Abstract

Slow light, a technology to control the optical signal by reducing the group velocity, has been widely studied to obtain enhanced nonlinearities and increased phase shifts owing to its promoting of the light–matter interaction ability. In this work, a wideband slow light is achieved in a simple one-dimensional fishbone grating waveguide. A flat band indicating slow light with a group index of 13 and bandwidth over 10 nm is obtained by the plane wave expansion calculation, and the corresponding experimental results agree well with the theoretical prediction. A step taper is designed to compensate the coupling loss. The proposed fishbone grating waveguide is a good candidate for wideband slow light devices in light communication.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor

Somayyeh Rahimi, Amir Hosseini, Xiaochuan Xu, Harish Subbaraman, and Ray T. Chen
Opt. Express 19(22) 21832-21841 (2011)

High efficiency coupling of light from a ridge to a photonic crystal waveguide

Murtaza Askari and Ali Adibi
Appl. Opt. 52(23) 5803-5815 (2013)

Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers

Xia Chen, Ke Xu, Zhenzhou Cheng, Christy K. Y. Fung, and Hon K. Tsang
Opt. Lett. 37(17) 3483-3485 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56, 1908–1915 (2009).
    [Crossref]
  2. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref]
  3. M. G. Herraez, K. Y. Song, and L. Thevenaz, “Broad-bandwidth Brillouin slow light in optical fibers,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuA2.
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
    [Crossref]
  5. F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [Crossref]
  6. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  7. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [Crossref]
  8. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [Crossref]
  9. R. Hao, E. Cassan, X. Le Roux, D. Gao, L. Vivien, D. Marris-Morini, and X. L. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguide,” Opt. Express 18, 16309–16319 (2010).
    [Crossref]
  10. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. M. Wu, Z. P. Zhou, and X. L. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
    [Crossref]
  11. R. Hao, X. L. Peng, E. P. Li, Y. Xu, J. M. Jin, and X. M. Zhang, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
    [Crossref]
  12. T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light,” J. Lightwave Technol. 33, 3034–3040 (2015).
    [Crossref]
  13. Y. Terada, K. Miyasaka, K. Kondo, N. Ishikura, T. Tamura, and T. Baba, “Optimized optical coupling to silica-clad photonic crystal waveguides,” Opt. Lett. 42, 4695–4698 (2017).
    [Crossref]
  14. S. Serna, P. Colman, W. Zhang, X. L. Roux, C. Caer, L. Vivien, and E. Cassan, “Experimental GVD engineering in slow light slot photonic crystal waveguides,” Sci. Rep. 6, 26956 (2016).
    [Crossref]
  15. E. Kuramochi, N. Matsuda, K. Nozaki, A. H. K. Park, H. Takesue, and M. Notomi, “Wideband slow short-pulse propagation in one-thousand slantingly coupled L3 photonic crystal nanocavities,” Opt. Express 26, 9552–9564 (2018).
    [Crossref]
  16. Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
    [Crossref]
  17. Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
    [Crossref]
  18. C. J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
    [Crossref]
  19. H. Yan, X. Xu, C. J. Chung, H. Subbaraman, Z. Pan, S. Chakravarty, and R. T. Chen, “Silicon-organic hybrid electro-optic modulator based on one-dimensional photonic crystal slot waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2016), paper SF1E.6.
  20. C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
    [Crossref]
  21. X. Zhao, H. Dalir, X. Xu, and R. T. Chen, “Efficient coupling into slow-light one-dimensional fishbone waveguide by mode converter method,” Appl. Phys. Express 10, 072502 (2017).
    [Crossref]
  22. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
    [Crossref]
  23. J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
    [Crossref]
  24. Z. Zou, L. Zhou, X. Li, and J. Chen, “60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform,” Opt. Express 23, 20784–20795 (2015).
    [Crossref]
  25. M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
    [Crossref]
  26. D. Marris-Morini, E. Cassan, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47, 014602 (2008).
    [Crossref]
  27. A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
    [Crossref]

2018 (4)

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
[Crossref]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
[Crossref]

C. J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

E. Kuramochi, N. Matsuda, K. Nozaki, A. H. K. Park, H. Takesue, and M. Notomi, “Wideband slow short-pulse propagation in one-thousand slantingly coupled L3 photonic crystal nanocavities,” Opt. Express 26, 9552–9564 (2018).
[Crossref]

2017 (2)

Y. Terada, K. Miyasaka, K. Kondo, N. Ishikura, T. Tamura, and T. Baba, “Optimized optical coupling to silica-clad photonic crystal waveguides,” Opt. Lett. 42, 4695–4698 (2017).
[Crossref]

X. Zhao, H. Dalir, X. Xu, and R. T. Chen, “Efficient coupling into slow-light one-dimensional fishbone waveguide by mode converter method,” Appl. Phys. Express 10, 072502 (2017).
[Crossref]

2016 (1)

S. Serna, P. Colman, W. Zhang, X. L. Roux, C. Caer, L. Vivien, and E. Cassan, “Experimental GVD engineering in slow light slot photonic crystal waveguides,” Sci. Rep. 6, 26956 (2016).
[Crossref]

2015 (3)

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

2011 (2)

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[Crossref]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[Crossref]

2010 (2)

2009 (1)

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56, 1908–1915 (2009).
[Crossref]

2008 (2)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

D. Marris-Morini, E. Cassan, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47, 014602 (2008).
[Crossref]

2007 (2)

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
[Crossref]

2005 (3)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
[Crossref]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
[Crossref]

2001 (1)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Baba, T.

Badolato, A.

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bao, C.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Boyd, R. W.

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
[Crossref]

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56, 1908–1915 (2009).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
[Crossref]

Caer, C.

S. Serna, P. Colman, W. Zhang, X. L. Roux, C. Caer, L. Vivien, and E. Cassan, “Experimental GVD engineering in slow light slot photonic crystal waveguides,” Sci. Rep. 6, 26956 (2016).
[Crossref]

Cassan, E.

S. Serna, P. Colman, W. Zhang, X. L. Roux, C. Caer, L. Vivien, and E. Cassan, “Experimental GVD engineering in slow light slot photonic crystal waveguides,” Sci. Rep. 6, 26956 (2016).
[Crossref]

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. M. Wu, Z. P. Zhou, and X. L. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
[Crossref]

R. Hao, E. Cassan, X. Le Roux, D. Gao, L. Vivien, D. Marris-Morini, and X. L. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguide,” Opt. Express 18, 16309–16319 (2010).
[Crossref]

D. Marris-Morini, E. Cassan, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47, 014602 (2008).
[Crossref]

Chakravarty, S.

H. Yan, X. Xu, C. J. Chung, H. Subbaraman, Z. Pan, S. Chakravarty, and R. T. Chen, “Silicon-organic hybrid electro-optic modulator based on one-dimensional photonic crystal slot waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2016), paper SF1E.6.

Chang, Y.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
[Crossref]

Chen, J.

Chen, L.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

Chen, R. T.

C. J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

X. Zhao, H. Dalir, X. Xu, and R. T. Chen, “Efficient coupling into slow-light one-dimensional fishbone waveguide by mode converter method,” Appl. Phys. Express 10, 072502 (2017).
[Crossref]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[Crossref]

H. Yan, X. Xu, C. J. Chung, H. Subbaraman, Z. Pan, S. Chakravarty, and R. T. Chen, “Silicon-organic hybrid electro-optic modulator based on one-dimensional photonic crystal slot waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2016), paper SF1E.6.

Chung, C. J.

C. J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

H. Yan, X. Xu, C. J. Chung, H. Subbaraman, Z. Pan, S. Chakravarty, and R. T. Chen, “Silicon-organic hybrid electro-optic modulator based on one-dimensional photonic crystal slot waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2016), paper SF1E.6.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Colman, P.

S. Serna, P. Colman, W. Zhang, X. L. Roux, C. Caer, L. Vivien, and E. Cassan, “Experimental GVD engineering in slow light slot photonic crystal waveguides,” Sci. Rep. 6, 26956 (2016).
[Crossref]

Dalir, H.

X. Zhao, H. Dalir, X. Xu, and R. T. Chen, “Efficient coupling into slow-light one-dimensional fishbone waveguide by mode converter method,” Appl. Phys. Express 10, 072502 (2017).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dong, B.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
[Crossref]

Gao, B.

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
[Crossref]

Gao, D.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

R. Hao, E. Cassan, X. Le Roux, D. Gao, L. Vivien, D. Marris-Morini, and X. L. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguide,” Opt. Express 18, 16309–16319 (2010).
[Crossref]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Han, X.

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[Crossref]

Hao, R.

Herraez, M. G.

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Broad-bandwidth Brillouin slow light in optical fibers,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuA2.

Hinakura, Y.

Ho, C. P.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
[Crossref]

Hosseini, A.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[Crossref]

Hou, J.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

Houdre, R.

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
[Crossref]

Ishikura, N.

Jiang, W.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[Crossref]

Jin, J. M.

R. Hao, X. L. Peng, E. P. Li, Y. Xu, J. M. Jin, and X. M. Zhang, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Joannopoulos, J.

Johnson, S.

Kondo, K.

Kubo, S.

Kuramochi, E.

Kurt, H.

Kwong, D. N.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[Crossref]

Lai, Y.

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
[Crossref]

Le Roux, X.

Lee, C.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
[Crossref]

Li, B.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
[Crossref]

Li, E. P.

R. Hao, X. L. Peng, E. P. Li, Y. Xu, J. M. Jin, and X. M. Zhang, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Li, X.

Liang, J.

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[Crossref]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Ma, Y.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
[Crossref]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Marris-Morini, D.

Matsuda, N.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Minkov, M.

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
[Crossref]

Miyasaka, K.

Mohamed, M. S.

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
[Crossref]

Mori, D.

Notomi, M.

Nozaki, K.

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
[Crossref]

Pan, Z.

C. J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

H. Yan, X. Xu, C. J. Chung, H. Subbaraman, Z. Pan, S. Chakravarty, and R. T. Chen, “Silicon-organic hybrid electro-optic modulator based on one-dimensional photonic crystal slot waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2016), paper SF1E.6.

Park, A. H. K.

Peng, X. L.

R. Hao, X. L. Peng, E. P. Li, Y. Xu, J. M. Jin, and X. M. Zhang, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Povinelli, M.

Ren, L. Y.

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[Crossref]

Roux, X. L.

S. Serna, P. Colman, W. Zhang, X. L. Roux, C. Caer, L. Vivien, and E. Cassan, “Experimental GVD engineering in slow light slot photonic crystal waveguides,” Sci. Rep. 6, 26956 (2016).
[Crossref]

Savona, V.

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
[Crossref]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Serna, S.

S. Serna, P. Colman, W. Zhang, X. L. Roux, C. Caer, L. Vivien, and E. Cassan, “Experimental GVD engineering in slow light slot photonic crystal waveguides,” Sci. Rep. 6, 26956 (2016).
[Crossref]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
[Crossref]

Song, K. Y.

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Broad-bandwidth Brillouin slow light in optical fibers,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuA2.

Subbaraman, H.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[Crossref]

H. Yan, X. Xu, C. J. Chung, H. Subbaraman, Z. Pan, S. Chakravarty, and R. T. Chen, “Silicon-organic hybrid electro-optic modulator based on one-dimensional photonic crystal slot waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2016), paper SF1E.6.

Takesue, H.

Tamura, T.

Terada, Y.

Thevenaz, L.

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Broad-bandwidth Brillouin slow light in optical fibers,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuA2.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Vivien, L.

S. Serna, P. Colman, W. Zhang, X. L. Roux, C. Caer, L. Vivien, and E. Cassan, “Experimental GVD engineering in slow light slot photonic crystal waveguides,” Sci. Rep. 6, 26956 (2016).
[Crossref]

R. Hao, E. Cassan, X. Le Roux, D. Gao, L. Vivien, D. Marris-Morini, and X. L. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguide,” Opt. Express 18, 16309–16319 (2010).
[Crossref]

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. M. Wu, Z. P. Zhou, and X. L. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
[Crossref]

D. Marris-Morini, E. Cassan, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47, 014602 (2008).
[Crossref]

Vlasov, Y. A.

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Wang, G.

C. J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

Wang, X. J.

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[Crossref]

Wei, J.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
[Crossref]

Wu, H.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

Wu, H. M.

Xia, F.

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Xu, X.

C. J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

X. Zhao, H. Dalir, X. Xu, and R. T. Chen, “Efficient coupling into slow-light one-dimensional fishbone waveguide by mode converter method,” Appl. Phys. Express 10, 072502 (2017).
[Crossref]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[Crossref]

H. Yan, X. Xu, C. J. Chung, H. Subbaraman, Z. Pan, S. Chakravarty, and R. T. Chen, “Silicon-organic hybrid electro-optic modulator based on one-dimensional photonic crystal slot waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2016), paper SF1E.6.

Xu, Y.

R. Hao, X. L. Peng, E. P. Li, Y. Xu, J. M. Jin, and X. M. Zhang, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Yan, H.

H. Yan, X. Xu, C. J. Chung, H. Subbaraman, Z. Pan, S. Chakravarty, and R. T. Chen, “Silicon-organic hybrid electro-optic modulator based on one-dimensional photonic crystal slot waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2016), paper SF1E.6.

Yun, M. J.

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[Crossref]

Zhang, W.

S. Serna, P. Colman, W. Zhang, X. L. Roux, C. Caer, L. Vivien, and E. Cassan, “Experimental GVD engineering in slow light slot photonic crystal waveguides,” Sci. Rep. 6, 26956 (2016).
[Crossref]

Zhang, X.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

Zhang, X. L.

Zhang, X. M.

R. Hao, X. L. Peng, E. P. Li, Y. Xu, J. M. Jin, and X. M. Zhang, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Zhao, X.

X. Zhao, H. Dalir, X. Xu, and R. T. Chen, “Efficient coupling into slow-light one-dimensional fishbone waveguide by mode converter method,” Appl. Phys. Express 10, 072502 (2017).
[Crossref]

Zhou, L.

Zhou, Z. P.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
[Crossref]

Zou, Z.

Appl. Phys. Express (1)

X. Zhao, H. Dalir, X. Xu, and R. T. Chen, “Efficient coupling into slow-light one-dimensional fishbone waveguide by mode converter method,” Appl. Phys. Express 10, 072502 (2017).
[Crossref]

Appl. Phys. Lett. (2)

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[Crossref]

C. J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

J. Appl. Phys. (1)

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56, 1908–1915 (2009).
[Crossref]

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nat. Photonics (2)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Opt. Eng. (1)

D. Marris-Morini, E. Cassan, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47, 014602 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 511–513 (2005).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Sci. Rep. (3)

R. Hao, X. L. Peng, E. P. Li, Y. Xu, J. M. Jin, and X. M. Zhang, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

S. Serna, P. Colman, W. Zhang, X. L. Roux, C. Caer, L. Vivien, and E. Cassan, “Experimental GVD engineering in slow light slot photonic crystal waveguides,” Sci. Rep. 6, 26956 (2016).
[Crossref]

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band structural slow light,” Sci. Rep. 8, 14811 (2018).
[Crossref]

Other (2)

H. Yan, X. Xu, C. J. Chung, H. Subbaraman, Z. Pan, S. Chakravarty, and R. T. Chen, “Silicon-organic hybrid electro-optic modulator based on one-dimensional photonic crystal slot waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2016), paper SF1E.6.

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Broad-bandwidth Brillouin slow light in optical fibers,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuA2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic picture of the proposed FBGW; (b) SEM picture of the top view of the FBGW. Insets show the amplified picture of the red rectangle area.
Fig. 2.
Fig. 2. Band variation with (a) h1 (h2=a, h3=1.85a, w1=0.52a, w2=0.8a, w3=0.68a); (b) h2 (h1=1.7a, h3=1.85a, w1=0.52a, w2=0.8a, w3=0.68a); (c) h3 (h1=1.7a, h2=0.85a, w1=0.52a, w2=0.8a, w3=0.68a); (d) w1 (h1=1.85a, h2=a, h3=1.85a, w2=0.8a, w3=0.68a); (e) w2 (h1=1.85a, h2=a, h3=1.85a, w1=0.52a, w3=0.68a); (f) w3 (h1=1.85a, h2=a, h3=1.85a, w1=0.52a, w2=0.8a).
Fig. 3.
Fig. 3. (a) Band diagram for the 1D fishbone grating waveguide; the inset pictures are the electric fields of A and B, respectively; (b) group index ng (for different flat band) versus the wavelength (red line: h1=1.7a, h2=0.85a, h3=1.75a, w1=0.52a, w2=0.8a, w3=0.68a; blue line: h1=1.85a, h2=a, h3=1.85a, w1=0.52a, w2=0.8a, w3=0.68a; black line: h1=1.9a, h2=a, h3=1.85a, w1=0.52a, w2=0.8a, w3=0.68a).
Fig. 4.
Fig. 4. (a) Temporal pulse detected at the input and the output; (b) simulated transmission of different periods, the inset is the SEM image of the step taper.
Fig. 5.
Fig. 5. (a) Schematic of the experimental setup. Inset pictures are SEM images of the grating coupler. In addition, we utilize a tunable laser (TL) source, a polarization controller (PC), a data analyzer (DA), and an optical spectrum analyzer (OSA). (b) Measured transmission and group index as functions of wavelength; (c) group index (from both simulation and experiment) as a function of wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ng(λ)=λmaxλmin/[4L(λmaxλmin)],