Abstract

The average power of fiber lasers has been scaled deeply into the kW regime in the past years. However, stimulated Raman scattering (SRS) is still a major factor limiting further power scaling. Here, we have demonstrated for the first time, to the best of our knowledge, the suppression of SRS in a half 10 kW tandem pumping fiber amplifier using chirped and tilted fiber Bragg gratings (CTFBGs). With specially self-designed and manufactured CTFBGs inserted between the seed laser and the amplifier stage, a maximum SRS suppression ratio of >15  dB in spectrum is observed with no reduction in laser efficiency. With one CTFBG, the effective output power is improved to 3.9 kW with a beam quality M2 factor of 1.7 from <3.5  kW with an M2 factor of >2; with two CTFBGs, the effective laser power reaches 4.2 kW with an increasing ratio of 20% and an M2 factor of 1.8, and further power improvement is limited by the power and performance of the 1018 nm pump sources. This work provides an effective SRS suppression method for high-power all-fiber lasers, which is useful for further power scaling of these systems.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme

Baolai Yang, Hanwei Zhang, Chen Shi, Xiaolin Wang, Pu Zhou, Xiaojun Xu, Jinbao Chen, Zejin Liu, and Qisheng Lu
Opt. Express 24(24) 27828-27835 (2016)

Transverse mode instability induced by stimulated Brillouin scattering in a pulsed single-frequency large-core fiber amplifier

Kyung-Hyun Lee, Kangin Lee, Yonghee Kim, Yong-Ho Cha, Gwon Lim, Hyunmin Park, Hyuck Cho, and Do-Young Jeong
Appl. Opt. 54(2) 189-194 (2015)

Yb-doped large mode area fiber for beam quality improvement using local adiabatic tapers with reduced dopant diffusion

Yuan Zhu, Martin Leich, Martin Lorenz, Tina Eschrich, Claudia Aichele, Jens Kobelke, Hartmut Bartelt, and Matthias Jäger
Opt. Express 26(13) 17034-17043 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [Crossref]
  2. J. Nilsson, S. Ramachandran, T. Shay, and A. Shirakawa, “High-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–2 (2009).
    [Crossref]
  3. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
    [Crossref]
  4. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction limited fiber lasers and amplifiers,” Opt. Express 16, 13240–13266 (2008).
    [Crossref]
  5. J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber laser and amplifiers,” Opt. Express 19, 18645–18654 (2011).
    [Crossref]
  6. E. Stiles, “New developments in IPG fiber laser technology,” in 5th International Workshop on Fiber Lasers (2009).
  7. Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242, 487–502 (2004).
    [Crossref]
  8. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express 14, 5103–5113 (2006).
    [Crossref]
  9. L. Zenteno, J. Wang, D. Walton, B. Ruffin, M. Li, S. Gray, and A. Crowley, “Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber,” Opt. Express 13, 8921–8926 (2005).
    [Crossref]
  10. J. M. Fini, M. D. Mermelstein, M. F. Yan, R. T. Bise, A. D. Yablon, P. W. Wisk, and M. J. Andrejco, “Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier,” Opt. Lett. 31, 2550–2552 (2006).
    [Crossref]
  11. T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” (2007), pp. 29–32.
  12. F. Jansen, D. Nodop, C. Jauregui, J. Limpert, and A. Tunnermann, “Modeling the inhibition of stimulated Raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems,” Opt. Express 17, 16255–16265 (2009).
    [Crossref]
  13. D. Nodop, C. Jauregui, F. Jansen, J. Limpert, and A. Tünnermann, “Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers,” Opt. Lett. 35, 2982–2984 (2010).
    [Crossref]
  14. M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
    [Crossref]
  15. T. Osuch, T. Jurek, and K. Jedrzejewski, “Spectral transmission characteristics of weakly tilted and tilted chirped fiber grating comparative studies,” Proc. SPIE 8903, 89030W (2013).
    [Crossref]
  16. I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” in Optical Fiber Communication Conference (2000), paper TuH3.
  17. F. Liu, T. Guo, C. Wu, B.-O. Guan, C. Lu, H.-Y. Tam, and J. Albert, “Wideband-adjustable reflection-suppressed rejection filters using chirped and tilted fiber gratings,” Opt. Express 22, 24430–24438 (2014).
    [Crossref]
  18. M. Wang, Y. Zhang, Z. Wang, J. Sun, J. Cao, J. Leng, X. Gu, and X. Xu, “Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers,” Opt. Express 25, 1529–1534 (2017).
    [Crossref]
  19. M. Wang, Z. Li, L. Liu, Z. Wang, X. Gu, and X. Xu, “Fabrication of chirped and tilted fiber Bragg gratings on large-mode-area doubled-cladding fibers by phase-mask technique,” Appl. Opt. 57, 4376–4380 (2018).
    [Crossref]
  20. K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers,” Opt. Lett. 42, 5274–5277 (2017).
    [Crossref]

2018 (2)

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

M. Wang, Z. Li, L. Liu, Z. Wang, X. Gu, and X. Xu, “Fabrication of chirped and tilted fiber Bragg gratings on large-mode-area doubled-cladding fibers by phase-mask technique,” Appl. Opt. 57, 4376–4380 (2018).
[Crossref]

2017 (2)

2014 (1)

2013 (2)

T. Osuch, T. Jurek, and K. Jedrzejewski, “Spectral transmission characteristics of weakly tilted and tilted chirped fiber grating comparative studies,” Proc. SPIE 8903, 89030W (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

2011 (1)

2010 (2)

2009 (2)

2008 (1)

2006 (2)

2005 (1)

2004 (1)

Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242, 487–502 (2004).
[Crossref]

Abedinajafi, A.

Albert, J.

Andrejco, M. J.

Azizi, S.

Barty, C. P. J.

Beach, R. J.

Bise, R. T.

Bock, V.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

Cao, J.

Clarkson, W. A.

Codemard, C.

Crowley, A.

Croz, V.

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” in Optical Fiber Communication Conference (2000), paper TuH3.

Dawson, J. W.

Dupriez, P.

Fini, J. M.

Goebel, T. A.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

Gray, S.

Gu, X.

Guan, B.-O.

Guo, T.

Heck, M.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

Heebner, J. E.

Hejaz, K.

Hou, J.

T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” (2007), pp. 29–32.

Jansen, F.

Jauregui, C.

Jedrzejewski, K.

T. Osuch, T. Jurek, and K. Jedrzejewski, “Spectral transmission characteristics of weakly tilted and tilted chirped fiber grating comparative studies,” Proc. SPIE 8903, 89030W (2013).
[Crossref]

Jurek, T.

T. Osuch, T. Jurek, and K. Jedrzejewski, “Spectral transmission characteristics of weakly tilted and tilted chirped fiber grating comparative studies,” Proc. SPIE 8903, 89030W (2013).
[Crossref]

Kim, J.

Knight, J. C.

T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” (2007), pp. 29–32.

Krämer, R. G.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

Leng, J.

Li, M.

Li, Z.

Liem, A.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

Limpert, J.

Liu, F.

Liu, L.

Liu, Z.

Lopez, T.

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” in Optical Fiber Communication Conference (2000), paper TuH3.

Lu, C.

Ma, Y.

Matzdorf, C.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

Mermelstein, M. D.

Messerly, M. J.

Muller, C.

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” in Optical Fiber Communication Conference (2000), paper TuH3.

Nilsson, J.

Nodop, D.

Nolte, S.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

Osuch, T.

T. Osuch, T. Jurek, and K. Jedrzejewski, “Spectral transmission characteristics of weakly tilted and tilted chirped fiber grating comparative studies,” Proc. SPIE 8903, 89030W (2013).
[Crossref]

Pax, P. H.

Po, H.

Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242, 487–502 (2004).
[Crossref]

Ramachandran, S.

J. Nilsson, S. Ramachandran, T. Shay, and A. Shirakawa, “High-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–2 (2009).
[Crossref]

Rezaei-Nasirabad, R.

Riant, I.

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” in Optical Fiber Communication Conference (2000), paper TuH3.

Richardson, D. J.

Richter, D.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

Roohforouz, A.

Ruffin, B.

Sahu, J. K.

Sansonetti, P.

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” in Optical Fiber Communication Conference (2000), paper TuH3.

Schreiber, T.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

Shay, T.

J. Nilsson, S. Ramachandran, T. Shay, and A. Shirakawa, “High-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–2 (2009).
[Crossref]

Shayganmanesh, M.

Shirakawa, A.

J. Nilsson, S. Ramachandran, T. Shay, and A. Shirakawa, “High-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–2 (2009).
[Crossref]

Shverdin, M. Y.

Siders, C. W.

Sridharan, A. K.

Stappaerts, E. A.

Stiles, E.

E. Stiles, “New developments in IPG fiber laser technology,” in 5th International Workshop on Fiber Lasers (2009).

Sun, J.

Tam, H.-Y.

Taru, T.

T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” (2007), pp. 29–32.

Tunnermann, A.

Tünnermann, A.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

D. Nodop, C. Jauregui, F. Jansen, J. Limpert, and A. Tünnermann, “Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers,” Opt. Lett. 35, 2982–2984 (2010).
[Crossref]

Vatani, V.

Walton, D.

Wang, J.

Wang, M.

Wang, Y.

Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242, 487–502 (2004).
[Crossref]

Wang, Z.

Wisk, P. W.

Wu, C.

Xu, C.

Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242, 487–502 (2004).
[Crossref]

Xu, X.

Yablon, A. D.

Yan, M. F.

Zenteno, L.

Zhang, Y.

Zhou, P.

Zhu, J.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. Nilsson, S. Ramachandran, T. Shay, and A. Shirakawa, “High-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–2 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Opt. Commun. (1)

Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242, 487–502 (2004).
[Crossref]

Opt. Express (7)

J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express 14, 5103–5113 (2006).
[Crossref]

L. Zenteno, J. Wang, D. Walton, B. Ruffin, M. Li, S. Gray, and A. Crowley, “Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber,” Opt. Express 13, 8921–8926 (2005).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction limited fiber lasers and amplifiers,” Opt. Express 16, 13240–13266 (2008).
[Crossref]

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber laser and amplifiers,” Opt. Express 19, 18645–18654 (2011).
[Crossref]

F. Liu, T. Guo, C. Wu, B.-O. Guan, C. Lu, H.-Y. Tam, and J. Albert, “Wideband-adjustable reflection-suppressed rejection filters using chirped and tilted fiber gratings,” Opt. Express 22, 24430–24438 (2014).
[Crossref]

M. Wang, Y. Zhang, Z. Wang, J. Sun, J. Cao, J. Leng, X. Gu, and X. Xu, “Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers,” Opt. Express 25, 1529–1534 (2017).
[Crossref]

F. Jansen, D. Nodop, C. Jauregui, J. Limpert, and A. Tunnermann, “Modeling the inhibition of stimulated Raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems,” Opt. Express 17, 16255–16265 (2009).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (2)

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
[Crossref]

T. Osuch, T. Jurek, and K. Jedrzejewski, “Spectral transmission characteristics of weakly tilted and tilted chirped fiber grating comparative studies,” Proc. SPIE 8903, 89030W (2013).
[Crossref]

Other (3)

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” in Optical Fiber Communication Conference (2000), paper TuH3.

T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” (2007), pp. 29–32.

E. Stiles, “New developments in IPG fiber laser technology,” in 5th International Workshop on Fiber Lasers (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Measured spectrum of CTFBGs fabricated for the following experiments: (a) CTFBG I and (b) CTFBG II.
Fig. 2.
Fig. 2. Experimental configuration for the suppression of SRS in a tandem pumping fiber amplifier. HR, highly reflective FBG; OC, output coupler FBG; LD, laser diode; YDF-20/400, Yb-doped 20/400 fiber; YDF-30/250, Yb-doped 30/250 fiber; CLS, cladding light stripper.
Fig. 3.
Fig. 3. Changing spectra of output as the pump power increases (a) without and (b) with a CTFBG inserted, and comparison of (c) spectra at pump power 3490 W, (d) signal ratio, and (e) output power versus pump power with and without CTFBG I together with the beam quality and profile of the output.
Fig. 4.
Fig. 4. Changing spectra of the output as the pump power increases with (a) CTFBG I and (b) CTFBGs I and II inserted. Comparison of (c) spectra at pump power 4790 W, (d) signal ratio, and (e) output power versus pump power with CTFBG I or both CTFBGs together with the beam quality and profile of the output.