Abstract

Electrically responsive photonic crystals represent one of the most promising intelligent material candidates for technological applications in optoelectronics. In this research, dye-doped polymer-stabilized cholesteric liquid crystals (PSCLCs) with negative dielectric anisotropy were fabricated, and mirrorless lasing with an electrically tunable wavelength was successfully achieved. Unlike conventional liquid-crystal lasers, the proposed laser aided in tuning the emission wavelength through controlling the reflection bandwidth based on gradient pitch distribution. The principal advantage of the electrically controlled dye-doped PSCLC laser is that the electric field is applied parallel to the helical axis, which changes the pitch gradient instead of rotating the helix axis, thus keeping the heliconical structure intact during lasing. The broad tuning range (110  nm) of PSCLC lasers, coupled with their stable emission performance, continuous tunability, and easy fabrication, leads to its numerous potential applications in intelligent optoelectronic devices, such as sensing, medicine, and display.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Effect of crosslinking on the photonic bandgap in deformable cholesteric elastomers

Yoshihito Hirota, Yan Ji, Francesca Serra, Ali R. Tajbakhsh, and Eugene M. Terentjev
Opt. Express 16(8) 5320-5331 (2008)

Electrically tunable lasers made from electro-optically active photonics band gap materials

Haiping Yu, Benjamin Y. Tang, Jianhui Li, and Le Li
Opt. Express 13(18) 7243-7249 (2005)

Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal

Bo-wei Liu, Zhi-gang Zheng, Xu-chang Chen, and Dong Shen
Opt. Mater. Express 3(4) 519-526 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
    [Crossref]
  2. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
    [Crossref]
  3. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24, 6260–6276 (2012).
    [Crossref]
  4. I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4, 1–34 (2016).
    [Crossref]
  5. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [Crossref]
  6. Y. Zhou, Y. Huang, and S.-T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
    [Crossref]
  7. M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22, 4473–4478 (2010).
    [Crossref]
  8. P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixtures of cholesteric liquid crystals with polymers,” J. Phys. Chem. B 107, 6961–6964 (2003).
    [Crossref]
  9. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
    [Crossref]
  10. K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, L874–L876 (2007).
    [Crossref]
  11. S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22, 886–891 (2010).
    [Crossref]
  12. K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
    [Crossref]
  13. J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38, 1357–1363 (2005).
    [Crossref]
  14. A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
    [Crossref]
  15. T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
    [Crossref]
  16. H. K. S. Finkelmann, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
    [Crossref]
  17. Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
    [Crossref]
  18. B.-W. Liu, Z.-G. Zheng, X.-C. Chen, and D. Shen, “Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal,” Opt. Mater. Express 3, 519–526 (2013).
    [Crossref]
  19. M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. 15, 974–977 (2003).
    [Crossref]
  20. H. Yu, B. Y. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 7243–7249 (2005).
    [Crossref]
  21. B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
    [Crossref]
  22. Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
    [Crossref]
  23. M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
    [Crossref]
  24. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
    [Crossref]
  25. G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
    [Crossref]
  26. S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, and N. M. Shtykov, “Photonics of liquid-crystal structures: a review,” Crystallogr. Rep. 56, 622–649 (2011).
    [Crossref]
  27. J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
    [Crossref]
  28. G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
    [Crossref]
  29. V. G. Rumyantsev, A. V. Ivashchenko, V. M. Muratov, V. T. Lazareva, E. K. Prudnikova, and L. M. Blinov, “Dyes with negative dichroism for liquid crystal displays based on the guest-host effect,” Mol. Cryst. Liq. Cryst. 94, 205–212 (2007).
    [Crossref]
  30. Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
    [Crossref]
  31. K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photon. 1, 1033–1041 (2014).
    [Crossref]
  32. H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
    [Crossref]
  33. K. M. Lee, V. P. Tondiglia, and T. J. White, “Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals,” Soft Matter 12, 1256–1261 (2016).
    [Crossref]
  34. S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49, 8643–8652 (2016).
    [Crossref]
  35. K. M. Lee, V. P. Tondiglia, N. P. Godman, C. M. Middleton, and T. J. White, “Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals,” Soft Matter 13, 5842–5848 (2017).
    [Crossref]
  36. M. Yu, L. Wang, H. Nemati, H. Yang, T. Bunning, and D.-K. Yang, “Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals,” J. Polym. Sci. B 55, 835–846 (2017).
    [Crossref]

2017 (3)

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

K. M. Lee, V. P. Tondiglia, N. P. Godman, C. M. Middleton, and T. J. White, “Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals,” Soft Matter 13, 5842–5848 (2017).
[Crossref]

M. Yu, L. Wang, H. Nemati, H. Yang, T. Bunning, and D.-K. Yang, “Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals,” J. Polym. Sci. B 55, 835–846 (2017).
[Crossref]

2016 (4)

J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
[Crossref]

K. M. Lee, V. P. Tondiglia, and T. J. White, “Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals,” Soft Matter 12, 1256–1261 (2016).
[Crossref]

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49, 8643–8652 (2016).
[Crossref]

I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4, 1–34 (2016).
[Crossref]

2015 (3)

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref]

H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
[Crossref]

2014 (2)

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
[Crossref]

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photon. 1, 1033–1041 (2014).
[Crossref]

2013 (1)

2012 (1)

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24, 6260–6276 (2012).
[Crossref]

2011 (2)

S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, and N. M. Shtykov, “Photonics of liquid-crystal structures: a review,” Crystallogr. Rep. 56, 622–649 (2011).
[Crossref]

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

2010 (3)

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22, 4473–4478 (2010).
[Crossref]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22, 886–891 (2010).
[Crossref]

2009 (1)

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

2007 (2)

V. G. Rumyantsev, A. V. Ivashchenko, V. M. Muratov, V. T. Lazareva, E. K. Prudnikova, and L. M. Blinov, “Dyes with negative dichroism for liquid crystal displays based on the guest-host effect,” Mol. Cryst. Liq. Cryst. 94, 205–212 (2007).
[Crossref]

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, L874–L876 (2007).
[Crossref]

2006 (2)

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[Crossref]

Y. Zhou, Y. Huang, and S.-T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
[Crossref]

2005 (5)

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38, 1357–1363 (2005).
[Crossref]

H. Yu, B. Y. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 7243–7249 (2005).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

2003 (4)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixtures of cholesteric liquid crystals with polymers,” J. Phys. Chem. B 107, 6961–6964 (2003).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
[Crossref]

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. 15, 974–977 (2003).
[Crossref]

2001 (1)

H. K. S. Finkelmann, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

1998 (1)

1968 (1)

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[Crossref]

Araoka, F.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22, 4473–4478 (2010).
[Crossref]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Barna, V.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

Barnik, M. I.

S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, and N. M. Shtykov, “Photonics of liquid-crystal structures: a review,” Crystallogr. Rep. 56, 622–649 (2011).
[Crossref]

Bartolino, R.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Blinov, L. M.

S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, and N. M. Shtykov, “Photonics of liquid-crystal structures: a review,” Crystallogr. Rep. 56, 622–649 (2011).
[Crossref]

V. G. Rumyantsev, A. V. Ivashchenko, V. M. Muratov, V. T. Lazareva, E. K. Prudnikova, and L. M. Blinov, “Dyes with negative dichroism for liquid crystal displays based on the guest-host effect,” Mol. Cryst. Liq. Cryst. 94, 205–212 (2007).
[Crossref]

Bunning, T.

M. Yu, L. Wang, H. Nemati, H. Yang, T. Bunning, and D.-K. Yang, “Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals,” J. Polym. Sci. B 55, 835–846 (2017).
[Crossref]

H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
[Crossref]

Bunning, T. J.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photon. 1, 1033–1041 (2014).
[Crossref]

Caputo, R.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Chen, X.-C.

Chen, Y.-J.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Cho, G. S.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Choi, E. H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

Coles, H. J.

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[Crossref]

De Luca, A.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

Elston, S. J.

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49, 8643–8652 (2016).
[Crossref]

Fan, B.

Fells, J. A. J.

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49, 8643–8652 (2016).
[Crossref]

Finkelmann, H.

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38, 1357–1363 (2005).
[Crossref]

Finkelmann, H. K. S.

H. K. S. Finkelmann, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Ford, A. D.

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[Crossref]

Fuh, A. Y. G.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Fujii, A.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Funamoto, K.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
[Crossref]

Furumi, S.

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22, 886–891 (2010).
[Crossref]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Ganzke, D.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. 15, 974–977 (2003).
[Crossref]

Genack, A. Z.

P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixtures of cholesteric liquid crystals with polymers,” J. Phys. Chem. B 107, 6961–6964 (2003).
[Crossref]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
[Crossref]

Gimenez, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Godman, N. P.

K. M. Lee, V. P. Tondiglia, N. P. Godman, C. M. Middleton, and T. J. White, “Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals,” Soft Matter 13, 5842–5848 (2017).
[Crossref]

Haase, W.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. 15, 974–977 (2003).
[Crossref]

Heilmeier, G. H.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[Crossref]

Hu, W.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Huang, Y.

Imrie, C. T.

J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
[Crossref]

Inoue, K.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Inoue, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Ishikawa, K.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, L874–L876 (2007).
[Crossref]

Ivashchenko, A. V.

V. G. Rumyantsev, A. V. Ivashchenko, V. M. Muratov, V. T. Lazareva, E. K. Prudnikova, and L. M. Blinov, “Dyes with negative dichroism for liquid crystal displays based on the guest-host effect,” Mol. Cryst. Liq. Cryst. 94, 205–212 (2007).
[Crossref]

Jang, W.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Kang, S. O.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Kasano, M.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. 15, 974–977 (2003).
[Crossref]

Kim, M.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Kim, S. W.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Kim, Y.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Kitasho, T.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. 15, 974–977 (2003).
[Crossref]

Kniesel, S.

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38, 1357–1363 (2005).
[Crossref]

Konishi, G.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22, 4473–4478 (2010).
[Crossref]

Kopp, V. I.

P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixtures of cholesteric liquid crystals with polymers,” J. Phys. Chem. B 107, 6961–6964 (2003).
[Crossref]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
[Crossref]

Kubo, H.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Lavrentovich, O. D.

J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
[Crossref]

Lazarev, V. V.

S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, and N. M. Shtykov, “Photonics of liquid-crystal structures: a review,” Crystallogr. Rep. 56, 622–649 (2011).
[Crossref]

Lazareva, V. T.

V. G. Rumyantsev, A. V. Ivashchenko, V. M. Muratov, V. T. Lazareva, E. K. Prudnikova, and L. M. Blinov, “Dyes with negative dichroism for liquid crystal displays based on the guest-host effect,” Mol. Cryst. Liq. Cryst. 94, 205–212 (2007).
[Crossref]

Lee, K. M.

K. M. Lee, V. P. Tondiglia, N. P. Godman, C. M. Middleton, and T. J. White, “Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals,” Soft Matter 13, 5842–5848 (2017).
[Crossref]

K. M. Lee, V. P. Tondiglia, and T. J. White, “Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals,” Soft Matter 12, 1256–1261 (2016).
[Crossref]

H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
[Crossref]

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photon. 1, 1033–1041 (2014).
[Crossref]

Li, F.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

Li, J.

Li, L.

Lin, T.-H.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Liu, B.-W.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

B.-W. Liu, Z.-G. Zheng, X.-C. Chen, and D. Shen, “Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal,” Opt. Mater. Express 3, 519–526 (2013).
[Crossref]

Liu, J. H.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Liu, Q.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
[Crossref]

Liu, S.

H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
[Crossref]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Mazzulla, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

McConney, M. E.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photon. 1, 1033–1041 (2014).
[Crossref]

Middleton, C. M.

K. M. Lee, V. P. Tondiglia, N. P. Godman, C. M. Middleton, and T. J. White, “Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals,” Soft Matter 13, 5842–5848 (2017).
[Crossref]

Minkowski, F.

J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
[Crossref]

Mitov, M.

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24, 6260–6276 (2012).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

Morris, S. M.

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49, 8643–8652 (2016).
[Crossref]

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[Crossref]

Munoz, A.

H. K. S. Finkelmann, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Muratov, V. M.

V. G. Rumyantsev, A. V. Ivashchenko, V. M. Muratov, V. T. Lazareva, E. K. Prudnikova, and L. M. Blinov, “Dyes with negative dichroism for liquid crystal displays based on the guest-host effect,” Mol. Cryst. Liq. Cryst. 94, 205–212 (2007).
[Crossref]

Muševic, I.

I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4, 1–34 (2016).
[Crossref]

Nagai, H.

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref]

Natarajan, L. V.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photon. 1, 1033–1041 (2014).
[Crossref]

Nemati, H.

M. Yu, L. Wang, H. Nemati, H. Yang, T. Bunning, and D.-K. Yang, “Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals,” J. Polym. Sci. B 55, 835–846 (2017).
[Crossref]

H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
[Crossref]

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Ozaki, M.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
[Crossref]

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. 15, 974–977 (2003).
[Crossref]

Palffy-Muhoray, P.

J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
[Crossref]

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref]

H. K. S. Finkelmann, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Palto, S. P.

S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, and N. M. Shtykov, “Photonics of liquid-crystal structures: a review,” Crystallogr. Rep. 56, 622–649 (2011).
[Crossref]

Park, B.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Paterson, D. A.

J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
[Crossref]

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Pinol, M.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Price, G. N.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

Prudnikova, E. K.

V. G. Rumyantsev, A. V. Ivashchenko, V. M. Muratov, V. T. Lazareva, E. K. Prudnikova, and L. M. Blinov, “Dyes with negative dichroism for liquid crystal displays based on the guest-host effect,” Mol. Cryst. Liq. Cryst. 94, 205–212 (2007).
[Crossref]

Rumyantsev, V. G.

V. G. Rumyantsev, A. V. Ivashchenko, V. M. Muratov, V. T. Lazareva, E. K. Prudnikova, and L. M. Blinov, “Dyes with negative dichroism for liquid crystal displays based on the guest-host effect,” Mol. Cryst. Liq. Cryst. 94, 205–212 (2007).
[Crossref]

Scaramuzza, N.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

Schmidtke, J.

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38, 1357–1363 (2005).
[Crossref]

Seo, Y. H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Shen, D.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

B.-W. Liu, Z.-G. Zheng, X.-C. Chen, and D. Shen, “Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal,” Opt. Mater. Express 3, 519–526 (2013).
[Crossref]

Shibaev, P. V.

P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixtures of cholesteric liquid crystals with polymers,” J. Phys. Chem. B 107, 6961–6964 (2003).
[Crossref]

Shiozaki, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Shtykov, N. M.

S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, and N. M. Shtykov, “Photonics of liquid-crystal structures: a review,” Crystallogr. Rep. 56, 622–649 (2011).
[Crossref]

Smalyukh, I. I.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
[Crossref]

Song, P.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

Sonoyama, K.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, L874–L876 (2007).
[Crossref]

Storey, J. M. D.

J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
[Crossref]

Strangi, G.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

Sun, J.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

Taheri, B.

H. K. S. Finkelmann, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Takanishi, Y.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, L874–L876 (2007).
[Crossref]

Takezoe, H.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22, 4473–4478 (2010).
[Crossref]

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, L874–L876 (2007).
[Crossref]

Tamaoki, N.

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22, 886–891 (2010).
[Crossref]

Tang, B. Y.

Tondiglia, V. P.

K. M. Lee, V. P. Tondiglia, N. P. Godman, C. M. Middleton, and T. J. White, “Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals,” Soft Matter 13, 5842–5848 (2017).
[Crossref]

K. M. Lee, V. P. Tondiglia, and T. J. White, “Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals,” Soft Matter 12, 1256–1261 (2016).
[Crossref]

H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
[Crossref]

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photon. 1, 1033–1041 (2014).
[Crossref]

Uchimura, M.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22, 4473–4478 (2010).
[Crossref]

Umanskii, B. A.

S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, and N. M. Shtykov, “Photonics of liquid-crystal structures: a review,” Crystallogr. Rep. 56, 622–649 (2011).
[Crossref]

Umeton, C.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

Urayama, K.

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref]

Varanytsia, A.

J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
[Crossref]

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref]

Versace, C.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

Vithana, H. K. M.

Wang, L.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

M. Yu, L. Wang, H. Nemati, H. Yang, T. Bunning, and D.-K. Yang, “Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals,” J. Polym. Sci. B 55, 835–846 (2017).
[Crossref]

Wang, M.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

Wang, W.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Watanabe, J.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22, 4473–4478 (2010).
[Crossref]

Watanabe, Y.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22, 4473–4478 (2010).
[Crossref]

White, T.

H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
[Crossref]

White, T. J.

K. M. Lee, V. P. Tondiglia, N. P. Godman, C. M. Middleton, and T. J. White, “Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals,” Soft Matter 13, 5842–5848 (2017).
[Crossref]

K. M. Lee, V. P. Tondiglia, and T. J. White, “Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals,” Soft Matter 12, 1256–1261 (2016).
[Crossref]

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photon. 1, 1033–1041 (2014).
[Crossref]

Wood, S. M.

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49, 8643–8652 (2016).
[Crossref]

Wu, C.-H.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Wu, S.-T.

Xiang, J.

J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
[Crossref]

Xiao, J.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

Yang, D.-K.

M. Yu, L. Wang, H. Nemati, H. Yang, T. Bunning, and D.-K. Yang, “Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals,” J. Polym. Sci. B 55, 835–846 (2017).
[Crossref]

H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
[Crossref]

Yang, H.

M. Yu, L. Wang, H. Nemati, H. Yang, T. Bunning, and D.-K. Yang, “Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals,” J. Polym. Sci. B 55, 835–846 (2017).
[Crossref]

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

Yang, P. C.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Yoshida, H.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Yoshino, K.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
[Crossref]

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. 15, 974–977 (2003).
[Crossref]

Yu, H.

Yu, M.

M. Yu, L. Wang, H. Nemati, H. Yang, T. Bunning, and D.-K. Yang, “Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals,” J. Polym. Sci. B 55, 835–846 (2017).
[Crossref]

Yuan, Y.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
[Crossref]

Zanoni, L. A.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[Crossref]

Zhang, L.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

Zheng, Z.-G.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

B.-W. Liu, Z.-G. Zheng, X.-C. Chen, and D. Shen, “Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal,” Opt. Mater. Express 3, 519–526 (2013).
[Crossref]

Zhou, L.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Zhou, Y.

Zola, R. S.

H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
[Crossref]

Zou, C.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

ACS Photon. (1)

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photon. 1, 1033–1041 (2014).
[Crossref]

Adv. Funct. Mater. (1)

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27, 1702261 (2017).
[Crossref]

Adv. Mater. (7)

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. 15, 974–977 (2003).
[Crossref]

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24, 6260–6276 (2012).
[Crossref]

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22, 4473–4478 (2010).
[Crossref]

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22, 886–891 (2010).
[Crossref]

H. K. S. Finkelmann, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Appl. Phys. Lett. (4)

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[Crossref]

Crystallogr. Rep. (1)

S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, and N. M. Shtykov, “Photonics of liquid-crystal structures: a review,” Crystallogr. Rep. 56, 622–649 (2011).
[Crossref]

J. Mater. Chem. C (1)

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

J. Phys. Chem. B (1)

P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixtures of cholesteric liquid crystals with polymers,” J. Phys. Chem. B 107, 6961–6964 (2003).
[Crossref]

J. Polym. Sci. B (1)

M. Yu, L. Wang, H. Nemati, H. Yang, T. Bunning, and D.-K. Yang, “Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals,” J. Polym. Sci. B 55, 835–846 (2017).
[Crossref]

Jpn. J. Appl. Phys. (2)

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, L874–L876 (2007).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
[Crossref]

Liq. Cryst. Rev. (1)

I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4, 1–34 (2016).
[Crossref]

Macromolecules (2)

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38, 1357–1363 (2005).
[Crossref]

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49, 8643–8652 (2016).
[Crossref]

Mater. Today (1)

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

V. G. Rumyantsev, A. V. Ivashchenko, V. M. Muratov, V. T. Lazareva, E. K. Prudnikova, and L. M. Blinov, “Dyes with negative dichroism for liquid crystal displays based on the guest-host effect,” Mol. Cryst. Liq. Cryst. 94, 205–212 (2007).
[Crossref]

Nano Lett. (1)

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
[Crossref]

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. USA 113, 12925–12928 (2016).
[Crossref]

Sci. Rep. (1)

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref]

Soft Matter (3)

H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208–1213 (2015).
[Crossref]

K. M. Lee, V. P. Tondiglia, and T. J. White, “Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals,” Soft Matter 12, 1256–1261 (2016).
[Crossref]

K. M. Lee, V. P. Tondiglia, N. P. Godman, C. M. Middleton, and T. J. White, “Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals,” Soft Matter 13, 5842–5848 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Chemical structures of chiral dopant R6N, liquid-crystal monomer RM257, and laser dye pyrromethene 597 and the fluorescence spectrum and absorption spectrum of laser dye PM597 in a nematic LC mixture.
Fig. 2.
Fig. 2. Optical path structure.
Fig. 3.
Fig. 3. Emission characteristics of lasers in the CLC and PSCLC. (a) Formation of the PSCLC, (b) the transmission and corresponding laser emission spectra of the dye-doped CLC and dye-doped PSCLC samples, and (c) the emission intensity of the lasers as a function of the pump energy.
Fig. 4.
Fig. 4. Electric-field-dependent broadening of the selective reflection band together with the electrical tunability of the emission wavelength of the laser. (a) The microphotographs observed under a polarized optical microscope and photographs of the dye-doped PSCLC under various voltages, (b) the transmission and corresponding laser emission spectra of the dye-doped PSCLC under various voltages with an excited pump energy of 1.4  μJ, and (c) the schematic illustration of the pitch distribution under different electric fields.
Fig. 5.
Fig. 5. (a) Lasing threshold at different wavelength positions and (b) lasing threshold distribution compared to fluorescence spectrum.
Fig. 6.
Fig. 6. Electric field response characteristics of the dye-doped PSCLC. (a) The relationship between the driving voltage and the peak wavelength of the laser, (b) the response speed of the laser, and (c) characterization of the electric field response stability when switching the electric field ON\OFF.
Fig. 7.
Fig. 7. Laser emission spectra of the dye-doped PSCLC measured for right-handed and left-handed circularly polarized (RCP and LCP, respectively) states under 0 V and 31 V, respectively.

Tables (1)

Tables Icon

Table 1. Peak Position and FWHM of the Laser Obtained by Different Drive Voltages