Abstract

We present an ultrabroadband, high-speed wavelength-swept source based on a self-modulated femtosecond oscillator. Photonic crystal fiber was pumped by a mode-locked Yb:CaF2 laser, resulting in a strong spectral broadening from 485 to 1800 nm. The pump laser cavity could be realigned in order to achieve total mode-locking of the longitudinal and transverse TEM00 and TEM01 electromagnetic modes. This led to spatial oscillations of the output beam, which induced modulation of the coupling efficiency to the fiber. Due to the fact that nonlinear spectral broadening was intensity dependent, this mechanism introduced wavelength sweeping at the fiber output. The sweeping rate could be adjusted between 7 and 21.5 MHz by changing the geometry of the pump cavity. By controlling the ratio of the transverse mode amplitudes, we were able to tune the sweeping bandwidth, eventually covering both the 1300 nm and 1700 nm bioimaging transparency windows. When compared with previously demonstrated wavelength-swept sources, our concept offers much broader tunability and higher speed. Moreover, it does not require an additional intensity modulator.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning

Shinji Yamashita and Masahiro Asano
Opt. Express 14(20) 9299-9306 (2006)

High-speed OCT light sources and systems [Invited]

Thomas Klein and Robert Huber
Biomed. Opt. Express 8(2) 828-859 (2017)

Intermode beating mode-locking technique for a rare-earth-doped fiber pulsed laser

Zhengqian Luo, Runhua Yang, Tuanjie Du, Qiujun Ruan, Weiwei Li, and Nan Chen
Appl. Opt. 56(22) 6103-6107 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Herman, B. Maliwal, H. J. Lin, and J. Lakowicz, “Frequency-domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
    [Crossref]
  2. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464 (2006).
    [Crossref]
  3. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [Crossref]
  4. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49, D30–D61 (2010).
    [Crossref]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  6. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth,” Opt. Express 16, 19712–19723 (2008).
    [Crossref]
  7. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1, 176–185 (2010).
    [Crossref]
  8. S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7  μm optical coherence tomography,” Opt. Lett. 40, 4911–4914 (2015).
    [Crossref]
  9. C. Chong, T. Suzuki, A. Morosawa, and T. Sakai, “Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source,” Opt. Express 16, 21105–21118 (2008).
    [Crossref]
  10. S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14, 9299–9306 (2006).
    [Crossref]
  11. S. Yamashita, “Dispersion-tuned swept lasers for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 24, 6800109 (2018).
    [Crossref]
  12. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [Crossref]
  13. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [Crossref]
  14. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
    [Crossref]
  15. J. H. Lee, J. Van Howe, C. Xu, X. Liu, and S. Member, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
    [Crossref]
  16. G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100  nm from a compact frequency-shifted Er-fiber laser,” Photon. Res. 5, 151–155 (2017).
    [Crossref]
  17. G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range,” Photon. Res. 6, 368–372 (2018).
    [Crossref]
  18. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref]
  19. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35, 2361–2363 (2010).
    [Crossref]
  20. T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
    [Crossref]
  21. M. E. Masip, A. A. Rieznik, P. G. König, D. F. Grosz, A. V. Bragas, and O. E. Martinez, “Femtosecond soliton source with fast and broad spectral tunability,” Opt. Lett. 34, 842–844 (2009).
    [Crossref]
  22. K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett. 33, 2892–2894 (2008).
    [Crossref]
  23. K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06  μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett. 35, 3631–3633 (2010).
    [Crossref]
  24. D. Auston, “Transverse mode locking,” IEEE J. Quantum Electron. 4, 420–422 (1968).
    [Crossref]
  25. P. W. Smith, “Simultaneous phase‐locking of longitudinal and transverse laser modes,” Appl. Phys. Lett. 13, 235–237 (1968).
    [Crossref]
  26. D. Côté and H. M. van Driel, “Period doubling of a femtosecond Ti:sapphire laser by total mode locking,” Opt. Lett. 23, 715–717 (1998).
    [Crossref]
  27. S. R. Bolton, R. A. Jenks, C. N. Elkinton, and G. Sucha, “Pulse-resolved measurements of subharmonic oscillations in a Kerr-lens mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 16, 339–344 (1999).
    [Crossref]
  28. M. Kowalczyk, A. Major, and J. Sotor, “High peak power ultrafast Yb:CaF2 oscillator pumped by a single-mode fiber-coupled laser diode,” Opt. Express 25, 26289–26295 (2017).
    [Crossref]
  29. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [Crossref]
  30. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
    [Crossref]
  31. W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers [Invited],” Opt. Express 26, 9432–9463 (2018).
    [Crossref]

2018 (3)

2017 (3)

2015 (1)

2013 (1)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

2010 (4)

2009 (1)

2008 (4)

2006 (3)

2001 (2)

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[Crossref]

P. Herman, B. Maliwal, H. J. Lin, and J. Lakowicz, “Frequency-domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[Crossref]

1999 (2)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[Crossref]

S. R. Bolton, R. A. Jenks, C. N. Elkinton, and G. Sucha, “Pulse-resolved measurements of subharmonic oscillations in a Kerr-lens mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 16, 339–344 (1999).
[Crossref]

1998 (1)

1997 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

1986 (1)

1968 (2)

D. Auston, “Transverse mode locking,” IEEE J. Quantum Electron. 4, 420–422 (1968).
[Crossref]

P. W. Smith, “Simultaneous phase‐locking of longitudinal and transverse laser modes,” Appl. Phys. Lett. 13, 235–237 (1968).
[Crossref]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Asano, M.

Auston, D.

D. Auston, “Transverse mode locking,” IEEE J. Quantum Electron. 4, 420–422 (1968).
[Crossref]

Backus, S.

Bolton, S. R.

Bragas, A. V.

Chang, E. W.

Chang, G.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Chen, L.-J.

Chinn, S. R.

Chong, C.

Chong, S. P.

Christodoulides, D. N.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref]

Cooke, D. F.

Côté, D.

Elkinton, C. N.

Faber, D. J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Fu, W.

Fujimoto, J. G.

Genda, Y.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Goto, T.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[Crossref]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Grosz, D. F.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Herman, P.

P. Herman, B. Maliwal, H. J. Lin, and J. Lakowicz, “Frequency-domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[Crossref]

Hori, T.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Huber, R.

Itoh, K.

Izatt, J. A.

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Jenks, R. A.

Kalkman, J.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Kärtner, F. X.

Kodach, V. M.

König, P. G.

Kowalczyk, M.

Krubitzer, L.

Lakowicz, J.

P. Herman, B. Maliwal, H. J. Lin, and J. Lakowicz, “Frequency-domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[Crossref]

Lee, J. H.

J. H. Lee, J. Van Howe, C. Xu, X. Liu, and S. Member, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Lin, H. J.

P. Herman, B. Maliwal, H. J. Lin, and J. Lakowicz, “Frequency-domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[Crossref]

Liu, X.

J. H. Lee, J. Van Howe, C. Xu, X. Liu, and S. Member, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

Major, A.

Maliwal, B.

P. Herman, B. Maliwal, H. J. Lin, and J. Lakowicz, “Frequency-domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[Crossref]

Martinez, O. E.

Martynkien, T.

Masip, M. E.

Member, S.

J. H. Lee, J. Van Howe, C. Xu, X. Liu, and S. Member, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

Mergo, P.

Merkle, C. W.

Mitschke, F. M.

Mollenauer, L. F.

Morosawa, A.

Nagai, H.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[Crossref]

Nishizawa, N.

K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06  μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett. 35, 3631–3633 (2010).
[Crossref]

K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett. 33, 2892–2894 (2008).
[Crossref]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[Crossref]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[Crossref]

Ohta, T.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Radhakrishnan, H.

Rieznik, A. A.

Sakai, T.

Sarunic, M. V.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Sharma, U.

Sidorenko, P.

Smith, P. W.

P. W. Smith, “Simultaneous phase‐locking of longitudinal and transverse laser modes,” Appl. Phys. Lett. 13, 235–237 (1968).
[Crossref]

Sobon, G.

Sotor, J.

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Sucha, G.

Sumimura, K.

Suzuki, T.

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Tarnowski, K.

Tomaszewska, D.

van Driel, H. M.

Van Howe, J.

J. H. Lee, J. Van Howe, C. Xu, X. Liu, and S. Member, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

van Leeuwen, T. G.

Weinberg, S.

Wise, F. W.

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers [Invited],” Opt. Express 26, 9432–9463 (2018).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref]

Wojtkowski, M.

Wright, L. G.

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers [Invited],” Opt. Express 26, 9432–9463 (2018).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref]

Xu, C.

J. H. Lee, J. Van Howe, C. Xu, X. Liu, and S. Member, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

Yamashita, S.

S. Yamashita, “Dispersion-tuned swept lasers for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 24, 6800109 (2018).
[Crossref]

S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14, 9299–9306 (2006).
[Crossref]

Yoshida, M.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[Crossref]

Yun, S. H.

Zhang, T.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. W. Smith, “Simultaneous phase‐locking of longitudinal and transverse laser modes,” Appl. Phys. Lett. 13, 235–237 (1968).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

D. Auston, “Transverse mode locking,” IEEE J. Quantum Electron. 4, 420–422 (1968).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Yamashita, “Dispersion-tuned swept lasers for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 24, 6800109 (2018).
[Crossref]

J. H. Lee, J. Van Howe, C. Xu, X. Liu, and S. Member, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (2)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[Crossref]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[Crossref]

J. Microsc. (1)

P. Herman, B. Maliwal, H. J. Lin, and J. Lakowicz, “Frequency-domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (9)

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[Crossref]

S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7  μm optical coherence tomography,” Opt. Lett. 40, 4911–4914 (2015).
[Crossref]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464 (2006).
[Crossref]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[Crossref]

M. E. Masip, A. A. Rieznik, P. G. König, D. F. Grosz, A. V. Bragas, and O. E. Martinez, “Femtosecond soliton source with fast and broad spectral tunability,” Opt. Lett. 34, 842–844 (2009).
[Crossref]

K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett. 33, 2892–2894 (2008).
[Crossref]

K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06  μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett. 35, 3631–3633 (2010).
[Crossref]

G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35, 2361–2363 (2010).
[Crossref]

D. Côté and H. M. van Driel, “Period doubling of a femtosecond Ti:sapphire laser by total mode locking,” Opt. Lett. 23, 715–717 (1998).
[Crossref]

Photon. Res. (2)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       This video presents the profiles of the TEM_00 and TEM_01 transverse electromagnetic modes (with non-equal frequency) as well as the resulting intensity of the total electric field (with ratio between the modes amplitudes equal to 0.7) as a function
» Visualization 2       In order to better illustrate the wavelength sweeping effect, we performed additional measurement with a dispersive Fourier transform technique which enables to study shot-to-shot spectral dynamics in real time. This video presents one of the measure

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of the experimental setup: SESAM, semiconductor saturable absorber mirror; OC, output coupler; λ/2, half-wave plate. (b) Output characteristics of the mode-locked Yb:CaF2 oscillator: autocorrelation trace with a corresponding fit and (inset) optical spectrum. (c) Dispersion of the PCF with indicated pump spectrum and (inset) scanning electron microscope cross-section image of the PCF.
Fig. 2.
Fig. 2. Electric field profiles of the cross sections of TEM00 and TEM01 modes (dashed lines) with the resulting normalized intensity of the total electric field (solid lines) at (a), (c) Δφtot=0 and (b), (d) Δφtot=π. The ratio of the mode amplitudes α is equal to (a), (b) 0.2 in the upper row and (c), (d) 0.7 in the lower row. For animation, see Visualization 1 (α=0.7).
Fig. 3.
Fig. 3. Averaged beam profiles at different regimes with corresponding pulse trains and spectra (in logarithmic scale) registered at the PCF output. The set (a) corresponds to the pump laser operating at a stable, pure Gaussian regime; in (b) we started the modulation by exciting the TEM01 mode. The modulation effect is more profound in (c), where the contribution of the higher transverse mode is stronger.
Fig. 4.
Fig. 4. Pulse trains after the PCF at the modulation frequency of (a) 7 MHz and (b) 21.5 MHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E(t)=Epulse(t){H00(x,y)+αH01(x,y)exp[i(Δωt+Δφ)]}.