Abstract

Transmission of an anisotropic metasurface is analyzed in a polar base relying on the Jones calculus, and polarization conversion from the spatial uniform polarization to the spatial nonuniform polarization is explored. Simple and compact polarization converters based on rectangular holes or cross holes etched in silver film are designed, and polarization conversions from the linear and circular polarization to the radial and azimuthal polarization are realized. Numerical simulations of three designed polarization converters consisting of rectangular holes equivalent to polarizers and quarter- and half-wave plates, exhibit the perfect polarization conversion. The experiment results consistent with the simulations verify theoretic predictions. This study is helpful for designing metasurface polarization converters and expanding the application of a metasurface in polarization manipulations.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination

Qi Zhang, Han Wang, Lixia Liu, and Shuyun Teng
Opt. Express 26(18) 24145-24153 (2018)

Matrix calculus for axially symmetric polarized beam

Shigeki Matsuo
Opt. Express 19(13) 12815-12824 (2011)

Vector beam generation based on the nanometer-scale rectangular holes

Qi Zhang, Peiyu Li, Yanying Li, Han Wang, Lixia Liu, Yuan He, and Shuyun Teng
Opt. Express 25(26) 33480-33486 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  2. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref]
  3. L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
    [Crossref]
  4. B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
    [Crossref]
  5. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  6. R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, K. Y. Zhou, J. L. Liu, S. L. Qu, S. T. Liu, and J. Gao, “Arbitrary focusing lens by holographic metasurface,” Photon. Res. 3, 252–255 (2015).
    [Crossref]
  7. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
    [Crossref]
  8. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
    [Crossref]
  9. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
    [Crossref]
  10. F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
    [Crossref]
  11. Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
    [Crossref]
  12. N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, and A. Broadband, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
    [Crossref]
  13. M. Kang, T. H. Feng, H. T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20, 15882–15890 (2012).
    [Crossref]
  14. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
    [Crossref]
  15. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13, 1086–1091 (2013).
    [Crossref]
  16. E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
    [Crossref]
  17. C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
    [Crossref]
  18. F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photon. Res. 6, 157–161 (2018).
    [Crossref]
  19. P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, and J. Tian, “Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces,” Opt. Lett. 40, 3229–3232 (2015).
    [Crossref]
  20. F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
    [Crossref]
  21. Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, and S. Y. Teng, “Vector beam generation based on the nanometer-scale rectangular holes,” Opt. Express 25, 33480–33486 (2017).
    [Crossref]
  22. Q. Zhang, H. Wang, L. X. Liu, and S. Y. Teng, “Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination,” Opt. Express 26, 24145–24153 (2018).
    [Crossref]
  23. A. Taflove and S. C. Hagness, Computational Electro Dynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2018 (2)

2017 (2)

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, and S. Y. Teng, “Vector beam generation based on the nanometer-scale rectangular holes,” Opt. Express 25, 33480–33486 (2017).
[Crossref]

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

2016 (2)

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

2015 (6)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, and J. Tian, “Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces,” Opt. Lett. 40, 3229–3232 (2015).
[Crossref]

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, K. Y. Zhou, J. L. Liu, S. L. Qu, S. T. Liu, and J. Gao, “Arbitrary focusing lens by holographic metasurface,” Photon. Res. 3, 252–255 (2015).
[Crossref]

2013 (2)

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13, 1086–1091 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

2012 (4)

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, and A. Broadband, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

M. Kang, T. H. Feng, H. T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20, 15882–15890 (2012).
[Crossref]

2011 (2)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

2010 (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
[Crossref]

2003 (1)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Aieta, F.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, and A. Broadband, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Alù, A.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13, 1086–1091 (2013).
[Crossref]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Biener, G.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Broadband, A.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, and A. Broadband, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, and A. Broadband, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Chen, H. T.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

Chen, S.

Chen, S. Q.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Chen, X.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Cheng, H.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, and J. Tian, “Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces,” Opt. Lett. 40, 3229–3232 (2015).
[Crossref]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Ding, F.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Eilenberger, F.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Feng, T. H.

Gaburro, Z.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, and A. Broadband, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gao, J.

Genevet, P.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, and A. Broadband, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gerardot, B. D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Gu, C. Z.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

Guo, Z. Y.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electro Dynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Han, L.

Hasman, E.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

He, S. L.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

He, Y.

Helgert, C.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Kang, M.

Kats, M. A.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, and A. Broadband, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Kenney, M.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Kildishev, A. V.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Kleiner, V.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Kley, E. B.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Lederer, F.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
[Crossref]

Li, G.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Li, J.

Li, J. J.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

Li, P. Y.

Li, R. Z.

Li, Y. Y.

Li, Z.

Li, Z. C.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

Liu, J. L.

Liu, L. X.

Liu, S. T.

Liu, W.

Liu, W. W.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

Liu, Z.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, and J. Tian, “Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces,” Opt. Lett. 40, 3229–3232 (2015).
[Crossref]

Liu, Z. C.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

Mei, T.

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
[Crossref]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref]

Muhlenbernd, H.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref]

Niv, A.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pertsch, T.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Premaratne, M.

Qu, S. L.

Rockstuhl, C.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
[Crossref]

Setzpfandt, F.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Shalaev, V. M.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Shang, W.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electro Dynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Tan, Q.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Tang, C. C.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

Teng, S. Y.

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Tian, J.

Tian, J. G.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

Tunnermann, A.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Walther, B.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Wang, H.

Wang, H. T.

Wang, W.

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref]

Wang, Z. X.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Wen, D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref]

Xiao, F.

Xie, B.

Xin, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Yu, N. F.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, and A. Broadband, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Yu, P.

Yue, F.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Zentgraf, T.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Zhang, J. R.

Zhang, Q.

Zhang, S.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref]

Zhao, J.

Zhao, Y.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13, 1086–1091 (2013).
[Crossref]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

Zheng, G.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhou, K. Y.

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Zhu, W.

ACS Nano (1)

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

ACS Photon. (2)

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4, 2061–2069 (2017).
[Crossref]

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Adv. Mater. (1)

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Appl. Phys. Lett. (1)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Nano Lett. (3)

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13, 1086–1091 (2013).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, and A. Broadband, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Nat. Nanotechnol. (2)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Photon. Res. (2)

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
[Crossref]

Phys. Rev. B (1)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

Science (4)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Other (2)

A. Taflove and S. C. Hagness, Computational Electro Dynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Structure of the polarization converter consisting of rectangular holes equivalent to polarizers, and transmitted fields for (b), (c) a single rectangular hole and (d)–(f) this polarization converter.
Fig. 2.
Fig. 2. (a) Structure of the polarization converter based on rectangular holes equivalent to quarter-wave plates, and transmitted intensity distributions for (b), (c) a single rectangular hole and (d)–(f) the polarization converter. The inserted patterns in (b) and (c) are the phase distributions.
Fig. 3.
Fig. 3. (a) Structure of the third polarization converter based on the cross holes equivalent to half-wave plates, and (b), (c) transmitted phase distributions for a single cross hole and (d)–(f) the intensity distributions of the polarization converter.
Fig. 4.
Fig. 4. (a) Experiment setup, (b) SEM image of the polarization converter, and (c)–(h) its transmission fields, where QWP denotes the quarter-wave plate, P1 and P2 are polarizers, S represents the sample, and MO denotes the microscopy objective. The inserted red arrows in (c) and (f) denote the incident polarization direction, and the white ones in (d)–(h) denote the direction of polarizer P2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i=(ixiy),t=(txty),
(txty)=(TxxTyxTxyTyy)(ixiy),
(t1t2)p=Λp1(TxxTyxTxyTyy)Λp(i1i2)p.
Λp=(cosφsinφsinφcosφ),Λp1=(cosφsinφsinφcosφ).
T=(axcos2α+aysin2αejδ(axayejδ)sinαcosα(axayejδ)sinαcosαaxsin2α+aycos2αejδ),
tp=12(Ai1+Bi1cos2(αφ)+Bi2sin2(αφ)Bi1sin2(αφ)+Ai2Bi2cos2(αφ)),
tp=12(2i1cos2(αφ)+i2sin2(αφ)i1sin2(αφ)+2i2sin2(αφ)).
tp=22ejπ4(i1ji1cos2(αφ)ji2sin2(αφ)i2ji1sin2(αφ)+ji2cos2(αφ)).
tp=(i1cos2(αφ)+i2sin2(αφ)i1sin2(αφ)i2cos2(αφ)).