Abstract

Photonic-assisted microwave frequency identification with distinct features, including wide frequency coverage and fast tunability, has been conceived as a key technique for applications such as cognitive radio and dynamic spectrum access. The implementations based on compact integrated photonic chips have exhibited distinct advantages in footprint miniaturization, light weight, and low power consumption, in stark contrast with discrete optical-fiber-based realization. However, reported chip-based instantaneous frequency measurements can only operate at a single-tone input, which stringently limits their practical applications that require wideband identification capability in modern RF and microwave applications. In this article, we demonstrate, for the first time, a wideband, adaptive microwave frequency identification solution based on a silicon photonic integrated chip, enabling the identification of different types of microwave signals from 1 to 30 GHz, including single-frequency, multiple-frequency, chirped-frequency, and frequency-hopping microwave signals, and even their combinations. The key component is a high Q-factor scanning filter based on a silicon microring resonator, which is used to implement frequency-to-time mapping. This demonstration opens the door to a monolithic silicon platform that makes possible a wideband, adaptive, and high-speed signal identification subsystem with a high resolution and a low size, weight, and power (SWaP) for mobile and avionic applications.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Photonic arbitrary waveform generator based on Taylor synthesis method

Shasha Liao, Yunhong Ding, Jianji Dong, Siqi Yan, Xu Wang, and Xinliang Zhang
Opt. Express 24(21) 24390-24400 (2016)

Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper

Shasha Liao, Yunhong Ding, Jianji Dong, Ting Yang, Xiaolin Chen, Dingshan Gao, and Xinliang Zhang
Opt. Express 23(9) 12161-12173 (2015)

Fractional-order photonic differentiator using an on-chip microring resonator

Aoling Zheng, Jianji Dong, Linjie Zhou, Xi Xiao, Qi Yang, Xinliang Zhang, and Jianping Chen
Opt. Lett. 39(21) 6355-6358 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Chang, RF and Microwave Wireless Systems (Wiley, 2004).
  2. F. Neri, Introduction to Electronic Defense Systems (SciTech, 2006).
  3. J. R. Tuttle, “Traditional and emerging technologies and applications in the radio frequency identification (RFID) industry,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Digest of Technical Papers (1997), pp. 5–8.
  4. K. Domdouzis, B. Kumar, and C. Anumba, “Radio-frequency identification (RFID) applications: a brief introduction,” Adv. Eng. Inform. 21, 350–355 (2007).
    [Crossref]
  5. X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
    [Crossref]
  6. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35, 3498–3513 (2017).
    [Crossref]
  7. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [Crossref]
  8. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
    [Crossref]
  9. L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
    [Crossref]
  10. L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
    [Crossref]
  11. D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett. 25, 837–840 (2013).
    [Crossref]
  12. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
    [Crossref]
  13. J. S. Fandiño and P. Muñoz, “Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter,” Opt. Lett. 38, 4316–4319 (2013).
    [Crossref]
  14. M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2, 751–756 (2015).
    [Crossref]
  15. M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004 (2016).
    [Crossref]
  16. M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper STh4F.7.
  17. G. W. Anderson, D. C. Webb, A. E. Spezio, and J. N. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE 79, 355–388 (1991).
    [Crossref]
  18. D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249–252.
  19. A. O. J. Wiberg, D. J. Esman, L. Liu, J. R. Adleman, S. Zlatanovic, V. Ataie, E. Myslivets, B. P. P. Kuo, N. Alic, E. W. Jacobs, and S. Radic, “Coherent filterless wideband microwave/millimeter-wave channelizer based on broadband parametric mixers,” J. Lightwave Technol. 32, 3609–3617 (2014).
    [Crossref]
  20. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
    [Crossref]
  21. W. Zhang, J. Zhang, and J. Yao, “Largely chirped microwave waveform generation using a silicon-based on-chip optical spectral shaper,” in Microwave Photonics (MWP) and International Topical Meeting on 9th Asia-Pacific Microwave Photonics Conference (APMP) (IEEE, 2014), pp. 51–53.
  22. W. Zhang and J. Yao, “Photonic generation of linearly chirped microwave waveforms using a silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg gratings,” J. Lightwave Technol. 33, 5047–5054 (2015).
    [Crossref]
  23. J. Yao, W. Li, and W. Zhang, “Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper W1J.2.
  24. P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J. 8, 5501909 (2016).
    [Crossref]
  25. S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47, 1385–1390 (1999).
    [Crossref]
  26. L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21, 642–644 (2009).
    [Crossref]
  27. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34, 3794–3796 (2009).
    [Crossref]
  28. S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1115–1117 (2012).
    [Crossref]
  29. T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett. 39, 2419–2422 (2014).
    [Crossref]
  30. X. Long, W. Zou, and J. Chen, “Broadband instantaneous frequency measurement based on stimulated Brillouin scattering,” Opt. Express 25, 2206–2214 (2017).
    [Crossref]
  31. H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3, 30–34 (2016).
    [Crossref]
  32. F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photon. J. 10, 5500807 (2018).
    [Crossref]
  33. H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A Continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
    [Crossref]
  34. D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, “Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection,” Opt. Express 21, 23286–23294 (2013).
    [Crossref]
  35. F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
    [Crossref]
  36. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
    [Crossref]
  37. Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
    [Crossref]
  38. Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, and R. T. Chen, “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.
  39. J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.

2018 (3)

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photon. J. 10, 5500807 (2018).
[Crossref]

F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
[Crossref]

H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A Continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
[Crossref]

2017 (2)

2016 (5)

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3, 30–34 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004 (2016).
[Crossref]

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J. 8, 5501909 (2016).
[Crossref]

2015 (4)

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2, 751–756 (2015).
[Crossref]

W. Zhang and J. Yao, “Photonic generation of linearly chirped microwave waveforms using a silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg gratings,” J. Lightwave Technol. 33, 5047–5054 (2015).
[Crossref]

2014 (2)

2013 (3)

2012 (1)

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1115–1117 (2012).
[Crossref]

2010 (2)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
[Crossref]

2009 (3)

L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21, 642–644 (2009).
[Crossref]

P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34, 3794–3796 (2009).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

2007 (2)

K. Domdouzis, B. Kumar, and C. Anumba, “Radio-frequency identification (RFID) applications: a brief introduction,” Adv. Eng. Inform. 21, 350–355 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

2006 (1)

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
[Crossref]

1999 (1)

S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47, 1385–1390 (1999).
[Crossref]

1991 (1)

G. W. Anderson, D. C. Webb, A. E. Spezio, and J. N. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE 79, 355–388 (1991).
[Crossref]

Aalto, T.

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Adleman, J. R.

Alic, N.

Anderson, G. W.

G. W. Anderson, D. C. Webb, A. E. Spezio, and J. N. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE 79, 355–388 (1991).
[Crossref]

Anumba, C.

K. Domdouzis, B. Kumar, and C. Anumba, “Radio-frequency identification (RFID) applications: a brief introduction,” Adv. Eng. Inform. 21, 350–355 (2007).
[Crossref]

Ataie, V.

Azaña, J.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004 (2016).
[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper STh4F.7.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Burla, M.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004 (2016).
[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper STh4F.7.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Casas-Bedoya, A.

Chan, E. H. W.

Chang, K.

K. Chang, RF and Microwave Wireless Systems (Wiley, 2004).

Chen, H.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photon. J. 10, 5500807 (2018).
[Crossref]

Chen, J.

Chen, K.

Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, and R. T. Chen, “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.

Chen, R. T.

Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, and R. T. Chen, “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.

Chetrit, Y.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.

Chi, H.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1115–1117 (2012).
[Crossref]

Choi, D.-Y.

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3, 30–34 (2016).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Chrostowski, L.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004 (2016).
[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper STh4F.7.

Chung, C.-J.

Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, and R. T. Chen, “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.

Dalir, H.

Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, and R. T. Chen, “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.

Domdouzis, K.

K. Domdouzis, B. Kumar, and C. Anumba, “Radio-frequency identification (RFID) applications: a brief introduction,” Adv. Eng. Inform. 21, 350–355 (2007).
[Crossref]

Dong, J.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photon. J. 10, 5500807 (2018).
[Crossref]

F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
[Crossref]

H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A Continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
[Crossref]

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Driscoll, J.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.

Edvell, L. G.

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249–252.

Eggleton, B. J.

Englund, M. A.

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249–252.

Esman, D. J.

Fandiño, J. S.

Feng, M.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Gao, D.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Ge, S.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1115–1117 (2012).
[Crossref]

Guo, Q.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J. 8, 5501909 (2016).
[Crossref]

Guo, W.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Harjanne, M.

He, M.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Heideman, R.

Hoekman, M.

Hu, X.

F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
[Crossref]

H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A Continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
[Crossref]

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
[Crossref]

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249–252.

Ikeda, M.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Jacobs, E. W.

Jayatilleka, H.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.

Jiang, F.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Jiang, H.

Jin, X.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1115–1117 (2012).
[Crossref]

Kapulainen, M.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Kumar, B.

K. Domdouzis, B. Kumar, and C. Anumba, “Radio-frequency identification (RFID) applications: a brief introduction,” Adv. Eng. Inform. 21, 350–355 (2007).
[Crossref]

Kumar, R.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.

Kuo, B. P. P.

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Lee, J. N.

G. W. Anderson, D. C. Webb, A. E. Spezio, and J. N. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE 79, 355–388 (1991).
[Crossref]

Leinse, A.

Li, D.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Li, M.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004 (2016).
[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper STh4F.7.

Li, W.

J. Yao, W. Li, and W. Zhang, “Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper W1J.2.

Li, Z.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Lindsay, A. C.

S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47, 1385–1390 (1999).
[Crossref]

Liu, J.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Liu, L.

Liu, S.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Long, X.

Lu, B.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Luther-Davies, B.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Madden, S. J.

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3, 30–34 (2016).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Margulis, W.

Marpaung, D.

Merckling, C.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Min, S.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Minasian, R. A.

Morrison, B.

Muñoz, P.

Myslivets, E.

Neri, F.

F. Neri, Introduction to Electronic Defense Systems (SciTech, 2006).

Nguyen, L. V. T.

L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21, 642–644 (2009).
[Crossref]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
[Crossref]

Nguyen, T. A.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Pagani, M.

Pan, S.

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35, 3498–3513 (2017).
[Crossref]

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J. 8, 5501909 (2016).
[Crossref]

Pan, W.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

Pan, Z.

Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, and R. T. Chen, “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.

Pant, R.

Pantouvaki, M.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Qie, J.

Qiu, H.

H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A Continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
[Crossref]

F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
[Crossref]

Radic, S.

Roeloffzen, C.

Rong, H.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.

Rugeland, P.

Sakib, M.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Spezio, A. E.

G. W. Anderson, D. C. Webb, A. E. Spezio, and J. N. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE 79, 355–388 (1991).
[Crossref]

Sterner, C.

Stöhr, A.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

Sun, J.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.

Sun, Q.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Sun, Y.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Tarasenko, O.

Tengstrand, G.

Tian, B.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Tuttle, J. R.

J. R. Tuttle, “Traditional and emerging technologies and applications in the radio frequency identification (RFID) industry,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Digest of Technical Papers (1997), pp. 5–8.

Van Campenhout, J.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Van Thourhout, D.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Vo, T. D.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Vu, K.

Wang, X.

F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photon. J. 10, 5500807 (2018).
[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004 (2016).
[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper STh4F.7.

Wang, Y.

Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, and R. T. Chen, “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.

Wang, Z.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Webb, D. C.

G. W. Anderson, D. C. Webb, A. E. Spezio, and J. N. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE 79, 355–388 (1991).
[Crossref]

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Wiberg, A. O. J.

Winnall, S. T.

S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47, 1385–1390 (1999).
[Crossref]

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Xiao, X.

F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
[Crossref]

H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A Continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
[Crossref]

Xu, X.

Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, and R. T. Chen, “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Yan, H.

Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, and R. T. Chen, “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.

Yan, L.

Yan, S.

F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
[Crossref]

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Yang, H.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Yao, J.

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35, 3498–3513 (2017).
[Crossref]

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

W. Zhang and J. Yao, “Photonic generation of linearly chirped microwave waveforms using a silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg gratings,” J. Lightwave Technol. 33, 5047–5054 (2015).
[Crossref]

W. Zhang, J. Zhang, and J. Yao, “Largely chirped microwave waveform generation using a silicon-based on-chip optical spectral shaper,” in Microwave Photonics (MWP) and International Topical Meeting on 9th Asia-Pacific Microwave Photonics Conference (APMP) (IEEE, 2014), pp. 51–53.

J. Yao, W. Li, and W. Zhang, “Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper W1J.2.

Yao, Y.

Ye, X.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J. 8, 5501909 (2016).
[Crossref]

Yu, Y.

Yu, Z.

Zhang, F.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J. 8, 5501909 (2016).
[Crossref]

Zhang, J.

W. Zhang, J. Zhang, and J. Yao, “Largely chirped microwave waveform generation using a silicon-based on-chip optical spectral shaper,” in Microwave Photonics (MWP) and International Topical Meeting on 9th Asia-Pacific Microwave Photonics Conference (APMP) (IEEE, 2014), pp. 51–53.

Zhang, L.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Zhang, S.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Zhang, W.

W. Zhang and J. Yao, “Photonic generation of linearly chirped microwave waveforms using a silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg gratings,” J. Lightwave Technol. 33, 5047–5054 (2015).
[Crossref]

J. Yao, W. Li, and W. Zhang, “Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper W1J.2.

W. Zhang, J. Zhang, and J. Yao, “Largely chirped microwave waveform generation using a silicon-based on-chip optical spectral shaper,” in Microwave Photonics (MWP) and International Topical Meeting on 9th Asia-Pacific Microwave Photonics Conference (APMP) (IEEE, 2014), pp. 51–53.

Zhang, X.

F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photon. J. 10, 5500807 (2018).
[Crossref]

H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A Continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
[Crossref]

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1115–1117 (2012).
[Crossref]

Zhang, Y.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Zheng, S.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1115–1117 (2012).
[Crossref]

Zhou, F.

F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photon. J. 10, 5500807 (2018).
[Crossref]

H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A Continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
[Crossref]

Zhou, K.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Zhou, L.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photon. J. 10, 5500807 (2018).
[Crossref]

Zhou, P.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J. 8, 5501909 (2016).
[Crossref]

Zhou, Y.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Zlatanovic, S.

Zou, W.

Zou, X.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

Adv. Eng. Inform. (1)

K. Domdouzis, B. Kumar, and C. Anumba, “Radio-frequency identification (RFID) applications: a brief introduction,” Adv. Eng. Inform. 21, 350–355 (2007).
[Crossref]

IEEE Photon. J. (3)

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J. 8, 5501909 (2016).
[Crossref]

F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, and X. Zhang, “Frequency-hopping microwave generation with a large time-bandwidth product,” IEEE Photon. J. 10, 7800809 (2018).
[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photon. J. 10, 5500807 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (4)

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1115–1117 (2012).
[Crossref]

L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21, 642–644 (2009).
[Crossref]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
[Crossref]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett. 25, 837–840 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47, 1385–1390 (1999).
[Crossref]

J. Lightwave Technol. (4)

Laser Photon. Rev. (1)

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

Nat. Commun. (1)

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004 (2016).
[Crossref]

Nat. Photonics (5)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Opt. Commun. (1)

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (2)

Proc. IEEE (1)

G. W. Anderson, D. C. Webb, A. E. Spezio, and J. N. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE 79, 355–388 (1991).
[Crossref]

Other (9)

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249–252.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper STh4F.7.

K. Chang, RF and Microwave Wireless Systems (Wiley, 2004).

F. Neri, Introduction to Electronic Defense Systems (SciTech, 2006).

J. R. Tuttle, “Traditional and emerging technologies and applications in the radio frequency identification (RFID) industry,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Digest of Technical Papers (1997), pp. 5–8.

Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, and R. T. Chen, “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.

W. Zhang, J. Zhang, and J. Yao, “Largely chirped microwave waveform generation using a silicon-based on-chip optical spectral shaper,” in Microwave Photonics (MWP) and International Topical Meeting on 9th Asia-Pacific Microwave Photonics Conference (APMP) (IEEE, 2014), pp. 51–53.

J. Yao, W. Li, and W. Zhang, “Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper W1J.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Conceptual diagram of the wideband adaptive MFIS using an integrated silicon photonic scanning filter.
Fig. 2.
Fig. 2. Experiment setup of the MFIS. TLS, tunable laser source; PC, polarization controller; RF, radio frequency; IM, intensity modulator; EDFA, erbium-doped fiber amplifier; EAWG, electrical arbitrary waveform generator; ATT, attenuator; PD, photodetector; OSC, oscilloscope.
Fig. 3.
Fig. 3. Characteristics of the integrated silicon photonic scanning filter and measured results of the time-invariant SF signals. (a) Micrograph of the high-Q MRR. (b) Spectral response of the MRR at different DC voltages. (c) Wavelength drift as a function of the loaded voltage. (d) Function between the microwave frequency and the delay. (e) Estimated frequency (red dots) and corresponding error (blue dots), and the inset histogram shows the distribution of different errors.
Fig. 4.
Fig. 4. Measurement results of time-invariant MF identification. (a) 2, 10, and 12 GHz. (b) 2–30 GHz, stepped by 2 GHz. (c) 2–20 GHz, stepped by 0.5 GHz. (d) 2 and 2.375 GHz.
Fig. 5.
Fig. 5. RF response of the IM.
Fig. 6.
Fig. 6. Theoretical simulation model for FM signal identification. (a) Scanning frequency of the filter. (b) Chirped frequency. (c) Hopping frequency with respect to time in one scanning period.
Fig. 7.
Fig. 7. Simulated results for FM signal identification. CF at a center frequency of 20 GHz with different spans of (a) 16 GHz and (b) 1 GHz. FH from 2 to 18 GHz stepped by (c) 16 GHz and (d) 0.5 GHz.
Fig. 8.
Fig. 8. Measurement results of CF microwave signals. The red line is the ESA measured frequency; the blue line is the MFIS measured frequency. (a), (b), and (c) CF at a center frequency of 20 GHz with different spans of 16, 4, and 1 GHz, respectively. (e), (f), and (g) CF of different center frequencies at 4, 16, and 24 GHz, respectively, with the same span of 4 GHz. (d) and (h) are the measured frequency versus the input frequency.
Fig. 9.
Fig. 9. Measurement results of FH microwave signals from 2 to 18 GHz. (a) Stepped by 16 GHz. (b) Stepped by 4 GHz. (c) Stepped by 1 GHz. (d) Stepped by 0.5 GHz. The red line is the ESA measured frequency; the blue line is the MFIS measured frequency.
Fig. 10.
Fig. 10. Measurement results of simultaneous multitype microwave signals. (a) Simultaneous FH signal and CF signal. (b) Simultaneous SF signal and CF signal. (c) Simultaneous SF signal and FH signal. The input frequency parameters are labeled in each graph.
Fig. 11.
Fig. 11. Measured amplitude results of a 20 GHz microwave signal.

Tables (2)

Tables Icon

Table 1. Classification Criterion of Measured Microwave Signals

Tables Icon

Table 2. Performance Comparison of Existing MFISs, where “S” Denotes Single Frequency Measurement and “M” Denotes Multiple Frequency Measurement

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

funknown=At2+Bt+C,
σRF=i=1N[fe(i)fin(i)]2N.
fd(t)=fs(t)fin(t).
Pout(t)=e[fd(t)k]2,
σband=i=1N[Be(i)Bin(i)Bin(i)]2N,
σcenter=i=1N[Ce(i)Cin(i)]2N.