Abstract

Over the last 20 years, silicon photonics has revolutionized the field of integrated optics, providing a novel and powerful platform to build mass-producible optical circuits. One of the most attractive aspects of silicon photonics is its ability to provide extremely small optical components, whose typical dimensions are an order of magnitude smaller than those of optical fiber devices. This dimension difference makes the design of fiber-to-chip interfaces challenging and, over the years, has stimulated considerable technical and research efforts in the field. Fiber-to-silicon photonic chip interfaces can be broadly divided into two principle categories: in-plane and out-of-plane couplers. Devices falling into the first category typically offer relatively high coupling efficiency, broad coupling bandwidth (in wavelength), and low polarization dependence but require relatively complex fabrication and assembly procedures that are not directly compatible with wafer-scale testing. Conversely, out-of-plane coupling devices offer lower efficiency, narrower bandwidth, and are usually polarization dependent. However, they are often more compatible with high-volume fabrication and packaging processes and allow for on-wafer access to any part of the optical circuit. In this paper, we review the current state-of-the-art of optical couplers for photonic integrated circuits, aiming to give to the reader a comprehensive and broad view of the field, identifying advantages and disadvantages of each solution. As fiber-to-chip couplers are inherently related to packaging technologies and the co-design of optical packages has become essential, we also review the main solutions currently used to package and assemble optical fibers with silicon-photonic integrated circuits.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing polarization-diversity couplers for Si-photonics: reaching the −1dB coupling efficiency threshold

Lee Carroll, Dario Gerace, Ilaria Cristiani, and Lucio C. Andreani
Opt. Express 22(12) 14769-14781 (2014)

Mid-infrared silicon photonic waveguides and devices [Invited]

Yi Zou, Swapnajit Chakravarty, Chi-Jui Chung, Xiaochuan Xu, and Ray T. Chen
Photon. Res. 6(4) 254-276 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [Crossref]
  2. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref]
  3. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
    [Crossref]
  4. R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, B. Charbonnier, V. Muffato, M. Fournier, and P. Minzioni, “Group-velocity dispersion in SOI-based channel waveguides with reduced-height,” Opt. Express 25, 9761–9767 (2017).
    [Crossref]
  5. G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7, 7246 (2017).
    [Crossref]
  6. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
    [Crossref]
  7. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
    [Crossref]
  8. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
    [Crossref]
  9. C. Lacava, M. J. Strain, P. Minzioni, I. Cristiani, and M. Sorel, “Integrated nonlinear Mach Zehnder for 40  Gbit/s all-optical switching,” Opt. Express 21, 21587–21595 (2013).
    [Crossref]
  10. W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  11. R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
    [Crossref]
  12. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  13. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
    [Crossref]
  14. “Corning® SMF-28® ultra optical fiber,” https://www.corning.com/media/worldwide/coc/documents/Fiber/PI1424_11-14.pdf .
  15. “PANDA PM specialty optical fibers,” https://www.corning.com/media/worldwide/csm/documents/PANDA%20PM%20and%20RC%20PANDA%20Specialty%20Fiber.pdf .
  16. “Corning® RGB 400 specialty optical fibers,” https://www.corning.com/media/worldwide/csm/documents/Corning%20RGB%20400%20Specialty%20Fiber.pdf .
  17. A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an SMF-28 optical fiber,” (Naval Research Lab, 2006).
  18. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
    [Crossref]
  19. “Ultra-high NA single-mode fibers,” http://www.nufern.com/pam/optical_fibers/spec/id/988/ .
  20. “UHNA fiber: efficient coupling to silicon waveguides,” https://www.nufern.com/library/getpdf/id/485/ .
  21. K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5, 345–347 (1993).
    [Crossref]
  22. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
    [Crossref]
  23. L. Vivien, S. Laval, E. Cassan, X. L. Roux, and D. Pascal, “2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers,” J. Lightwave Technol. 21, 2429–2433 (2003).
    [Crossref]
  24. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11, 3555–3561 (2003).
    [Crossref]
  25. G. Roelkens, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17, 2613–2615 (2005).
    [Crossref]
  26. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
    [Crossref]
  27. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
    [Crossref]
  28. B. Ben Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1  dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
    [Crossref]
  29. M. Schnarrenberger, L. Zimmermann, T. Mitze, J. Bruns, and K. Petermann, “Facet preparation of SOI waveguides by etching and cleaving compared to dicing and polishing,” in IEEE International Conference on Group IV Photonics (IEEE, 2004), pp. 72–74.
  30. D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24, 2428–2433 (2006).
    [Crossref]
  31. Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18, 7763–7769 (2010).
    [Crossref]
  32. J. V. Galán, P. Sanchis, G. Sánchez, and J. Martí, “Polarization insensitive low-loss coupling technique between SOI waveguides and high mode field diameter single-mode fibers,” Opt. Express 15, 7058–7065 (2007).
    [Crossref]
  33. N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014).
    [Crossref]
  34. Y. Urino, T. Usuki, J. Fujikata, M. Ishizaka, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “High-density and wide-bandwidth optical interconnects with silicon optical interposers,” Photon. Res. 2, A1–A7 (2014).
    [Crossref]
  35. P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
    [Crossref]
  36. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
    [Crossref]
  37. P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23, 22553–22563 (2015).
    [Crossref]
  38. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 446–475 (1956).
  39. M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24, 5026–5038 (2016).
    [Crossref]
  40. T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.
  41. T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23, 29449–29456 (2015).
    [Crossref]
  42. T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
    [Crossref]
  43. T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.
  44. Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Design of compact surface optical coupler based on vertically curved silicon waveguide for high-numerical-aperture single-mode optical fiber,” Jpn. J. Appl. Phys. 56, 090307 (2017).
    [Crossref]
  45. Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26, 10400–10407 (2018).
    [Crossref]
  46. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
    [Crossref]
  47. H.-L. Tseng, E. Chen, H. Rong, and N. Na, “High-performance silicon-on-insulator grating coupler with completely vertical emission,” Opt. Express 23, 24433–24439 (2015).
    [Crossref]
  48. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
    [Crossref]
  49. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
    [Crossref]
  50. R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997).
    [Crossref]
  51. F. Olyslager, Electromagnetic Waveguides and Transmission LinesMonographs in Electrical and Electronic Engineering (Clarendon, 1999).
  52. “Photonics SOI, for high-speed optical transceivers in data centers,” https://www.soitec.com/en/products/photonics-soi .
  53. M. Neviere, D. Maystre, and P. Vincent, “Determination of the leaky modes of a corrugated waveguide: application to the study of anomalies of dielectric coated gratings,” J. Opt. 8, 231–242 (1977).
    [Crossref]
  54. D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, and S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide with a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36, 2443–2447 (1997).
    [Crossref]
  55. T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” Proc. SPIE 3620, 79–86 (1999).
    [Crossref]
  56. T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Technol. Lett. 12, 59–61 (2000).
    [Crossref]
  57. T. W. Ang, G. T. Reed, A. Vonsovici, A. G. Evans, P. R. Routley, and M. R. Josey, “Highly efficient unibond silicon-on-insulator blazed grating couplers,” Appl. Phys. Lett. 77, 4214–4216 (2000).
    [Crossref]
  58. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39, 5773–5777 (2000).
    [Crossref]
  59. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
    [Crossref]
  60. S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.
  61. M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948–955 (2002).
    [Crossref]
  62. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151–156 (2007).
    [Crossref]
  63. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
    [Crossref]
  64. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58  dB coupling efficiency,” Opt. Lett. 39, 5348–5350 (2014).
    [Crossref]
  65. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay,” Opt. Express 14, 11622–11630 (2006).
    [Crossref]
  66. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
    [Crossref]
  67. G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
    [Crossref]
  68. T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D 42, 085115 (2009).
    [Crossref]
  69. S. Yang, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “High efficiency germanium-assisted grating coupler,” Opt. Express 22, 30607–30612 (2014).
    [Crossref]
  70. B. Wang, J. Jiang, and G. P. Nordin, “Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17, 1884–1886 (2005).
    [Crossref]
  71. J. Schrauwen, F. Van Laere, D. Van Thourhout, and R. Baets, “Focused-ion-beam fabrication of slanted grating couplers in silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 816–818 (2007).
    [Crossref]
  72. L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett. 25, 1358–1361 (2013).
    [Crossref]
  73. M. H. Lee, J. Y. Jo, D. W. Kim, Y. Kim, and K. H. Kim, “Comparative study of uniform and nonuniform grating couplers for optimized fiber coupling to silicon waveguides,” J. Opt. Soc. Korea 20, 291–299 (2016).
    [Crossref]
  74. X. Chen, C. Li, and H. K. Tsang, “Fabrication-tolerant waveguide chirped grating coupler for coupling to a perfectly vertical optical fiber,” IEEE Photon. Technol. Lett. 20, 1914–1916 (2008).
    [Crossref]
  75. A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to –0.5  dB coupling efficiency,” Opt. Express 23, 16289–16304 (2015).
    [Crossref]
  76. R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
    [Crossref]
  77. M. Fan, M. A. Popović, and F. X. Kärtner, “High directivity, vertical fiber-to-chip coupler with anisotropically radiating grating teeth,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper CTuDD3.
  78. C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39, 5351–5354 (2014).
    [Crossref]
  79. D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40, 4190–4193 (2015).
    [Crossref]
  80. D. Benedikovic, C. Alonso-Ramos, D. Pérez-Galacho, S. Guerber, V. Vakarin, G. Marcaud, X. Le Roux, E. Cassan, D. Marris-Morini, P. Cheben, F. Boeuf, C. Baudot, and L. Vivien, “L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography,” Opt. Lett. 42, 3439–3443 (2017).
    [Crossref]
  81. Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,” Opt. Lett. 35, 1290–1292 (2010).
    [Crossref]
  82. X. Chen and H. K. Tsang, “Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers,” IEEE Photon. J. 1, 184–190 (2009).
    [Crossref]
  83. L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
    [Crossref]
  84. X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
    [Crossref]
  85. R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
    [Crossref]
  86. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
    [Crossref]
  87. D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
    [Crossref]
  88. Y. Ding, C. Peucheret, and H. Ou, “Ultra-high-efficiency apodized grating coupler using a fully etched photonic crystal,” Opt. Lett. 38, 2732–2734 (2013).
    [Crossref]
  89. C. R. Doerr, L. Chen, Y. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
    [Crossref]
  90. H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), paper Th1A.4.
  91. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  92. C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
    [Crossref]
  93. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [Crossref]
  94. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
    [Crossref]
  95. X. Zhao, D. Li, C. Zeng, G. Gao, Z. Huang, Q. Huang, Y. Wang, and J. Xia, “Compact grating coupler for 700-nm silicon nitride strip waveguides,” J. Lightwave Technol. 34, 1322–1327 (2016).
    [Crossref]
  96. Y. Chen, T. D. Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42, 3566–3569 (2017).
    [Crossref]
  97. W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
    [Crossref]
  98. J. Zou, Y. Yu, M. Ye, L. Liu, S. Deng, and X. Zhang, “Ultra efficient silicon nitride grating coupler with bottom grating reflector,” Opt. Express 23, 26305–26312 (2015).
    [Crossref]
  99. M. Passoni, D. Gerace, L. Carroll, and L. C. Andreani, “Grating couplers in silicon-on-insulator: the role of photonic guided resonances on lineshape and bandwidth,” Appl. Phys. Lett. 110, 041107 (2017).
    [Crossref]
  100. J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
    [Crossref]
  101. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref]
  102. G. Gibson, J. Courtial, M. J. Padgett, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [Crossref]
  103. C. T. Nadovich, W. D. Jemison, D. J. Kosciolek, and D. T. Crouse, “Focused apodized forked grating coupler,” Opt. Express 25, 26861–26874 (2017).
    [Crossref]
  104. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [Crossref]
  105. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3096 (2014).
    [Crossref]
  106. Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
    [Crossref]
  107. B. Wohlfeil, C. Stamatiadis, L. Zimmermann, and K. Petermann, “Compact fiber grating coupler on SOI for coupling of higher order fiber modes,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Optical Society of America, 2013), paper OTh1B.2.
  108. Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact grating coupler for higher-order mode coupling,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2018), paper Th2A.6.
  109. Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact double-part grating coupler for higher-order mode coupling,” Opt. Lett. 43, 3172–3175 (2018).
    [Crossref]
  110. M. Zhang, H. Liu, G. Li, and L. Zhang, “Efficient grating couplers for space division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 24, 8200605 (2018).
    [Crossref]
  111. J. H. Song, F. E. Doany, A. K. Medhin, N. Dupuis, B. G. Lee, and F. R. Libsch, “Polarization-independent nonuniform grating couplers on silicon-on-insulator,” Opt. Lett. 40, 3941–3944 (2015).
    [Crossref]
  112. W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
    [Crossref]
  113. J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Subwavelength TE/TM grating coupler based on silicon-on-insulator,” Infrared Phys. Technol. 71, 542–546 (2015).
    [Crossref]
  114. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011).
    [Crossref]
  115. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
    [Crossref]
  116. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009).
    [Crossref]
  117. L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21, 21556–21568 (2013).
    [Crossref]
  118. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15, 1567–1578 (2007).
    [Crossref]
  119. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20, B493–B500 (2012).
    [Crossref]
  120. L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for Si-photonics: reaching the −1  dB coupling efficiency threshold,” Opt. Express 22, 14769–14781 (2014).
    [Crossref]
  121. C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
    [Crossref]
  122. J. Zou, Y. Yu, and X. Zhang, “Single step etched two dimensional grating coupler based on the SOI platform,” Opt. Express 23, 32490–32495 (2015).
    [Crossref]
  123. J. Zou, Y. Yu, and X. Zhang, “Two-dimensional grating coupler with a low polarization dependent loss of 0.25  dB covering the C-band,” Opt. Lett. 41, 4206–4209 (2016).
    [Crossref]
  124. R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Technol. Lett. 22, 389–391 (2010).
    [Crossref]
  125. Y. Luo, Z. Nong, S. Gao, H. Huang, Y. Zhu, L. Liu, L. Zhou, J. Xu, L. Liu, S. Yu, and X. Cai, “Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror,” Opt. Lett. 43, 474–477 (2018).
    [Crossref]
  126. H. Y. Hwang, P. Morrissey, J. S. Lee, P. O’Brien, J. Henriksson, M. C. Wu, and T. J. Seok, “128 × 128 silicon photonic MEMS switch package using glass interposer and pitch reducing fibre array,” in IEEE 19th Electronic Packaging Technology Conference (IEEE, 2017), pp. 1–4.
  127. E. R. Fuchs, E. J. Bruce, R. J. Ram, and R. E. Kirchain, “Process-based cost modeling of photonics manufacture: the cost competitiveness of monolithic integration of a 1550-nm DFB laser and an electroabsorptive modulator on an InP platform,” J. Lightwave Technol. 24, 3175–3186 (2006).
    [Crossref]
  128. L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
    [Crossref]
  129. “Cardis H2020 project,” http://www.cardis-h2020.eu .
  130. M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
    [Crossref]
  131. C. Scarcella, K. Gradkowski, L. Carroll, J. S. Lee, M. Duperron, D. Fowler, and P. O’Brien, “Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses,” IEEE Photon. Technol. Lett. 29, 1943–1946 (2017).
    [Crossref]
  132. P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.
  133. P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
    [Crossref]
  134. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
    [Crossref]
  135. N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
    [Crossref]

2018 (5)

M. Zhang, H. Liu, G. Li, and L. Zhang, “Efficient grating couplers for space division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 24, 8200605 (2018).
[Crossref]

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Y. Luo, Z. Nong, S. Gao, H. Huang, Y. Zhu, L. Liu, L. Zhou, J. Xu, L. Liu, S. Yu, and X. Cai, “Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror,” Opt. Lett. 43, 474–477 (2018).
[Crossref]

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26, 10400–10407 (2018).
[Crossref]

Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact double-part grating coupler for higher-order mode coupling,” Opt. Lett. 43, 3172–3175 (2018).
[Crossref]

2017 (12)

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, B. Charbonnier, V. Muffato, M. Fournier, and P. Minzioni, “Group-velocity dispersion in SOI-based channel waveguides with reduced-height,” Opt. Express 25, 9761–9767 (2017).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, D. Pérez-Galacho, S. Guerber, V. Vakarin, G. Marcaud, X. Le Roux, E. Cassan, D. Marris-Morini, P. Cheben, F. Boeuf, C. Baudot, and L. Vivien, “L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography,” Opt. Lett. 42, 3439–3443 (2017).
[Crossref]

Y. Chen, T. D. Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42, 3566–3569 (2017).
[Crossref]

C. T. Nadovich, W. D. Jemison, D. J. Kosciolek, and D. T. Crouse, “Focused apodized forked grating coupler,” Opt. Express 25, 26861–26874 (2017).
[Crossref]

M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
[Crossref]

C. Scarcella, K. Gradkowski, L. Carroll, J. S. Lee, M. Duperron, D. Fowler, and P. O’Brien, “Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses,” IEEE Photon. Technol. Lett. 29, 1943–1946 (2017).
[Crossref]

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7, 7246 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Design of compact surface optical coupler based on vertically curved silicon waveguide for high-numerical-aperture single-mode optical fiber,” Jpn. J. Appl. Phys. 56, 090307 (2017).
[Crossref]

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

M. Passoni, D. Gerace, L. Carroll, and L. C. Andreani, “Grating couplers in silicon-on-insulator: the role of photonic guided resonances on lineshape and bandwidth,” Appl. Phys. Lett. 110, 041107 (2017).
[Crossref]

2016 (8)

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

X. Zhao, D. Li, C. Zeng, G. Gao, Z. Huang, Q. Huang, Y. Wang, and J. Xia, “Compact grating coupler for 700-nm silicon nitride strip waveguides,” J. Lightwave Technol. 34, 1322–1327 (2016).
[Crossref]

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24, 5026–5038 (2016).
[Crossref]

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
[Crossref]

M. H. Lee, J. Y. Jo, D. W. Kim, Y. Kim, and K. H. Kim, “Comparative study of uniform and nonuniform grating couplers for optimized fiber coupling to silicon waveguides,” J. Opt. Soc. Korea 20, 291–299 (2016).
[Crossref]

J. Zou, Y. Yu, and X. Zhang, “Two-dimensional grating coupler with a low polarization dependent loss of 0.25  dB covering the C-band,” Opt. Lett. 41, 4206–4209 (2016).
[Crossref]

2015 (12)

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to –0.5  dB coupling efficiency,” Opt. Express 23, 16289–16304 (2015).
[Crossref]

J. H. Song, F. E. Doany, A. K. Medhin, N. Dupuis, B. G. Lee, and F. R. Libsch, “Polarization-independent nonuniform grating couplers on silicon-on-insulator,” Opt. Lett. 40, 3941–3944 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23, 22553–22563 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40, 4190–4193 (2015).
[Crossref]

H.-L. Tseng, E. Chen, H. Rong, and N. Na, “High-performance silicon-on-insulator grating coupler with completely vertical emission,” Opt. Express 23, 24433–24439 (2015).
[Crossref]

J. Zou, Y. Yu, M. Ye, L. Liu, S. Deng, and X. Zhang, “Ultra efficient silicon nitride grating coupler with bottom grating reflector,” Opt. Express 23, 26305–26312 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23, 29449–29456 (2015).
[Crossref]

J. Zou, Y. Yu, and X. Zhang, “Single step etched two dimensional grating coupler based on the SOI platform,” Opt. Express 23, 32490–32495 (2015).
[Crossref]

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Subwavelength TE/TM grating coupler based on silicon-on-insulator,” Infrared Phys. Technol. 71, 542–546 (2015).
[Crossref]

2014 (9)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3096 (2014).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref]

N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014).
[Crossref]

Y. Urino, T. Usuki, J. Fujikata, M. Ishizaka, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “High-density and wide-bandwidth optical interconnects with silicon optical interposers,” Photon. Res. 2, A1–A7 (2014).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for Si-photonics: reaching the −1  dB coupling efficiency threshold,” Opt. Express 22, 14769–14781 (2014).
[Crossref]

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58  dB coupling efficiency,” Opt. Lett. 39, 5348–5350 (2014).
[Crossref]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39, 5351–5354 (2014).
[Crossref]

S. Yang, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “High efficiency germanium-assisted grating coupler,” Opt. Express 22, 30607–30612 (2014).
[Crossref]

2013 (9)

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref]

Y. Ding, C. Peucheret, and H. Ou, “Ultra-high-efficiency apodized grating coupler using a fully etched photonic crystal,” Opt. Lett. 38, 2732–2734 (2013).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21, 21556–21568 (2013).
[Crossref]

C. Lacava, M. J. Strain, P. Minzioni, I. Cristiani, and M. Sorel, “Integrated nonlinear Mach Zehnder for 40  Gbit/s all-optical switching,” Opt. Express 21, 21587–21595 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett. 25, 1358–1361 (2013).
[Crossref]

2012 (7)

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20, B493–B500 (2012).
[Crossref]

2011 (2)

2010 (11)

Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18, 7763–7769 (2010).
[Crossref]

Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,” Opt. Lett. 35, 1290–1292 (2010).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

B. Ben Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1  dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[Crossref]

C. R. Doerr, L. Chen, Y. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Technol. Lett. 22, 389–391 (2010).
[Crossref]

2009 (4)

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[Crossref]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009).
[Crossref]

X. Chen and H. K. Tsang, “Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers,” IEEE Photon. J. 1, 184–190 (2009).
[Crossref]

T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D 42, 085115 (2009).
[Crossref]

2008 (2)

X. Chen, C. Li, and H. K. Tsang, “Fabrication-tolerant waveguide chirped grating coupler for coupling to a perfectly vertical optical fiber,” IEEE Photon. Technol. Lett. 20, 1914–1916 (2008).
[Crossref]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[Crossref]

2007 (5)

2006 (7)

2005 (3)

G. Roelkens, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17, 2613–2615 (2005).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

B. Wang, J. Jiang, and G. P. Nordin, “Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17, 1884–1886 (2005).
[Crossref]

2004 (4)

2003 (5)

2002 (2)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948–955 (2002).
[Crossref]

2000 (3)

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Technol. Lett. 12, 59–61 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. Evans, P. R. Routley, and M. R. Josey, “Highly efficient unibond silicon-on-insulator blazed grating couplers,” Appl. Phys. Lett. 77, 4214–4216 (2000).
[Crossref]

R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39, 5773–5777 (2000).
[Crossref]

1999 (1)

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” Proc. SPIE 3620, 79–86 (1999).
[Crossref]

1997 (2)

1993 (1)

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5, 345–347 (1993).
[Crossref]

1977 (1)

M. Neviere, D. Maystre, and P. Vincent, “Determination of the leaky modes of a corrugated waveguide: application to the study of anomalies of dielectric coated gratings,” J. Opt. 8, 231–242 (1977).
[Crossref]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 446–475 (1956).

Abrate, S.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

Absil, P.

Alic, N.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Almeida, V. R.

Alonso-Ramos, C.

Andreani, L. C.

M. Passoni, D. Gerace, L. Carroll, and L. C. Andreani, “Grating couplers in silicon-on-insulator: the role of photonic guided resonances on lineshape and bandwidth,” Appl. Phys. Lett. 110, 041107 (2017).
[Crossref]

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to –0.5  dB coupling efficiency,” Opt. Express 23, 16289–16304 (2015).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for Si-photonics: reaching the −1  dB coupling efficiency threshold,” Opt. Express 22, 14769–14781 (2014).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21, 21556–21568 (2013).
[Crossref]

Ang, T. W.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Technol. Lett. 12, 59–61 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. Evans, P. R. Routley, and M. R. Josey, “Highly efficient unibond silicon-on-insulator blazed grating couplers,” Appl. Phys. Lett. 77, 4214–4216 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” Proc. SPIE 3620, 79–86 (1999).
[Crossref]

Ang, T. Y. L.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7, 7246 (2017).
[Crossref]

Arakawa, Y.

Asif, R.

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

Atsumi, Y.

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26, 10400–10407 (2018).
[Crossref]

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Design of compact surface optical coupler based on vertically curved silicon waveguide for high-numerical-aperture single-mode optical fiber,” Jpn. J. Appl. Phys. 56, 090307 (2017).
[Crossref]

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
[Crossref]

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.

Ayre, M.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151–156 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Baehr-Jones, T.

Baets, R.

M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
[Crossref]

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009).
[Crossref]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15, 1567–1578 (2007).
[Crossref]

J. Schrauwen, F. Van Laere, D. Van Thourhout, and R. Baets, “Focused-ion-beam fabrication of slanted grating couplers in silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 816–818 (2007).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151–156 (2007).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay,” Opt. Express 14, 11622–11630 (2006).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

G. Roelkens, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17, 2613–2615 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[Crossref]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.

Baets, R. G.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Balthasar, G.

Banakar, M.

Barnett, S. M.

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

Baudot, C.

Beckx, S.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bedard, D.

Ben Bakir, B.

B. Ben Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1  dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Benedikovic, D.

Bergmen, K.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3096 (2014).
[Crossref]

Bernabe, S.

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

Berroth, M.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

Bienstman, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Billah, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Billah, M. R.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Blackburn, T.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” Proc. SPIE 3620, 79–86 (1999).
[Crossref]

Blaicher, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Bock, P. J.

Boeuf, F.

Bogaerts, W.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20, B493–B500 (2012).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15, 1567–1578 (2007).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

G. Roelkens, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17, 2613–2615 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Bozzola, A.

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to –0.5  dB coupling efficiency,” Opt. Express 23, 16289–16304 (2015).
[Crossref]

Bräuer, A.

Brision, S.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[Crossref]

Bruce, E. J.

Bruns, J.

M. Schnarrenberger, L. Zimmermann, T. Mitze, J. Bruns, and K. Petermann, “Facet preparation of SOI waveguides by etching and cleaving compared to dicing and polishing,” in IEEE International Conference on Group IV Photonics (IEEE, 2004), pp. 72–74.

Bucholtz, F.

A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an SMF-28 optical fiber,” (Naval Research Lab, 2006).

Bucio, T. D.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Y. Chen, T. D. Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42, 3566–3569 (2017).
[Crossref]

Buhl, L. L.

C. R. Doerr, L. Chen, Y. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

Burghartz, J.

Butschke, J.

Caer, C.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Cai, X.

Carrol, L.

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

Carroll, L.

M. Passoni, D. Gerace, L. Carroll, and L. C. Andreani, “Grating couplers in silicon-on-insulator: the role of photonic guided resonances on lineshape and bandwidth,” Appl. Phys. Lett. 110, 041107 (2017).
[Crossref]

C. Scarcella, K. Gradkowski, L. Carroll, J. S. Lee, M. Duperron, D. Fowler, and P. O’Brien, “Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses,” IEEE Photon. Technol. Lett. 29, 1943–1946 (2017).
[Crossref]

M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to –0.5  dB coupling efficiency,” Opt. Express 23, 16289–16304 (2015).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for Si-photonics: reaching the −1  dB coupling efficiency threshold,” Opt. Express 22, 14769–14781 (2014).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21, 21556–21568 (2013).
[Crossref]

Cassan, E.

Chang, S.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Subwavelength TE/TM grating coupler based on silicon-on-insulator,” Infrared Phys. Technol. 71, 542–546 (2015).
[Crossref]

Charbonnier, B.

Cheben, P.

D. Benedikovic, C. Alonso-Ramos, D. Pérez-Galacho, S. Guerber, V. Vakarin, G. Marcaud, X. Le Roux, E. Cassan, D. Marris-Morini, P. Cheben, F. Boeuf, C. Baudot, and L. Vivien, “L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography,” Opt. Lett. 42, 3439–3443 (2017).
[Crossref]

Y. Chen, T. D. Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42, 3566–3569 (2017).
[Crossref]

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24, 5026–5038 (2016).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40, 4190–4193 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23, 22553–22563 (2015).
[Crossref]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39, 5351–5354 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[Crossref]

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
[Crossref]

Chen, C. P.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3096 (2014).
[Crossref]

Chen, E.

Chen, G. F. R.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7, 7246 (2017).
[Crossref]

Chen, L.

C. R. Doerr, L. Chen, Y. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

Chen, X.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011).
[Crossref]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

X. Chen and H. K. Tsang, “Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers,” IEEE Photon. J. 1, 184–190 (2009).
[Crossref]

X. Chen, C. Li, and H. K. Tsang, “Fabrication-tolerant waveguide chirped grating coupler for coupling to a perfectly vertical optical fiber,” IEEE Photon. Technol. Lett. 20, 1914–1916 (2008).
[Crossref]

Chen, Y.

Cheng, Z.

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Chrostowski, L.

Claes, T.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Collins, S.

M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
[Crossref]

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Courtial, J.

Cristiani, I.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, B. Charbonnier, V. Muffato, M. Fournier, and P. Minzioni, “Group-velocity dispersion in SOI-based channel waveguides with reduced-height,” Opt. Express 25, 9761–9767 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to –0.5  dB coupling efficiency,” Opt. Express 23, 16289–16304 (2015).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for Si-photonics: reaching the −1  dB coupling efficiency threshold,” Opt. Express 22, 14769–14781 (2014).
[Crossref]

C. Lacava, M. J. Strain, P. Minzioni, I. Cristiani, and M. Sorel, “Integrated nonlinear Mach Zehnder for 40  Gbit/s all-optical switching,” Opt. Express 21, 21587–21595 (2013).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21, 21556–21568 (2013).
[Crossref]

Crouse, D. T.

Dado, M.

Dai, D.

Dalgaard, K.

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

Dangel, R.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Dannberg, P.

De Gyves, A. V.

B. Ben Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1  dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

de Heyn, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

de Vos, K.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Delâge, A.

Deng, S.

Densmore, A.

Dietrich, P. I.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Dietrich, P.-I. C.

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Dillon, T.

Ding, L.

Ding, Y.

Doany, F. E.

Doerr, C. R.

C. R. Doerr, L. Chen, Y. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

Dosunmu, O.

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948–955 (2002).
[Crossref]

Dottermusch, S.

Dumon, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20, B493–B500 (2012).
[Crossref]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15, 1567–1578 (2007).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

G. Roelkens, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17, 2613–2615 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.

Duperron, M.

C. Scarcella, K. Gradkowski, L. Carroll, J. S. Lee, M. Duperron, D. Fowler, and P. O’Brien, “Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses,” IEEE Photon. Technol. Lett. 29, 1943–1946 (2017).
[Crossref]

M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
[Crossref]

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Dupuis, N.

Eason, C.

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Emsley, M. K.

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948–955 (2002).
[Crossref]

Evans, A. G.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. Evans, P. R. Routley, and M. R. Josey, “Highly efficient unibond silicon-on-insulator blazed grating couplers,” Appl. Phys. Lett. 77, 4214–4216 (2000).
[Crossref]

Evans, A. G. R.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Technol. Lett. 12, 59–61 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” Proc. SPIE 3620, 79–86 (1999).
[Crossref]

Fan, M.

M. Fan, M. A. Popović, and F. X. Kärtner, “High directivity, vertical fiber-to-chip coupler with anisotropically radiating grating teeth,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper CTuDD3.

Fang, Q.

Fathpour, S.

Fedeli, J. M.

B. Ben Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1  dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Fedeli, J.-M.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Fédéli, J. M.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[Crossref]

Fédéli, J.-M.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Fournier, M.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, B. Charbonnier, V. Muffato, M. Fournier, and P. Minzioni, “Group-velocity dispersion in SOI-based channel waveguides with reduced-height,” Opt. Express 25, 9761–9767 (2017).
[Crossref]

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

Fowler, D.

C. Scarcella, K. Gradkowski, L. Carroll, J. S. Lee, M. Duperron, D. Fowler, and P. O’Brien, “Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses,” IEEE Photon. Technol. Lett. 29, 1943–1946 (2017).
[Crossref]

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Franke-Arnold, S.

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

Freude, W.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Fu, S.

Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact double-part grating coupler for higher-order mode coupling,” Opt. Lett. 43, 3172–3175 (2018).
[Crossref]

Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact grating coupler for higher-order mode coupling,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2018), paper Th2A.6.

Fuchs, E. R.

Fujikata, J.

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Fung, C. K. Y.

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3096 (2014).
[Crossref]

Gaeta, A. L.

Galán, J. V.

Galili, M.

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

Galland, C.

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref]

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett. 25, 1358–1361 (2013).
[Crossref]

Gao, G.

Gao, S.

Gardes, F. Y.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Y. Chen, T. D. Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42, 3566–3569 (2017).
[Crossref]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Gaudino, R.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

Gautier, P.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[Crossref]

Gerace, D.

M. Passoni, D. Gerace, L. Carroll, and L. C. Andreani, “Grating couplers in silicon-on-insulator: the role of photonic guided resonances on lineshape and bandwidth,” Appl. Phys. Lett. 110, 041107 (2017).
[Crossref]

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to –0.5  dB coupling efficiency,” Opt. Express 23, 16289–16304 (2015).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for Si-photonics: reaching the −1  dB coupling efficiency threshold,” Opt. Express 22, 14769–14781 (2014).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21, 21556–21568 (2013).
[Crossref]

Gibson, G.

Giovannini, D.

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

Giuliani, G.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

Goedecke, M. L.

Grabska, K.

Gradkowski, K.

C. Scarcella, K. Gradkowski, L. Carroll, J. S. Lee, M. Duperron, D. Fowler, and P. O’Brien, “Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses,” IEEE Photon. Technol. Lett. 29, 1943–1946 (2017).
[Crossref]

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Grist, S.

Gross, S.

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

Gualous, H.

Guerber, S.

Halir, R.

Y. Chen, T. D. Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42, 3566–3569 (2017).
[Crossref]

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24, 5026–5038 (2016).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40, 4190–4193 (2015).
[Crossref]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Technol. Lett. 22, 389–391 (2010).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
[Crossref]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[Crossref]

Hall, T. J.

Hatori, N.

He, J.-J.

He, L.

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett. 25, 1358–1361 (2013).
[Crossref]

He, S.

Henriksson, J.

H. Y. Hwang, P. Morrissey, J. S. Lee, P. O’Brien, J. Henriksson, M. C. Wu, and T. J. Seok, “128 × 128 silicon photonic MEMS switch package using glass interposer and pitch reducing fibre array,” in IEEE 19th Electronic Packaging Technology Conference (IEEE, 2017), pp. 1–4.

Hillerkuss, D.

Hochberg, M.

Hofmann, A.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Hoose, T.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Horikawa, T.

Hu, Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Huang, H.

Y. Luo, Z. Nong, S. Gao, H. Huang, Y. Zhu, L. Liu, L. Zhou, J. Xu, L. Liu, S. Yu, and X. Cai, “Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror,” Opt. Lett. 43, 474–477 (2018).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Huang, J.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Subwavelength TE/TM grating coupler based on silicon-on-insulator,” Infrared Phys. Technol. 71, 542–546 (2015).
[Crossref]

Huang, Q.

Huang, Y.

Huang, Z.

Hvam, J. M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[Crossref]

Hwang, H.

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Hwang, H. Y.

H. Y. Hwang, P. Morrissey, J. S. Lee, P. O’Brien, J. Henriksson, M. C. Wu, and T. J. Seok, “128 × 128 silicon photonic MEMS switch package using glass interposer and pitch reducing fibre array,” in IEEE 19th Electronic Packaging Technology Conference (IEEE, 2017), pp. 1–4.

Ishizaka, M.

Itabashi, S. I.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Jaeger, N. A. F.

Jaenen, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Jalali, B.

Janz, S.

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24, 5026–5038 (2016).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23, 22553–22563 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40, 4190–4193 (2015).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
[Crossref]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[Crossref]

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
[Crossref]

Jayatilleka, H.

Jemison, W. D.

Jiang, J.

B. Wang, J. Jiang, and G. P. Nordin, “Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17, 1884–1886 (2005).
[Crossref]

Jo, J. Y.

Jordan, M.

Josey, M. R.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Technol. Lett. 12, 59–61 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. Evans, P. R. Routley, and M. R. Josey, “Highly efficient unibond silicon-on-insulator blazed grating couplers,” Appl. Phys. Lett. 77, 4214–4216 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” Proc. SPIE 3620, 79–86 (1999).
[Crossref]

Kamchevska, V.

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

Karthe, W.

Kärtner, F. X.

M. Fan, M. A. Popović, and F. X. Kärtner, “High directivity, vertical fiber-to-chip coupler with anisotropically radiating grating teeth,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper CTuDD3.

Kasaya, K.

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5, 345–347 (1993).
[Crossref]

Khokhar, A.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

Khokhar, A. Z.

Y. Chen, T. D. Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42, 3566–3569 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Kim, D. W.

Kim, K. H.

Kim, Y.

Kirchain, R. E.

Kley, E.-B.

Kondo, Y.

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5, 345–347 (1993).
[Crossref]

Koos, C.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Kosciolek, D. J.

Koster, A.

Kowalevicz, A. M.

A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an SMF-28 optical fiber,” (Naval Research Lab, 2006).

Krauss, T. F.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Kunze, A.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Kwong, D.-L.

Lacava, C.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, B. Charbonnier, V. Muffato, M. Fournier, and P. Minzioni, “Group-velocity dispersion in SOI-based channel waveguides with reduced-height,” Opt. Express 25, 9761–9767 (2017).
[Crossref]

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

C. Lacava, M. J. Strain, P. Minzioni, I. Cristiani, and M. Sorel, “Integrated nonlinear Mach Zehnder for 40  Gbit/s all-optical switching,” Opt. Express 21, 21587–21595 (2013).
[Crossref]

Lai, Y.

Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact double-part grating coupler for higher-order mode coupling,” Opt. Lett. 43, 3172–3175 (2018).
[Crossref]

Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact grating coupler for higher-order mode coupling,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2018), paper Th2A.6.

Lamont, M. R. E.

Lamontagne, B.

Lapointe, J.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40, 4190–4193 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23, 22553–22563 (2015).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
[Crossref]

Laval, S.

Layadi, A.

Le Roux, X.

Lee, B. G.

Lee, J. S.

C. Scarcella, K. Gradkowski, L. Carroll, J. S. Lee, M. Duperron, D. Fowler, and P. O’Brien, “Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses,” IEEE Photon. Technol. Lett. 29, 1943–1946 (2017).
[Crossref]

H. Y. Hwang, P. Morrissey, J. S. Lee, P. O’Brien, J. Henriksson, M. C. Wu, and T. J. Seok, “128 × 128 silicon photonic MEMS switch package using glass interposer and pitch reducing fibre array,” in IEEE 19th Electronic Packaging Technology Conference (IEEE, 2017), pp. 1–4.

Lee, J.-S.

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Lee, M. H.

Lepage, G.

Letzkus, F.

Leuthold, J.

Levy, J. S.

Li, C.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

X. Chen, C. Li, and H. K. Tsang, “Fabrication-tolerant waveguide chirped grating coupler for coupling to a perfectly vertical optical fiber,” IEEE Photon. Technol. Lett. 20, 1914–1916 (2008).
[Crossref]

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), paper Th1A.4.

Li, D.

Li, G.

M. Zhang, H. Liu, G. Li, and L. Zhang, “Efficient grating couplers for space division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 24, 8200605 (2018).
[Crossref]

Li, Y.

M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
[Crossref]

Libsch, F. R.

Lim, A. E. J.

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett. 25, 1358–1361 (2013).
[Crossref]

Lim, A. E.-J.

Lim, S. T.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7, 7246 (2017).
[Crossref]

Lin, C.

Lindenmann, N.

Liow, T.-Y.

Lipson, M.

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3096 (2014).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
[Crossref]

Liu, H.

M. Zhang, H. Liu, G. Li, and L. Zhang, “Efficient grating couplers for space division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 24, 8200605 (2018).
[Crossref]

Liu, L.

Liu, Y.

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett. 25, 1358–1361 (2013).
[Crossref]

Lo, G. Q.

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett. 25, 1358–1361 (2013).
[Crossref]

Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18, 7763–7769 (2010).
[Crossref]

Lo, G.-Q.

Lo, P. G.-Q.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), paper Th1A.4.

Lo, S. M. G.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Lu, H.

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Subwavelength TE/TM grating coupler based on silicon-on-insulator,” Infrared Phys. Technol. 71, 542–546 (2015).
[Crossref]

Luke, K.

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3096 (2014).
[Crossref]

Luo, X.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), paper Th1A.4.

Luo, Y.

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Lyan, P.

B. Ben Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1  dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[Crossref]

Ma, R.

Marcaud, G.

Marchetti, R.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, B. Charbonnier, V. Muffato, M. Fournier, and P. Minzioni, “Group-velocity dispersion in SOI-based channel waveguides with reduced-height,” Opt. Express 25, 9761–9767 (2017).
[Crossref]

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

Marris-Morini, D.

Martí, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Maystre, D.

M. Neviere, D. Maystre, and P. Vincent, “Determination of the leaky modes of a corrugated waveguide: application to the study of anomalies of dielectric coated gratings,” J. Opt. 8, 231–242 (1977).
[Crossref]

McNab, S.

McNab, S. J.

Medhin, A. K.

Menezo, S.

Minzioni, P.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, B. Charbonnier, V. Muffato, M. Fournier, and P. Minzioni, “Group-velocity dispersion in SOI-based channel waveguides with reduced-height,” Opt. Express 25, 9761–9767 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

C. Lacava, M. J. Strain, P. Minzioni, I. Cristiani, and M. Sorel, “Integrated nonlinear Mach Zehnder for 40  Gbit/s all-optical switching,” Opt. Express 21, 21587–21595 (2013).
[Crossref]

Mitomi, O.

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5, 345–347 (1993).
[Crossref]

Mitze, T.

M. Schnarrenberger, L. Zimmermann, T. Mitze, J. Bruns, and K. Petermann, “Facet preparation of SOI waveguides by etching and cleaving compared to dicing and polishing,” in IEEE International Conference on Group IV Photonics (IEEE, 2004), pp. 72–74.

Miura, N.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23, 29449–29456 (2015).
[Crossref]

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.

Moehrle, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Möhrle, M.

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Molina-Fernández, I.

Molina-Fernández, Í.

Moll, N.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Mori, M.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23, 29449–29456 (2015).
[Crossref]

N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014).
[Crossref]

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.

Morioka, T.

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Morrissey, P.

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

H. Y. Hwang, P. Morrissey, J. S. Lee, P. O’Brien, J. Henriksson, M. C. Wu, and T. J. Seok, “128 × 128 silicon photonic MEMS switch package using glass interposer and pitch reducing fibre array,” in IEEE 19th Electronic Packaging Technology Conference (IEEE, 2017), pp. 1–4.

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Muffato, V.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, B. Charbonnier, V. Muffato, M. Fournier, and P. Minzioni, “Group-velocity dispersion in SOI-based channel waveguides with reduced-height,” Opt. Express 25, 9761–9767 (2017).
[Crossref]

Murakowski, J.

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Na, N.

Nadovich, C. T.

Naganuma, M.

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5, 345–347 (1993).
[Crossref]

Nagao, M.

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

Nakamura, T.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Neviere, M.

M. Neviere, D. Maystre, and P. Vincent, “Determination of the leaky modes of a corrugated waveguide: application to the study of anomalies of dielectric coated gratings,” J. Opt. 8, 231–242 (1977).
[Crossref]

Nishi, T.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
[Crossref]

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

Noguchi, Y.

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5, 345–347 (1993).
[Crossref]

Nong, Z.

Nordin, G. P.

B. Wang, J. Jiang, and G. P. Nordin, “Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17, 1884–1886 (2005).
[Crossref]

O’Brien, P.

M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
[Crossref]

C. Scarcella, K. Gradkowski, L. Carroll, J. S. Lee, M. Duperron, D. Fowler, and P. O’Brien, “Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses,” IEEE Photon. Technol. Lett. 29, 1943–1946 (2017).
[Crossref]

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

H. Y. Hwang, P. Morrissey, J. S. Lee, P. O’Brien, J. Henriksson, M. C. Wu, and T. J. Seok, “128 × 128 silicon photonic MEMS switch package using glass interposer and pitch reducing fibre array,” in IEEE 19th Electronic Packaging Technology Conference (IEEE, 2017), pp. 1–4.

O’Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Offrein, B.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Okano, M.

Okawachi, Y.

Olyslager, F.

F. Olyslager, Electromagnetic Waveguides and Transmission LinesMonographs in Electrical and Electronic Engineering (Clarendon, 1999).

Omoda, E.

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26, 10400–10407 (2018).
[Crossref]

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Design of compact surface optical coupler based on vertically curved silicon waveguide for high-numerical-aperture single-mode optical fiber,” Jpn. J. Appl. Phys. 56, 090307 (2017).
[Crossref]

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
[Crossref]

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.

Onanuga, T. P.

Ong, J. R.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7, 7246 (2017).
[Crossref]

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3096 (2014).
[Crossref]

Orobtchouk, R.

Ortega-Moñux, A.

Ou, H.

Oxenløwe, L. K.

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

Padgett, M. J.

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

Painchaud, Y.

Panepucci, R. R.

Papes, M.

Pascal, D.

Passoni, M.

M. Passoni, D. Gerace, L. Carroll, and L. C. Andreani, “Grating couplers in silicon-on-insulator: the role of photonic guided resonances on lineshape and bandwidth,” Appl. Phys. Lett. 110, 041107 (2017).
[Crossref]

Pathak, S.

Pérez-Galacho, D.

Petermann, K.

M. Schnarrenberger, L. Zimmermann, T. Mitze, J. Bruns, and K. Petermann, “Facet preparation of SOI waveguides by etching and cleaving compared to dicing and polishing,” in IEEE International Conference on Group IV Photonics (IEEE, 2004), pp. 72–74.

B. Wohlfeil, C. Stamatiadis, L. Zimmermann, and K. Petermann, “Compact fiber grating coupler on SOI for coupling of higher order fiber modes,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Optical Society of America, 2013), paper OTh1B.2.

Petropoulos, P.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

Peucheret, C.

Picard, M.-J.

Pluk, E.

Png, C. E.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7, 7246 (2017).
[Crossref]

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3096 (2014).
[Crossref]

Pond, J.

Poon, J. K. S.

Popovic, M. A.

M. Fan, M. A. Popović, and F. X. Kärtner, “High directivity, vertical fiber-to-chip coupler with anisotropically radiating grating teeth,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper CTuDD3.

Porzier, C.

B. Ben Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1  dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Prather, D.

Pu, M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[Crossref]

Pustai, D.

Radic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Ram, R. J.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Reed, G. T.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. Evans, P. R. Routley, and M. R. Josey, “Highly efficient unibond silicon-on-insulator blazed grating couplers,” Appl. Phys. Lett. 77, 4214–4216 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Technol. Lett. 12, 59–61 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” Proc. SPIE 3620, 79–86 (1999).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Rensing, M.

M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
[Crossref]

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Reuter, I.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Richardson, D. J.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Roelkens, G.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Technol. Lett. 22, 389–391 (2010).
[Crossref]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009).
[Crossref]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151–156 (2007).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay,” Opt. Express 14, 11622–11630 (2006).
[Crossref]

G. Roelkens, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17, 2613–2615 (2005).
[Crossref]

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.

Roman, A.

B. Ben Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1  dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Romero, J.

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

Rong, H.

Routley, P. R.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. Evans, P. R. Routley, and M. R. Josey, “Highly efficient unibond silicon-on-insulator blazed grating couplers,” Appl. Phys. Lett. 77, 4214–4216 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Technol. Lett. 12, 59–61 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” Proc. SPIE 3620, 79–86 (1999).
[Crossref]

Roux, X. L.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 446–475 (1956).

Sacher, W. D.

Saha, K.

Saha, T. K.

T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D 42, 085115 (2009).
[Crossref]

Sakakibara, Y.

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26, 10400–10407 (2018).
[Crossref]

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Design of compact surface optical coupler based on vertically curved silicon waveguide for high-numerical-aperture single-mode optical fiber,” Jpn. J. Appl. Phys. 56, 090307 (2017).
[Crossref]

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23, 29449–29456 (2015).
[Crossref]

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.

Sánchez, G.

Sanchis, P.

Scarcella, C.

C. Scarcella, K. Gradkowski, L. Carroll, J. S. Lee, M. Duperron, D. Fowler, and P. O’Brien, “Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses,” IEEE Photon. Technol. Lett. 29, 1943–1946 (2017).
[Crossref]

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Schaekers, M.

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Schmid, J. H.

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24, 5026–5038 (2016).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40, 4190–4193 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23, 22553–22563 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
[Crossref]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39, 5351–5354 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

Schmogrow, R.

Schnabel, B.

Schnarrenberger, M.

M. Schnarrenberger, L. Zimmermann, T. Mitze, J. Bruns, and K. Petermann, “Facet preparation of SOI waveguides by etching and cleaving compared to dicing and polishing,” in IEEE International Conference on Group IV Photonics (IEEE, 2004), pp. 72–74.

Schneider, S.

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151–156 (2007).
[Crossref]

J. Schrauwen, F. Van Laere, D. Van Thourhout, and R. Baets, “Focused-ion-beam fabrication of slanted grating couplers in silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 816–818 (2007).
[Crossref]

Selvaraja, S.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.

Seok, T. J.

H. Y. Hwang, P. Morrissey, J. S. Lee, P. O’Brien, J. Henriksson, M. C. Wu, and T. J. Seok, “128 × 128 silicon photonic MEMS switch package using glass interposer and pitch reducing fibre array,” in IEEE 19th Electronic Packaging Technology Conference (IEEE, 2017), pp. 1–4.

Shi, W.

Shimizu, T.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Shum, P. P.

Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact double-part grating coupler for higher-order mode coupling,” Opt. Lett. 43, 3172–3175 (2018).
[Crossref]

Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact grating coupler for higher-order mode coupling,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2018), paper Th2A.6.

Sleeckx, E.

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.

Song, J. F.

Song, J. H.

Sorel, M.

Stamatiadis, C.

B. Wohlfeil, C. Stamatiadis, L. Zimmermann, and K. Petermann, “Compact fiber grating coupler on SOI for coupling of higher order fiber modes,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Optical Society of America, 2013), paper OTh1B.2.

Stankovic, S.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

Strain, M. J.

Sure, A.

Suzuki, M.

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

Taillaert, D.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151–156 (2007).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15, 1567–1578 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Tajima, S.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23, 29449–29456 (2015).
[Crossref]

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.

Takahashi, J. I.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takei, R.

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23, 29449–29456 (2015).
[Crossref]

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Tan, C. W.

Tan, D. T. H.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7, 7246 (2017).
[Crossref]

Tang, Y.

Taylor, B. J. F.

Temporiti, E.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Thourhout, D. V.

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.

Troppenz, U.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Tsang, H. K.

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011).
[Crossref]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

X. Chen and H. K. Tsang, “Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers,” IEEE Photon. J. 1, 184–190 (2009).
[Crossref]

X. Chen, C. Li, and H. K. Tsang, “Fabrication-tolerant waveguide chirped grating coupler for coupling to a perfectly vertical optical fiber,” IEEE Photon. Technol. Lett. 20, 1914–1916 (2008).
[Crossref]

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24, 2428–2433 (2006).
[Crossref]

Tseng, H.-L.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Tu, X.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), paper Th1A.4.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Ünlü, M. S.

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948–955 (2002).
[Crossref]

Urino, Y.

Usuki, T.

Vachon, M.

Vakarin, V.

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Van Laere, F.

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009).
[Crossref]

J. Schrauwen, F. Van Laere, D. Van Thourhout, and R. Baets, “Focused-ion-beam fabrication of slanted grating couplers in silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 816–818 (2007).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151–156 (2007).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

van Thourhout, D.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20, B493–B500 (2012).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009).
[Crossref]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15, 1567–1578 (2007).
[Crossref]

J. Schrauwen, F. Van Laere, D. Van Thourhout, and R. Baets, “Focused-ion-beam fabrication of slanted grating couplers in silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 816–818 (2007).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151–156 (2007).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay,” Opt. Express 14, 11622–11630 (2006).
[Crossref]

G. Roelkens, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17, 2613–2615 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

van Vaerenbergh, T.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Vanslembrouck, M.

Vašinek, V.

Verheyen, P.

Vermeulen, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Technol. Lett. 22, 389–391 (2010).
[Crossref]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[Crossref]

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.

Vincent, P.

M. Neviere, D. Maystre, and P. Vincent, “Determination of the leaky modes of a corrugated waveguide: application to the study of anomalies of dielectric coated gratings,” J. Opt. 8, 231–242 (1977).
[Crossref]

Vitali, V.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, B. Charbonnier, V. Muffato, M. Fournier, and P. Minzioni, “Group-velocity dispersion in SOI-based channel waveguides with reduced-height,” Opt. Express 25, 9761–9767 (2017).
[Crossref]

Vivien, L.

Vlasov, Y.

Vlasov, Y. A.

Vogel, W.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

Vonsovici, A.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Technol. Lett. 12, 59–61 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. Evans, P. R. Routley, and M. R. Josey, “Highly efficient unibond silicon-on-insulator blazed grating couplers,” Appl. Phys. Lett. 77, 4214–4216 (2000).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” Proc. SPIE 3620, 79–86 (1999).
[Crossref]

Waldhäusl, R.

Wang, B.

B. Wang, J. Jiang, and G. P. Nordin, “Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17, 1884–1886 (2005).
[Crossref]

Wang, S.

Wang, X.

Wang, Y.

Wang, Z.

Wangüemert-Pérez, G.

Wangüemert-Pérez, J. G.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Wen, Y. H.

Westergren, U.

Wiaux, V.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Withford, M. J.

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

Wohlfeil, B.

B. Wohlfeil, C. Stamatiadis, L. Zimmermann, and K. Petermann, “Compact fiber grating coupler on SOI for coupling of higher order fiber modes,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Optical Society of America, 2013), paper OTh1B.2.

Wosinski, L.

Wouters, J.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Wu, M. C.

H. Y. Hwang, P. Morrissey, J. S. Lee, P. O’Brien, J. Henriksson, M. C. Wu, and T. J. Seok, “128 × 128 silicon photonic MEMS switch package using glass interposer and pitch reducing fibre array,” in IEEE 19th Electronic Packaging Technology Conference (IEEE, 2017), pp. 1–4.

Wu, W.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Subwavelength TE/TM grating coupler based on silicon-on-insulator,” Infrared Phys. Technol. 71, 542–546 (2015).
[Crossref]

Xia, J.

Xu, D.-X.

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24, 5026–5038 (2016).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40, 4190–4193 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23, 22553–22563 (2015).
[Crossref]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39, 5351–5354 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[Crossref]

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
[Crossref]

Xu, J.

Xu, K.

Yamada, K.

Y. Urino, T. Usuki, J. Fujikata, M. Ishizaka, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “High-density and wide-bandwidth optical interconnects with silicon optical interposers,” Photon. Res. 2, A1–A7 (2014).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Yamamoto, T.

Yang, J.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Subwavelength TE/TM grating coupler based on silicon-on-insulator,” Infrared Phys. Technol. 71, 542–546 (2015).
[Crossref]

Yang, S.

Ye, F.

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

Ye, M.

Ye, W. N.

Yoshida, T.

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26, 10400–10407 (2018).
[Crossref]

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Design of compact surface optical coupler based on vertically curved silicon waveguide for high-numerical-aperture single-mode optical fiber,” Jpn. J. Appl. Phys. 56, 090307 (2017).
[Crossref]

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23, 29449–29456 (2015).
[Crossref]

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.

Yu, M.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), paper Th1A.4.

Yu, M. B.

Yu, S.

Yu, Y.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Yun, H.

Yvind, K.

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58  dB coupling efficiency,” Opt. Lett. 39, 5348–5350 (2014).
[Crossref]

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[Crossref]

Zander, M.

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

Zaoui, W. S.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

Zeng, C.

Zhang, H.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), paper Th1A.4.

Zhang, J.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Subwavelength TE/TM grating coupler based on silicon-on-insulator,” Infrared Phys. Technol. 71, 542–546 (2015).
[Crossref]

Zhang, L.

M. Zhang, H. Liu, G. Li, and L. Zhang, “Efficient grating couplers for space division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 24, 8200605 (2018).
[Crossref]

Zhang, M.

M. Zhang, H. Liu, G. Li, and L. Zhang, “Efficient grating couplers for space division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 24, 8200605 (2018).
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, X.

Zhao, Y.

M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
[Crossref]

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Zhou, H.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), paper Th1A.4.

Zhou, L.

Zhou, W.

T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D 42, 085115 (2009).
[Crossref]

Zhu, Y.

Zimmermann, L.

B. Wohlfeil, C. Stamatiadis, L. Zimmermann, and K. Petermann, “Compact fiber grating coupler on SOI for coupling of higher order fiber modes,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Optical Society of America, 2013), paper OTh1B.2.

M. Schnarrenberger, L. Zimmermann, T. Mitze, J. Bruns, and K. Petermann, “Facet preparation of SOI waveguides by etching and cleaving compared to dicing and polishing,” in IEEE International Conference on Group IV Photonics (IEEE, 2004), pp. 72–74.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Zou, J.

Appl. Opt. (3)

Appl. Phys. Lett. (4)

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[Crossref]

M. Passoni, D. Gerace, L. Carroll, and L. C. Andreani, “Grating couplers in silicon-on-insulator: the role of photonic guided resonances on lineshape and bandwidth,” Appl. Phys. Lett. 110, 041107 (2017).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. Evans, P. R. Routley, and M. R. Josey, “Highly efficient unibond silicon-on-insulator blazed grating couplers,” Appl. Phys. Lett. 77, 4214–4216 (2000).
[Crossref]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[Crossref]

Appl. Sci. (2)

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” Appl. Sci. 7, 174 (2017).
[Crossref]

L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948–955 (2002).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

M. Zhang, H. Liu, G. Li, and L. Zhang, “Efficient grating couplers for space division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 24, 8200605 (2018).
[Crossref]

IEEE Photon. J. (1)

X. Chen and H. K. Tsang, “Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers,” IEEE Photon. J. 1, 184–190 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (17)

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

C. Scarcella, K. Gradkowski, L. Carroll, J. S. Lee, M. Duperron, D. Fowler, and P. O’Brien, “Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses,” IEEE Photon. Technol. Lett. 29, 1943–1946 (2017).
[Crossref]

B. Wang, J. Jiang, and G. P. Nordin, “Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17, 1884–1886 (2005).
[Crossref]

J. Schrauwen, F. Van Laere, D. Van Thourhout, and R. Baets, “Focused-ion-beam fabrication of slanted grating couplers in silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 816–818 (2007).
[Crossref]

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett. 25, 1358–1361 (2013).
[Crossref]

X. Chen, C. Li, and H. K. Tsang, “Fabrication-tolerant waveguide chirped grating coupler for coupling to a perfectly vertical optical fiber,” IEEE Photon. Technol. Lett. 20, 1914–1916 (2008).
[Crossref]

C. R. Doerr, L. Chen, Y. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

B. Ben Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1  dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5, 345–347 (1993).
[Crossref]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Technol. Lett. 12, 59–61 (2000).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

G. Roelkens, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17, 2613–2615 (2005).
[Crossref]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Technol. Lett. 22, 389–391 (2010).
[Crossref]

Infrared Phys. Technol. (1)

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Subwavelength TE/TM grating coupler based on silicon-on-insulator,” Infrared Phys. Technol. 71, 542–546 (2015).
[Crossref]

J. Lightwave Technol. (10)

L. Vivien, S. Laval, E. Cassan, X. L. Roux, and D. Pascal, “2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers,” J. Lightwave Technol. 21, 2429–2433 (2003).
[Crossref]

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24, 2428–2433 (2006).
[Crossref]

E. R. Fuchs, E. J. Bruce, R. J. Ram, and R. E. Kirchain, “Process-based cost modeling of photonics manufacture: the cost competitiveness of monolithic integration of a 1550-nm DFB laser and an electroabsorptive modulator on an InP platform,” J. Lightwave Technol. 24, 3175–3186 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151–156 (2007).
[Crossref]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009).
[Crossref]

N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

X. Zhao, D. Li, C. Zeng, G. Gao, Z. Huang, Q. Huang, Y. Wang, and J. Xia, “Compact grating coupler for 700-nm silicon nitride strip waveguides,” J. Lightwave Technol. 34, 1322–1327 (2016).
[Crossref]

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightwave Technol. 34, 1567–1571 (2016).
[Crossref]

J. Opt. (1)

M. Neviere, D. Maystre, and P. Vincent, “Determination of the leaky modes of a corrugated waveguide: application to the study of anomalies of dielectric coated gratings,” J. Opt. 8, 231–242 (1977).
[Crossref]

J. Opt. Soc. Korea (1)

J. Phys. D (1)

T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D 42, 085115 (2009).
[Crossref]

Jpn. J. Appl. Phys. (2)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Design of compact surface optical coupler based on vertically curved silicon waveguide for high-numerical-aperture single-mode optical fiber,” Jpn. J. Appl. Phys. 56, 090307 (2017).
[Crossref]

Laser Photon. Rev. (1)

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nat. Commun. (1)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3096 (2014).
[Crossref]

Nat. Photonics (4)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Opt. Express (31)

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24, 5026–5038 (2016).
[Crossref]

H.-L. Tseng, E. Chen, H. Rong, and N. Na, “High-performance silicon-on-insulator grating coupler with completely vertical emission,” Opt. Express 23, 24433–24439 (2015).
[Crossref]

J. Zou, Y. Yu, M. Ye, L. Liu, S. Deng, and X. Zhang, “Ultra efficient silicon nitride grating coupler with bottom grating reflector,” Opt. Express 23, 26305–26312 (2015).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23, 29449–29456 (2015).
[Crossref]

J. Zou, Y. Yu, and X. Zhang, “Single step etched two dimensional grating coupler based on the SOI platform,” Opt. Express 23, 32490–32495 (2015).
[Crossref]

A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to –0.5  dB coupling efficiency,” Opt. Express 23, 16289–16304 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23, 22553–22563 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for Si-photonics: reaching the −1  dB coupling efficiency threshold,” Opt. Express 22, 14769–14781 (2014).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, B. Charbonnier, V. Muffato, M. Fournier, and P. Minzioni, “Group-velocity dispersion in SOI-based channel waveguides with reduced-height,” Opt. Express 25, 9761–9767 (2017).
[Crossref]

C. T. Nadovich, W. D. Jemison, D. J. Kosciolek, and D. T. Crouse, “Focused apodized forked grating coupler,” Opt. Express 25, 26861–26874 (2017).
[Crossref]

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26, 10400–10407 (2018).
[Crossref]

S. Yang, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “High efficiency germanium-assisted grating coupler,” Opt. Express 22, 30607–30612 (2014).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21, 21556–21568 (2013).
[Crossref]

C. Lacava, M. J. Strain, P. Minzioni, I. Cristiani, and M. Sorel, “Integrated nonlinear Mach Zehnder for 40  Gbit/s all-optical switching,” Opt. Express 21, 21587–21595 (2013).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20, B493–B500 (2012).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref]

Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18, 7763–7769 (2010).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

J. V. Galán, P. Sanchis, G. Sánchez, and J. Martí, “Polarization insensitive low-loss coupling technique between SOI waveguides and high mode field diameter single-mode fibers,” Opt. Express 15, 7058–7065 (2007).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay,” Opt. Express 14, 11622–11630 (2006).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15, 1567–1578 (2007).
[Crossref]

A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11, 3555–3561 (2003).
[Crossref]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
[Crossref]

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
[Crossref]

Opt. Lett. (20)

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[Crossref]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
[Crossref]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]

Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,” Opt. Lett. 35, 1290–1292 (2010).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

Y. Ding, C. Peucheret, and H. Ou, “Ultra-high-efficiency apodized grating coupler using a fully etched photonic crystal,” Opt. Lett. 38, 2732–2734 (2013).
[Crossref]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact double-part grating coupler for higher-order mode coupling,” Opt. Lett. 43, 3172–3175 (2018).
[Crossref]

Y. Luo, Z. Nong, S. Gao, H. Huang, Y. Zhu, L. Liu, L. Zhou, J. Xu, L. Liu, S. Yu, and X. Cai, “Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror,” Opt. Lett. 43, 474–477 (2018).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, D. Pérez-Galacho, S. Guerber, V. Vakarin, G. Marcaud, X. Le Roux, E. Cassan, D. Marris-Morini, P. Cheben, F. Boeuf, C. Baudot, and L. Vivien, “L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography,” Opt. Lett. 42, 3439–3443 (2017).
[Crossref]

Y. Chen, T. D. Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42, 3566–3569 (2017).
[Crossref]

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58  dB coupling efficiency,” Opt. Lett. 39, 5348–5350 (2014).
[Crossref]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39, 5351–5354 (2014).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40, 4190–4193 (2015).
[Crossref]

J. H. Song, F. E. Doany, A. K. Medhin, N. Dupuis, B. G. Lee, and F. R. Libsch, “Polarization-independent nonuniform grating couplers on silicon-on-insulator,” Opt. Lett. 40, 3941–3944 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

J. Zou, Y. Yu, and X. Zhang, “Two-dimensional grating coupler with a low polarization dependent loss of 0.25  dB covering the C-band,” Opt. Lett. 41, 4206–4209 (2016).
[Crossref]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
[Crossref]

Photon. Res. (1)

Phys. Rev. A (1)

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

Proc. SPIE (3)

M. Duperron, L. Carroll, M. Rensing, S. Collins, Y. Zhao, Y. Li, R. Baets, and P. O’Brien, “Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device,” Proc. SPIE 10109, 1010915 (2017).
[Crossref]

C. Lacava, L. Carrol, A. Bozzola, R. Marchetti, P. Minzioni, I. Cristiani, M. Fournier, S. Bernabe, D. Gerace, and L. C. Andreani, “Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits,” Proc. SPIE 9752, 97520V (2016).
[Crossref]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” Proc. SPIE 3620, 79–86 (1999).
[Crossref]

Sci. Rep. (4)

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7, 7246 (2017).
[Crossref]

Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, “Reconfigurable SDM switching using novel silicon photonic integrated circuit,” Sci. Rep. 6, 39058 (2016).
[Crossref]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7, 22 (2017).
[Crossref]

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7, 16670 (2017).
[Crossref]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 446–475 (1956).

Other (19)

T. Yoshida, T. Nishi, S. Tajima, R. Takei, M. Suzuki, E. Omoda, M. Nagao, N. Miura, M. Mori, and Y. Sakakibara, “Vertically-curved silicon waveguide fabricated by ion-induced bending method for vertical light coupling,” in IEEE International Conference on Group IV Photonics (IEEE, 2013), pp. 89–90.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, R. Takei, N. Miura, M. Mori, and Y. Sakakibara, “CMOS-compatible vertical Si-waveguide coupler fabricated by ion implantation,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper ITu2B-1.

“Ultra-high NA single-mode fibers,” http://www.nufern.com/pam/optical_fibers/spec/id/988/ .

“UHNA fiber: efficient coupling to silicon waveguides,” https://www.nufern.com/library/getpdf/id/485/ .

“Corning® SMF-28® ultra optical fiber,” https://www.corning.com/media/worldwide/coc/documents/Fiber/PI1424_11-14.pdf .

“PANDA PM specialty optical fibers,” https://www.corning.com/media/worldwide/csm/documents/PANDA%20PM%20and%20RC%20PANDA%20Specialty%20Fiber.pdf .

“Corning® RGB 400 specialty optical fibers,” https://www.corning.com/media/worldwide/csm/documents/Corning%20RGB%20400%20Specialty%20Fiber.pdf .

A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an SMF-28 optical fiber,” (Naval Research Lab, 2006).

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CTuC6.

M. Schnarrenberger, L. Zimmermann, T. Mitze, J. Bruns, and K. Petermann, “Facet preparation of SOI waveguides by etching and cleaving compared to dicing and polishing,” in IEEE International Conference on Group IV Photonics (IEEE, 2004), pp. 72–74.

F. Olyslager, Electromagnetic Waveguides and Transmission LinesMonographs in Electrical and Electronic Engineering (Clarendon, 1999).

“Photonics SOI, for high-speed optical transceivers in data centers,” https://www.soitec.com/en/products/photonics-soi .

B. Wohlfeil, C. Stamatiadis, L. Zimmermann, and K. Petermann, “Compact fiber grating coupler on SOI for coupling of higher order fiber modes,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Optical Society of America, 2013), paper OTh1B.2.

Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, and X. Zhang, “Compact grating coupler for higher-order mode coupling,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2018), paper Th2A.6.

M. Fan, M. A. Popović, and F. X. Kärtner, “High directivity, vertical fiber-to-chip coupler with anisotropically radiating grating teeth,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper CTuDD3.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), paper Th1A.4.

“Cardis H2020 project,” http://www.cardis-h2020.eu .

P.-I. C. Dietrich, I. Reuter, M. Blaicher, S. Schneider, M. R. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, M. Möhrle, U. Troppenz, M. Zander, W. Freude, and C. Koos, “Lenses for low-loss chip-to-fiber and fiber-to-fiber coupling fabricated by 3D direct-write lithography,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper SM1G-4.

H. Y. Hwang, P. Morrissey, J. S. Lee, P. O’Brien, J. Henriksson, M. C. Wu, and T. J. Seok, “128 × 128 silicon photonic MEMS switch package using glass interposer and pitch reducing fibre array,” in IEEE 19th Electronic Packaging Technology Conference (IEEE, 2017), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (61)

Fig. 1.
Fig. 1. Conceptual organization of the different structures proposed for optical coupling and discussed in the present text.
Fig. 2.
Fig. 2. (a) Cross-section schematic of an SMF28 fiber, showing the 8.2 μm fiber core centered in the cladding layer, wave-guiding the 10.4 μm MFD 1.55 μm mode. Side view schematics of (b) planar polished, (c) angle polished, and (d) lensed SMF28. (e) Schematic of UHNA-to-SMF28 splicing, showing the thermally expanded adiabatic taper. The (b), (d), and (e) geometries are commonly used for edge coupling, while the (c) geometry is preferred for grating coupling.
Fig. 3.
Fig. 3. Schematic of a standard SOI EC for coupling light between an SOI waveguide and a tapered single-mode fiber. The waveguide (WG) is tapered down to a small tip to allow mode expansion in the horizontal direction, whereas an overlay of polymer, Si3N4, SiON, or SiOx, is deposited over the taper, to allow mode expansion in the vertical direction.
Fig. 4.
Fig. 4. (a) SEM image of the optical facet and edge-coupler region on an SOI-PIC, showing the mirror-finish optical facet, deeper RIE trench for fiber access, and the diced edge of the PIC for singulation from the rest of the wafer. (b) Schematic of a multichannel fiber array, showing the 250 μm pitched array of fibers sandwiched between a V-groove array and a contact plate.
Fig. 5.
Fig. 5. Schematic of the SOI edge-coupling structure proposed in [31], based on the use of a double-layer Si inverse taper and a SiO2 waveguide. Reproduced from [31].
Fig. 6.
Fig. 6. Schematic of the SOI edge-coupling structure proposed in [32], based on the use of a Si inverse taper and a SiO2 waveguide implemented in the BOX. A V-groove is etched in the Si substrate to allow for fiber auto-alignment. Reproduced from [32].
Fig. 7.
Fig. 7. (top) Schematic of the SOI trident EC structure proposed in [33]. Reproduced from [34]. (bottom) Top view of the trident SOI EC structure proposed in [33].
Fig. 8.
Fig. 8. SEM image of an SWG waveguide. Inset shows the dispersion diagrams (for TE polarization) of an SWG waveguide (blue curve) and of a standard strip waveguide (red curve) having an effective refractive index of 2.65. The two curves show a good match when away from the bandgap resonance. Reproduced from [36].
Fig. 9.
Fig. 9. (a) Schematic representation of the SWG-based EC described in [37]. (b) SEM image of the fabricated SWG-based EC. Reproduced from [37].
Fig. 10.
Fig. 10. Schematic representation of the EC structure optimized for a 10.4 μm MFD, presented in [39]. A ridge waveguide is formed in the upper cladding over the Si inverse taper, and Si3N4 layers are deposited in order to increase the effective refractive index of the upper cladding. The dimensions are not to scale.
Fig. 11.
Fig. 11. Fundamental TE mode distribution at the coupler tip, of the structure optimized for a 10.4 μm MFD. The mode is pulled toward the upper cladding, therefore overcoming optical leakage to the Si substrate. Reproduced from [39].
Fig. 12.
Fig. 12. SEM image of a vertically bent optical coupler, obtained by ion implantation in a silicon waveguide. The bent waveguide is 5 μm long, and the curvature radius is approximately equal to 3 μm. Reproduced from [43].
Fig. 13.
Fig. 13. Schematic representation of a 1D-GC used as an outcoupling device. Si layer thickness, BOX layer, etched depth, and fiber core are shown with the right relative proportions.
Fig. 14.
Fig. 14. Cross-sectional schematic of a uniform GC implemented in SOI technology.
Fig. 15.
Fig. 15. Wave-vector diagrams of waveguide GCs in resonant configuration.
Fig. 16.
Fig. 16. Wave-vector diagrams of waveguide GCs in detuned configuration.
Fig. 17.
Fig. 17. (a) Schematic top view of a GC with straight trenches. (b) Schematic top view of a focusing GC.
Fig. 18.
Fig. 18. (Top) CE for a UGC implemented in a standard SOI platform (S=220  nm and B=2000  nm), with a grating period Λ=634  nm and FF=0.5. CE is reported as a function of optical wavelength λ for different values of etching depth e, ranging from 60 to 80 nm. (Bottom) CE for a UGC implemented in a standard SOI platform (S=220  nm and B=2000  nm), with a grating period Λ=634  nm and e=70  nm. CE is reported as a function of optical wavelength λ for different values of FF, ranging from 0.4 to 0.6.
Fig. 19.
Fig. 19. CE of a TE-optimized 1D-GC as a function of optical wavelength for TE light polarization (blue trace) and for TM light polarization (red trace).
Fig. 20.
Fig. 20. Normalized power density profile of the diffracted mode from a UGC, implemented in a 220 nm Si thick SOI platform with a 70 nm deep etch.
Fig. 21.
Fig. 21. Normalized power density profile of the diffracted mode from UGCs, implemented in 220 nm Si thick SOI platform with a 70 nm etch depth and FF ranging from 0.5 to 0.8.
Fig. 22.
Fig. 22. Schematic of the SOI-blazed GC proposed in [57].
Fig. 23.
Fig. 23. Schematic of the 1D-GC structure proposed in [58]. Good CE is obtained thanks to the presence of an aluminum layer deposited in the region above the GC.
Fig. 24.
Fig. 24. Gaussian output beam and corresponding α(z) calculated according to Eq. (14). Dotted curve is the resulting output from the simulation after numerical optimization. Reproduced from [59].
Fig. 25.
Fig. 25. CE of the optimized nonuniform SOI GC proposed in [59], with (continuous line) and without (dashed line) of a two-pair DBR. Reproduced from [59].
Fig. 26.
Fig. 26. Schematic structure of the DBR-assisted UGC reported in [60].
Fig. 27.
Fig. 27. Schematic structure of the Au-mirror-assisted UGC reported in [62].
Fig. 28.
Fig. 28. Schematic structure of the poly-Si overlayer UGC reported in [65].
Fig. 29.
Fig. 29. Schematic structure of the Si-nmb overlayer UGC reported in [68].
Fig. 30.
Fig. 30. Schematic representation of a slanted SOI GC. The period of the uniform grating is equal to Λ and the etched slits angle is equal to δ.
Fig. 31.
Fig. 31. Cross-sectional schematic of a nonuniform GC implemented in an SOI wafer, based on a linear apodization of the grating FF.
Fig. 32.
Fig. 32. Maximum CE at λ=1.55  μm for the linear AGC based on 220 nm SOI (red plot) and 260 nm SOI (blue plot). Reproduced from [76].
Fig. 33.
Fig. 33. GC directionality, at λ=1.55  μm, as a function of e for the linearly apodized grating (green curve) and for a uniform grating configuration (purple curve). Reproduced from [76].
Fig. 34.
Fig. 34. Efficiency comparison between optimized uniform grating designs (black line and squares) and optimized apodized grating designs (red and blue lines and symbols) as functions of the SOI thickness. The red curve with dots refers to apodized gratings obtained from an FF linear chirp and genetic algorithm optimization, while the blue curve with triangles refers to those obtained by optimizing the structure reported in [46]. The theoretical CE of the record-efficiency design for a 1D-GC with an Al backreflector ([63]) is denoted with a dashed horizontal black line. The CE of the apodized design with deep-UV lithographic constraints (minimum feature = 100 nm) is denoted with an open green square. Adapted from [75].
Fig. 35.
Fig. 35. Schematic cross-section of a UGC implemented with the double-etch technique reported in [77]. ϕh and ϕv, respectively, represent the horizontal and vertical phase shift between two consecutive grating trenches.
Fig. 36.
Fig. 36. Schematic representation of the multi-etch GC proposed in [81], where the lag effect of ICP-RIE is exploited.
Fig. 37.
Fig. 37. Schematic representation of a nano-hole GC designed for a coupling angle θ of 8°.
Fig. 38.
Fig. 38. (Left) Top view of the grating based on a nano-hole array. (Right) 2D model of the waveguide grating with a nano-hole array based on a slab structure.
Fig. 39.
Fig. 39. (Top) Cross-sectional schematic of the Si3N4 GC proposed in [95]. The access waveguide thickness (t) is equal to thickness of the native Si3N4 layer (tSN) minus the etch depth (tg). (Bottom) Schematic top view of the focusing GC structure proposed in [95], where an inverse taper was used to connect the grating section and the Si3N4 strip waveguides. The optimized geometrical parameters are Wt=150  nm, We=4  μm, Wg=900  nm, and Lt=20  μm.
Fig. 40.
Fig. 40. Perspective representation of the Si3N4-on-SOI dual-level GC reported in [97]. Reproduced from [97].
Fig. 41.
Fig. 41. Cross-sectional schematic of the Si3N4-on-SOI dual-level GC reported in [98]. Reproduced from [98].
Fig. 42.
Fig. 42. GC forked design for vortex beam optical mode. Reproduced from [103].
Fig. 43.
Fig. 43. (a) Schematic of a GC excited either with a TE00 (blue) or TE10 (red) waveguide mode. (Inset) Field plot of a scattered TE10 mode. (b) Effective refractive indices of the first three guided modes in an SOI nanowire of height 220 nm at λ=1.55  μm. (c) Cross-section of the scattered electric field profiles of a standard GC excited from both ends with Δφ=0° (blue) and Δφ=180° (red). Reproduced from [107]. This device can be used to simultaneously couple different fiber spatial modes to silicon photonic multimode waveguides.
Fig. 44.
Fig. 44. LP11 GC structure proposed by [108]. Reproduced from [108].
Fig. 45.
Fig. 45. Structure proposed by [110] to excite the LP11b mode from a silicon photonic single-mode waveguide.
Fig. 46.
Fig. 46. Schematic of the designed strategy proposed in [111] to obtain a polarization insensitive 1D-GC. Grating (a) is obtained by the geometrical intersection of two different UGCs, having a grating period optimized for TE and TM light polarization, respectively. Grating (b) is obtained by the union of the same two UGCs. Reproduced from [111].
Fig. 47.
Fig. 47. Cross-sectional schematic of the GC proposed in [112].
Fig. 48.
Fig. 48. (a) Schematic of a 2D grating-coupler (2D-GC) on the SOI photonic platform, showing the angle-of-incidence (θ) and the polarization angle (φ) of the incident fiber mode. Inset shows the definition of the pitch (P) and radius (R) of the partially etched cylinders making up the 2D-GC. (b) The coupling efficiency into the two orthogonal arms (in the x and y directions) of the 2D-GC as a function of the polarization angle. Adapted from [117].
Fig. 49.
Fig. 49. (a) Schematic of a 2D grating-coupler (2D-GC) with long adiabatic taper waveguides to match the SMF28 coupled mode to the dimensions of the SOI waveguide (i.e., 450  nm×220  nm). (b) A large 3D-FDTD simulation (75  μm×25  μm) is used to illustrate the slight angular offset between the direction of coupled-mode propagation and the symmetry axis of the 2D-GC. Adapted from [117].
Fig. 50.
Fig. 50. Dependence of CEx, CEy, and CET on the input-beam polarization angle. Adapted from [117].
Fig. 51.
Fig. 51. CE contour plot at λ=1.55  μm as a function of E and R/P for a 2D-GC realized on the SOI platform with S=220  nm. The optimum performance corresponds to E=120  nm and R/P=0.3. Reproduced from [117].
Fig. 52.
Fig. 52. (a) Schematic showing that a nominally “full” etch provides only partial etching for small sub-λ features. (b) Layout of the sub-λ cluster that acts as a unified scattering site for the 2D-GC. (c) The periodic layout of the sub-λ clusters to create the 2D-GC.
Fig. 53.
Fig. 53. (a) Periodic layout of the asymmetric clusters used to realize a 2D-GC with reduced polarization dependent loss (PDL). (b) and (c) Detail of the tuned clusters, showing the asymmetric dS and dP spacing of the different subcylinders etched into the SOI layer. The optimum design parameters are dP=250  nm, dS=360  nm, E=70  nm, R=200  nm, and P=612  nm.
Fig. 54.
Fig. 54. Schematic of an end-to-end photonic-circuit with an identical 2D-GC for both the input and output optical interconnects. (a) In the initial scheme, the input mode and the output mode both have the same polarization angle, i.e., φin=φout, so the end-to-end transmission exhibits twice the polarization dependence of a single 2D-GC, i.e., PDL(φin)·PDL(φout)=PDL2(φin). (b) In the π shift scheme, the polarization states of the input and output modes are rotated such that the maximum and minimum of PDL(φin) from the input 2D-GC are anticorrelated with PDL(φout), so that PDL(φin)·PDL(φout)=0.
Fig. 55.
Fig. 55. (a) Schematic of the wafer-level postprocessing steps used to deposit a metal (or DBR) bottom reflector beneath a 2D-GC to enhance the fiber-to-PIC CE. (b) Contour plot of 1.55 μm CE as a function of etch-to-thickness ratio (E/S) and radius-to-pitch ratio (R/P) for a 160 nm thick SOI-PIC with a BOX layer thickness of 2175 nm. Adapted from [120].
Fig. 56.
Fig. 56. Alignment tolerances for (a) 10.4 μm MFD GC and (b) 3.5 μm MFD EC.
Fig. 57.
Fig. 57. Finding first light during alignment. (a) FA is far away from the PIC leading to weak albeit wide signal. (b) Optimized distance between FA and PIC leads to a strong, narrow Gaussian beam shape. (c) Using red light to align the fiber to the EC. Scattering is observed as the waveguide turns 90°.
Fig. 58.
Fig. 58. Schematic effects of epoxy shrinkage on coupling interface. Black elements represent the PIC, the submount is indicated in gray, the fiber (or FA) is reported in blue, yellow is the mechanical epoxy, and green is the optical epoxy. Red arrows show the direction of the force during shrinkage. (a) GC, notice that optical epoxy also plays a mechanical role. (b) Single fiber. (c) FA attached directly to PIC submount. (d) FA attached to PIC submount through its own. Panels (e) and (f) show a practical realization of package designs in (b) and (d), respectively.
Fig. 59.
Fig. 59. Zemax Gaussian beam propagation simulations of packages utilizing micro-optics. (a) Collimation of six beams from GCs. (b) Micro-optical bench. (c) Pluggable free-space coupler.
Fig. 60.
Fig. 60. Picture of a package exploiting the μ-lens-assisted pluggable connector described in [131]. A pair of lenses (highlighted) are attached to the FA and the PIC. Adapted from [131].
Fig. 61.
Fig. 61. (a) Schematic of free-space fiber-to-PIC coupling using a single μ-lens. Here, the mode emitted by the edge coupler is weakly focused by a μ-lens to give a 10 μm MFD mode size and NA that matches the SMF28 fiber. The weakly focused mode is then directly free-space coupled to the core of the SMF28 fiber. (b) Schematic of free-space fiber-to-PIC coupling using a pair of μ-lenses. Here, the first μ-lens collimates the emitted mode when it has diverged to an MFD=2550  μm. This large collimated mode is incident on the second μ-lens, which refocuses it onto the core of the SMF28 fiber with the required MFD and NA.

Tables (1)

Tables Icon

Table 1. This Table Allows Rapid Comparison Between the Performance of Different Structures Described in the Texta

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Λ=LE+LO.
FF=LOΛ=LOLO+LE.
neff=FF·nO+(1FF)·nE.
km,z=βmK,
|K|=2πΛ.
|km|=2πλn1(in top medium),
|km|=2πλn2(in bottom medium),
β=2πλneff.
neffn1·sinθ1=λΛ.
q·λ0=neffx2+z2z·nt·cosθc,
P(z)=P0e2αz.
Lc=12α.
dPdz=2α(z)·P.
2α(z)=G2(z)10zG2(t)dt.
FF=FF0R·z.
Λ(p)=Λ1+(ppTOT1)Δ.
LE,i=λ(1FFi)nE+FFi(nOnE)sinθair,
LO,i=λ·FFinE+FFi(nOnE)sinθair.
zi=j=0i1LO,j+LE,j.
nLTM=[FFynhole2+(1FFy)nSi2]1/2,
1nLTE=[FFynhole2+(1FFy)nSi2]1/2.
Δλ1dB=2ln(10)5NAλ0cosθ1neffn1sinθ1,
0rβeff(u,ϕ)du+2πm=χarctanycosθx+kysinθ,
d=(N1)Ptanθ,

Metrics