaterial,” Adv. Opt. Mater. 6, 1800332 (2018).
[Crossref]

Gmachl, C.

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Gracias, D. H.

Gric, T.

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Guan, H. Y.

Guclu, C.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21, 7614–7632 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophoton. 7, 073089 (2013).
[Crossref]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86, 205130 (2012).
[Crossref]

Guo, Y.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012, 452502 (2012).
[Crossref]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 026222 (2007).
[Crossref]

Han, K.

J. Qin, H. M. Dong, K. Han, and X. F. Wang, “Ultrafast dynamic optical properties of graphene,” Acta Phys. Sin. 64, 237801 (2015).
[Crossref]

Han, P.

F. H. Shi, Y. H. Chen, P. Han, and P. Tassin, “Broadband, spectrally flat, graphene-based terahertz modulators,” Small 11, 6044–6050 (2015).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

Hess, O.

Hoffman, J.

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Howard, S. S.

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Hu, B.

Huang, B. J.

Huang, Z. D.

Iorsh, I. V.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87, 075416 (2013).
[Crossref]

Jacob, Z.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012, 452502 (2012).
[Crossref]

Janaszek, B.

Jian, S.

Jiang, C. H.

S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, and D. W. Zhang, “Plasmonic slow light waveguide with hyperbolic metamaterials claddings,” J. Opt. 20, 065001 (2018).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Jiang, X. Y.

W. Li, Z. Liu, X. Zhang, and X. Y. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 161108 (2012).
[Crossref]

X. Li, Z. X. Liang, X. H. Liu, X. Y. Jiang, and J. Zi, “All-angle zero reflection at metamaterial surfaces,” Appl. Phys. Lett. 93, 171111 (2008).
[Crossref]

Kan, J. J.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9, 48–53 (2014).
[Crossref]

Khurgin, J. B.

Kim, M.

Kim, S.

Kim, S. J.

K. J. Lee, Y. U. Lee, S. J. Kim, and P. André, “Hyperbolic dispersion dominant regime identified through spontaneous emission variations near metamaterial interfaces,” Adv. Mater. Interfaces 5, 1701629 (2018).
[Crossref]

Kivshar, Y. S.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87, 075416 (2013).
[Crossref]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, B. Gholipour, N. I. Zheludev, and C. Soci, “A non-volatile chalcogenide switchable hyperbolic metamaterial,” Adv. Opt. Mater. 6, 1800332 (2018).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

Lee, K. J.

K. J. Lee, Y. U. Lee, S. J. Kim, and P. André, “Hyperbolic dispersion dominant regime identified through spontaneous emission variations near metamaterial interfaces,” Adv. Mater. Interfaces 5, 1701629 (2018).
[Crossref]

Lee, Y. U.

K. J. Lee, Y. U. Lee, S. J. Kim, and P. André, “Hyperbolic dispersion dominant regime identified through spontaneous emission variations near metamaterial interfaces,” Adv. Mater. Interfaces 5, 1701629 (2018).
[Crossref]

Li, D. C.

S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, and D. W. Zhang, “Plasmonic slow light waveguide with hyperbolic metamaterials claddings,” J. Opt. 20, 065001 (2018).
[Crossref]

Li, H. T.

Li, T. F.

Li, W.

W. Li, Z. Liu, X. Zhang, and X. Y. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 161108 (2012).
[Crossref]

Li, X.

X. Li, Z. X. Liang, X. H. Liu, X. Y. Jiang, and J. Zi, “All-angle zero reflection at metamaterial surfaces,” Appl. Phys. Lett. 93, 171111 (2008).
[Crossref]

Li, Z.

Z. Li, W. Y. Liang, and W. H. Chen, “Switchable hyperbolic metamaterials based on the graphene-dielectric stacking structure and optical switches design,” Europhys. Lett. 120, 37001 (2017).
[Crossref]

Liang, C. H.

Liang, S. H.

S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, and D. W. Zhang, “Plasmonic slow light waveguide with hyperbolic metamaterials claddings,” J. Opt. 20, 065001 (2018).
[Crossref]

Liang, W. Y.

Z. Li, W. Y. Liang, and W. H. Chen, “Switchable hyperbolic metamaterials based on the graphene-dielectric stacking structure and optical switches design,” Europhys. Lett. 120, 37001 (2017).
[Crossref]

Liang, Z. X.

X. Li, Z. X. Liang, X. H. Liu, X. Y. Jiang, and J. Zi, “All-angle zero reflection at metamaterial surfaces,” Appl. Phys. Lett. 93, 171111 (2008).
[Crossref]

Liao, Q.

Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
[Crossref]

Lin, Z.

Liu, C. H.

Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Liu, C. X.

H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, and Y. W. Chen, “Electrically tunable terahertz metamaterials based on graphene stacks array,” Superlattices Microstruct. 112, 470–479 (2017).
[Crossref]

Liu, H. G.

H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, and Y. W. Chen, “Electrically tunable terahertz metamaterials based on graphene stacks array,” Superlattices Microstruct. 112, 470–479 (2017).
[Crossref]

Liu, J.

W. G. Liu, B. Hu, Z. D. Huang, H. Y. Guan, H. T. Li, X. K. Wang, Y. Zhang, H. X. Yin, X. L. Xiong, J. Liu, and Y. T. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photon. Res. 6, 703–708 (2018).
[Crossref]

Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
[Crossref]

Liu, N.

Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
[Crossref]

Liu, P. G.

H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, and Y. W. Chen, “Electrically tunable terahertz metamaterials based on graphene stacks array,” Superlattices Microstruct. 112, 470–479 (2017).
[Crossref]

Liu, S.

Liu, W.

Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
[Crossref]

Liu, W. G.

Liu, X. H.

X. Li, Z. X. Liang, X. H. Liu, X. Y. Jiang, and J. Zi, “All-angle zero reflection at metamaterial surfaces,” Appl. Phys. Lett. 93, 171111 (2008).
[Crossref]

Liu, Z.

W. Li, Z. Liu, X. Zhang, and X. Y. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 161108 (2012).
[Crossref]

Liu, Z. W.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9, 48–53 (2014).
[Crossref]

Lu, D.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9, 48–53 (2014).
[Crossref]

Luk, T. S.

Malomed, B. A.

H. Deng, X. Chen, B. A. Malomed, N. C. Panoiu, and F. Ye, “Tunability and robustness of Dirac points of photonic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 22, 98–106 (2016).
[Crossref]

H. Deng, F. Ye, B. A. Malomed, X. Chen, and N. C. Panoiu, “Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices,” Phys. Rev. B 91, 201402 (2015).
[Crossref]

Marder, S. R.

Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Maslovski, S. I.

Mei, T.

S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, and D. W. Zhang, “Plasmonic slow light waveguide with hyperbolic metamaterials claddings,” J. Opt. 20, 065001 (2018).
[Crossref]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

Monticone, F.

Moravvej-Farshi, M. K.

Morgado, T. A.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Mukhin, I. S.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87, 075416 (2013).
[Crossref]

Nagai, V.

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

Narimanov, E. E.

Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Neira, A. D.

A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015).
[Crossref]

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012, 452502 (2012).
[Crossref]

Norris, T. B.

Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Othman, M. A. K.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophoton. 7, 073089 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21, 7614–7632 (2013).
[Crossref]

Panoiu, N. C.

H. Deng, X. Chen, B. A. Malomed, N. C. Panoiu, and F. Ye, “Tunability and robustness of Dirac points of photonic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 22, 98–106 (2016).
[Crossref]

H. Deng, F. Ye, B. A. Malomed, X. Chen, and N. C. Panoiu, “Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices,” Phys. Rev. B 91, 201402 (2015).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Podolskiy, V. A.

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Qin, J.

J. Qin, H. M. Dong, K. Han, and X. F. Wang, “Ultrafast dynamic optical properties of graphene,” Acta Phys. Sin. 64, 237801 (2015).
[Crossref]

Ren, G.

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref]

Shadrivov, I. V.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87, 075416 (2013).
[Crossref]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 026222 (2007).
[Crossref]

Shi, F. H.

F. H. Shi, Y. H. Chen, P. Han, and P. Tassin, “Broadband, spectrally flat, graphene-based terahertz modulators,” Small 11, 6044–6050 (2015).
[Crossref]

Shi, Y.

Y. Shi and Y. Zhang, “Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray,” IEEE Access 6, 5341–5347 (2018).
[Crossref]

Y. Zhang, Y. Shi, and C. H. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6, 3036–3044 (2016).
[Crossref]

Shoaei, M.

Silveirinha, M. G.

Sinclair, M. B.

Sivco, D. L.

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref]

Soci, C.

H. N. S. Krishnamoorthy, B. Gholipour, N. I. Zheludev, and C. Soci, “A non-volatile chalcogenide switchable hyperbolic metamaterial,” Adv. Opt. Mater. 6, 1800332 (2018).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103, 023107 (2013).
[Crossref]

Strangi, G.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103, 023107 (2013).
[Crossref]

Szczepanski, P.

Tassin, P.

F. H. Shi, Y. H. Chen, P. Han, and P. Tassin, “Broadband, spectrally flat, graphene-based terahertz modulators,” Small 11, 6044–6050 (2015).
[Crossref]

Tyszka-Zawadzka, A.

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Wang, T.

Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
[Crossref]

Wang, X. F.

J. Qin, H. M. Dong, K. Han, and X. F. Wang, “Ultrafast dynamic optical properties of graphene,” Acta Phys. Sin. 64, 237801 (2015).
[Crossref]

Wang, X. K.

Wang, Y. T.

Wasserman, D.

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Wu, B. A.

Wurtz, G. A.

A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015).
[Crossref]

Xiong, X. L.

Yang, Z. Q.

S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, and D. W. Zhang, “Plasmonic slow light waveguide with hyperbolic metamaterials claddings,” J. Opt. 20, 065001 (2018).
[Crossref]

Ye, F.

H. Deng, X. Chen, B. A. Malomed, N. C. Panoiu, and F. Ye, “Tunability and robustness of Dirac points of photonic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 22, 98–106 (2016).
[Crossref]

H. Deng, F. Ye, B. A. Malomed, X. Chen, and N. C. Panoiu, “Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices,” Phys. Rev. B 91, 201402 (2015).
[Crossref]

Yin, H. X.

Yousefi, L.

Yu, T.

Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
[Crossref]

Zayats, A. V.

A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015).
[Crossref]

Zhang, D. W.

S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, and D. W. Zhang, “Plasmonic slow light waveguide with hyperbolic metamaterials claddings,” J. Opt. 20, 065001 (2018).
[Crossref]

Zhang, S.

Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Zhang, W. D.

S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, and D. W. Zhang, “Plasmonic slow light waveguide with hyperbolic metamaterials claddings,” J. Opt. 20, 065001 (2018).
[Crossref]

Zhang, X.

W. Li, Z. Liu, X. Zhang, and X. Y. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 161108 (2012).
[Crossref]

Zhang, Y.

Y. Shi and Y. Zhang, “Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray,” IEEE Access 6, 5341–5347 (2018).
[Crossref]

W. G. Liu, B. Hu, Z. D. Huang, H. Y. Guan, H. T. Li, X. K. Wang, Y. Zhang, H. X. Yin, X. L. Xiong, J. Liu, and Y. T. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photon. Res. 6, 703–708 (2018).
[Crossref]

Y. Zhang, Y. Shi, and C. H. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6, 3036–3044 (2016).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Zhao, Q.

Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
[Crossref]

Zhao, Y. T.

Zheludev, N. I.

H. N. S. Krishnamoorthy, B. Gholipour, N. I. Zheludev, and C. Soci, “A non-volatile chalcogenide switchable hyperbolic metamaterial,” Adv. Opt. Mater. 6, 1800332 (2018).
[Crossref]

Zheng, S.

Zhong, Z.

Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Zhou, Q. H.

H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, and Y. W. Chen, “Electrically tunable terahertz metamaterials based on graphene stacks array,” Superlattices Microstruct. 112, 470–479 (2017).
[Crossref]

Zhou, T.

Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
[Crossref]

Zhu, B.

Zi, J.

X. Li, Z. X. Liang, X. H. Liu, X. Y. Jiang, and J. Zi, “All-angle zero reflection at metamaterial surfaces,” Appl. Phys. Lett. 93, 171111 (2008).
[Crossref]

Acta Phys. Sin. (1)

J. Qin, H. M. Dong, K. Han, and X. F. Wang, “Ultrafast dynamic optical properties of graphene,” Acta Phys. Sin. 64, 237801 (2015).
[Crossref]

Adv. Mater. Interfaces (1)

K. J. Lee, Y. U. Lee, S. J. Kim, and P. André, “Hyperbolic dispersion dominant regime identified through spontaneous emission variations near metamaterial interfaces,” Adv. Mater. Interfaces 5, 1701629 (2018).
[Crossref]

Adv. Opt. Mater. (1)

H. N. S. Krishnamoorthy, B. Gholipour, N. I. Zheludev, and C. Soci, “A non-volatile chalcogenide switchable hyperbolic metamaterial,” Adv. Opt. Mater. 6, 1800332 (2018).
[Crossref]

Adv. OptoElectron. (1)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012, 452502 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103, 023107 (2013).
[Crossref]

X. Li, Z. X. Liang, X. H. Liu, X. Y. Jiang, and J. Zi, “All-angle zero reflection at metamaterial surfaces,” Appl. Phys. Lett. 93, 171111 (2008).
[Crossref]

W. Li, Z. Liu, X. Zhang, and X. Y. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 161108 (2012).
[Crossref]

Europhys. Lett. (1)

Z. Li, W. Y. Liang, and W. H. Chen, “Switchable hyperbolic metamaterials based on the graphene-dielectric stacking structure and optical switches design,” Europhys. Lett. 120, 37001 (2017).
[Crossref]

IEEE Access (1)

Y. Shi and Y. Zhang, “Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray,” IEEE Access 6, 5341–5347 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Deng, X. Chen, B. A. Malomed, N. C. Panoiu, and F. Ye, “Tunability and robustness of Dirac points of photonic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 22, 98–106 (2016).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

J. Nanophoton. (1)

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophoton. 7, 073089 (2013).
[Crossref]

J. Opt. (1)

S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, and D. W. Zhang, “Plasmonic slow light waveguide with hyperbolic metamaterials claddings,” J. Opt. 20, 065001 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 026222 (2007).
[Crossref]

J. Phys. D (1)

Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, and N. Liu, “Active control of near-field radiative heat transfer between graphene-covered metamaterials,” J. Phys. D 50, 145101 (2017).
[Crossref]

Nat. Commun. (1)

Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Nat. Mater. (1)

J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Nat. Nanotechnol. (1)

D. Lu, J. J. Kan, E. E. Fullerton, and Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9, 48–53 (2014).
[Crossref]

Opt. Express (9)

T. Gric and O. Hess, “Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials,” Opt. Express 25, 11466–11476 (2017).
[Crossref]

B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21, 17089–17096 (2013).
[Crossref]

Y. T. Zhao, B. A. Wu, B. J. Huang, and Q. A. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25, 7161–7169 (2017).
[Crossref]

B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24, 24129–24136 (2016).
[Crossref]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21, 15037–15047 (2013).
[Crossref]

T. F. Li, V. Nagai, D. H. Gracias, and J. B. Khurgin, “Limits of imaging with multilayer hyperbolic metamaterials,” Opt. Express 25, 13588–13601 (2017).
[Crossref]

T. A. Morgado, S. I. Maslovski, and M. G. Silveirinha, “Ultrahigh Casimir interaction torque in nanowire systems,” Opt. Express 21, 14943–14955 (2013).
[Crossref]

M. Kim, S. Kim, and S. Kim, “Optical bistability based on hyperbolic metamaterials,” Opt. Express 26, 11620–11632 (2018).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21, 7614–7632 (2013).
[Crossref]

Opt. Mater. Express (2)

Photon. Res. (1)

Phys. Rev. B (3)

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86, 205130 (2012).
[Crossref]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87, 075416 (2013).
[Crossref]

H. Deng, F. Ye, B. A. Malomed, X. Chen, and N. C. Panoiu, “Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices,” Phys. Rev. B 91, 201402 (2015).
[Crossref]

Phys. Rev. Lett. (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref]

Sci. Rep. (1)

A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015).
[Crossref]

Science (5)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

Small (1)

F. H. Shi, Y. H. Chen, P. Han, and P. Tassin, “Broadband, spectrally flat, graphene-based terahertz modulators,” Small 11, 6044–6050 (2015).
[Crossref]

Superlattices Microstruct. (1)

H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, and Y. W. Chen, “Electrically tunable terahertz metamaterials based on graphene stacks array,” Superlattices Microstruct. 112, 470–479 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the zero-reflection-based optical switch; the period of the SHM is d. (b), (c) Re(ε) and Im(ε) as functions of frequency and chemical potential.
Fig. 2.
Fig. 2. IFC analysis and simulation results for the optical switch at θi=60° and f=25  THz. (a), (c) Switch-off state (μc=0.2  eV). (b), (d) Switch-on state (μc=0.82  eV). The inset shows the enlargement of the energy distribution in the denoted square area.
Fig. 3.
Fig. 3. Snapshots at different time steps for a Gaussian beam with a finite length of time steps. (a) ts=100 time steps (before touching the interface), (b) ts=200 time steps (arriving at the interface), and (c) ts=2000 time steps (stably propagating along the interface). (d)–(f) Three snapshots after the Gaussian beam stops emitting from the source.
Fig. 4.
Fig. 4. Influence of absorption loss of dielectric layers on the optical switch. (a) OFF-state (μc=0.2  eV). (b) ON-state (μc=0.82  eV).
Fig. 5.
Fig. 5. Variation of reflection with chemical potential for f=24.5  THz, 25 THz, and 25.5 THz.
Fig. 6.
Fig. 6. μc-f curves with different parameter conditions: (a) ε=0, d=0.1  μm; (b) ε=εd, d=0.1  μm; (c) ε=0, εd=1; (d) ε=1, εd=1. The dashed lines indicate μc=0.2  eV and 0.9 eV, respectively.
Fig. 7.
Fig. 7. (a) μc-f curves for α=20°, 45°, 60°, and 80°. (b) IFC at f=25  THz for α=80° and ε=0.07. (c) Dependence of maximal incident angle θimax on the slanted angle α.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ(f,μc,Γ,T)=ie2kBT2π2(πf+iΓ)[μckBT+2ln(eμc/kBT+1)]+i2e2(πf+iΓ)π20dϵfd(ϵ)fd(ϵ)4(πf+iΓ)24(ϵ/)2,
Ebias=2eπ2vF2ε0εd[(kBT)2μc/kBTμc/kBTxex+1dx+kBTμcln(eμc/kBT+1)+kBTμcln(eμc/kBT+1)],
ε=εd,ε=εdiσ(ω,μc,Γ,T)ωε0d,
kx2ε+kz2ε=k02,
ε=εtan2α.