Abstract

The prominent third-order nonlinear optical properties of WTe2 films are studied through the Z-scan technique using a femtosecond pulsed laser at 1030 nm. Open-aperture (OA) and closed-aperture (CA) Z-scan measurements are performed at different intensities to investigate the nonlinear absorption and refraction properties of WTe2 films. OA Z-scan results show that WTe2 films always hold a saturable absorption characteristic without transition to reverse saturable absorption. Further, a large nonlinear absorption coefficient β is determined to be 3.37×103  cm/GW by fitting the OA Z-scan curve at the peak intensity of 15.603  GW/cm2. In addition, through the slow saturation absorption model, the ground state absorption cross section, excited state absorption cross section, and absorber’s density were found to be 1.4938×1016cm2, 1.2536×1016cm2, and 6.2396×1020  cm3, respectively. CA Z-scan results exhibit a classic peak–valley shape of the CA Z-scan signal, which reveals a self-defocusing optical effect of WTe2 films under the measured environment. Furthermore, a considerable nonlinear refractive index value n2 can be obtained at 1.629×102  cm2/GW. Ultimately, the values of the real and imaginary parts of the third-order nonlinear susceptibility of WTe2 are roughly estimated to be 5.93×109 and 1.01×108  esu with the help of first-principles calculations. WTe2 possesses sizeable third-order nonlinear coefficients compared with other materials, which suggests that it has great potential to improve performance in nonlinear optical devices.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical properties of Fe/BaTiO3 composite thin films prepared by two-target pulsed-laser deposition

Weitian Wang, Guang Yang, Zhenghao Chen, Yueliang Zhou, Huibin Lu, and Guozhen Yang
J. Opt. Soc. Am. B 20(6) 1342-1345 (2003)

Third order nonlinear optical property of Bi2Se3

Shunbin Lu, Chujun Zhao, Yanhong Zou, Shuqing Chen, Yu Chen, Ying Li, Han Zhang, Shuangchun Wen, and Dingyuan Tang
Opt. Express 21(2) 2072-2082 (2013)

Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker

Jinho Lee, Kyungtaek Lee, Suhyoung Kwon, Bumsoo Shin, and Ju Han Lee
Photon. Res. 7(9) 984-993 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Arimondo, F. Casagrande, L. A. Lugiato, and P. Glorieux, “Repetitive passive Q-switching and bistability in lasers with saturable absorbers,” Appl. Phys. B 30, 57–77 (1983).
    [Crossref]
  2. Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
    [Crossref]
  3. L. G. Deng and H. K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42, 2936–2941 (2003).
    [Crossref]
  4. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
    [Crossref]
  5. J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
    [Crossref]
  6. Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
    [Crossref]
  7. X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
    [Crossref]
  8. X. Q. Yan, X. L. Zhang, S. Shi, Z. B. Liu, and J. G. Tian, “Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale,” Opt. Express 19, 5559–5564 (2011).
    [Crossref]
  9. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
    [Crossref]
  10. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
    [Crossref]
  11. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
    [Crossref]
  12. X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
    [Crossref]
  13. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
    [Crossref]
  14. X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
    [Crossref]
  15. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
    [Crossref]
  16. Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser,” Photon. Res. 3, A79–A86 (2015).
    [Crossref]
  17. C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
    [Crossref]
  18. C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
    [Crossref]
  19. Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
    [Crossref]
  20. W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
    [Crossref]
  21. Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B 406, 2254–2260 (2011).
    [Crossref]
  22. Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, “Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C 121, 23744–23751 (2017).
    [Crossref]
  23. M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
    [Crossref]
  24. J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, “Electronic band structure of the layered compound,” Phys. Rev. B 62, 10812–10823 (2000).
    [Crossref]
  25. H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, and Y. P. Sun, “Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer,” Europhys. Lett. 110, 37004 (2015).
    [Crossref]
  26. W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
    [Crossref]
  27. Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
    [Crossref]
  28. Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
    [Crossref]
  29. Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, and Y. M. Jhon, “Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2,” Nanoscale 8, 2309–2316 (2016).
    [Crossref]
  30. G. Cunningham, D. Hanlon, N. McEvoy, G. S. Duesberg, and J. N. Coleman, “Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2,” Nanoscale 7, 198–208 (2015).
    [Crossref]
  31. J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
    [Crossref]
  32. A. Kumar and P. K. Ahluwalia, “Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors,” Eur. Phys. J. B 85, 186 (2012).
    [Crossref]
  33. D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
    [Crossref]
  34. J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
    [Crossref]
  35. W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
    [Crossref]
  36. M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
    [Crossref]
  37. X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
    [Crossref]
  38. D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, and R. Stockbauer, “A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2,” J. Vac. Sci. Technol. A 6, 1067–1071 (1988).
    [Crossref]
  39. G. P. Halada and C. R. Clayton, “Comparison of Mo-N and W-N synergism during passivation of stainless steel through X-ray photoelectron spectroscopy and electrochemical analysis,” J. Vac. Sci. Technol. A 11, 2342–2347 (1993).
    [Crossref]
  40. S. F. Ho, S. Contarini, and J. Rabalais, “Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum,” J. Phys. Chem. 91, 4779–4788 (1987).
    [Crossref]
  41. Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
    [Crossref]
  42. A. J. Ricco, H. S. White, and M. S. Wrighton, “X-ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: correlation of photoelectrochemical and capacitance-potential behavior with surface chemical composition,” J. Vac. Sci. Technol. A 2, 910–915 (1984).
    [Crossref]
  43. W. E. Sartz, K. J. Wynne, and D. M. Hercules, “X-ray photoelectron spectroscopic investigation of Group VIA elements,” Anal. Chem. 43, 1884–1887 (1971).
    [Crossref]
  44. F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. Feng, “Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions,” Small 12, 5802–5808 (2016).
    [Crossref]
  45. M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
    [Crossref]
  46. S. Ijaz, A. Mahendru, and D. Sanderson, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (2002).
    [Crossref]
  47. G. Kresse, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
    [Crossref]
  48. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
    [Crossref]
  49. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (2002).
    [Crossref]
  50. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
    [Crossref]
  51. T. K. Gustafson, P. L. Kelley, R. Y. Chiao, and R. G. Brewer, “Self-trapping in media with saturation of the nonlinear index,” Appl. Phys. Lett. 12, 165–168 (1968).
    [Crossref]
  52. A. D. Boardman, S. Saltiel, and S. Tanev, “High-order nonlinear phase shift caused by cascaded third-order processes,” Opt. Lett. 22, 148–150 (1997).
    [Crossref]
  53. R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-focusing: Past and Present (Springer, 2009).
  54. A. A. Said, D. J. Hagan, E. W. V. Stryland, J. Wang, J. Young, M. Sheikbahae, and T. H. Wei, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
    [Crossref]
  55. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
    [Crossref]
  56. S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, and L. Kulyuk, “Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2,” Opt. Express 24, 20685–20695 (2016).
    [Crossref]
  57. J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “Linear optical properties and multiphoton absorption of alkali halides calculated from first principles,” Phys. Rev. B 57, 2222–2228 (1998).
    [Crossref]
  58. K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
    [Crossref]

2018 (2)

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

2017 (3)

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, “Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C 121, 23744–23751 (2017).
[Crossref]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

2016 (9)

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, and L. Kulyuk, “Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2,” Opt. Express 24, 20685–20695 (2016).
[Crossref]

Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
[Crossref]

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, and Y. M. Jhon, “Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2,” Nanoscale 8, 2309–2316 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. Feng, “Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions,” Small 12, 5802–5808 (2016).
[Crossref]

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

2015 (9)

M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
[Crossref]

G. Cunningham, D. Hanlon, N. McEvoy, G. S. Duesberg, and J. N. Coleman, “Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2,” Nanoscale 7, 198–208 (2015).
[Crossref]

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, and Y. P. Sun, “Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer,” Europhys. Lett. 110, 37004 (2015).
[Crossref]

W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
[Crossref]

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser,” Photon. Res. 3, A79–A86 (2015).
[Crossref]

X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

2014 (3)

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

2013 (4)

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

2012 (1)

A. Kumar and P. K. Ahluwalia, “Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors,” Eur. Phys. J. B 85, 186 (2012).
[Crossref]

2011 (3)

Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B 406, 2254–2260 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

X. Q. Yan, X. L. Zhang, S. Shi, Z. B. Liu, and J. G. Tian, “Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale,” Opt. Express 19, 5559–5564 (2011).
[Crossref]

2008 (1)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

2004 (1)

X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[Crossref]

2003 (1)

L. G. Deng and H. K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42, 2936–2941 (2003).
[Crossref]

2002 (3)

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (2002).
[Crossref]

S. Ijaz, A. Mahendru, and D. Sanderson, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (2002).
[Crossref]

2000 (1)

J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, “Electronic band structure of the layered compound,” Phys. Rev. B 62, 10812–10823 (2000).
[Crossref]

1998 (1)

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “Linear optical properties and multiphoton absorption of alkali halides calculated from first principles,” Phys. Rev. B 57, 2222–2228 (1998).
[Crossref]

1997 (1)

1996 (2)

G. Kresse, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

1994 (1)

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[Crossref]

1993 (1)

G. P. Halada and C. R. Clayton, “Comparison of Mo-N and W-N synergism during passivation of stainless steel through X-ray photoelectron spectroscopy and electrochemical analysis,” J. Vac. Sci. Technol. A 11, 2342–2347 (1993).
[Crossref]

1992 (2)

1989 (1)

1988 (2)

Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
[Crossref]

D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, and R. Stockbauer, “A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2,” J. Vac. Sci. Technol. A 6, 1067–1071 (1988).
[Crossref]

1987 (1)

S. F. Ho, S. Contarini, and J. Rabalais, “Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum,” J. Phys. Chem. 91, 4779–4788 (1987).
[Crossref]

1984 (1)

A. J. Ricco, H. S. White, and M. S. Wrighton, “X-ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: correlation of photoelectrochemical and capacitance-potential behavior with surface chemical composition,” J. Vac. Sci. Technol. A 2, 910–915 (1984).
[Crossref]

1983 (1)

E. Arimondo, F. Casagrande, L. A. Lugiato, and P. Glorieux, “Repetitive passive Q-switching and bistability in lasers with saturable absorbers,” Appl. Phys. B 30, 57–77 (1983).
[Crossref]

1971 (1)

W. E. Sartz, K. J. Wynne, and D. M. Hercules, “X-ray photoelectron spectroscopic investigation of Group VIA elements,” Anal. Chem. 43, 1884–1887 (1971).
[Crossref]

1968 (1)

T. K. Gustafson, P. L. Kelley, R. Y. Chiao, and R. G. Brewer, “Self-trapping in media with saturation of the nonlinear index,” Appl. Phys. Lett. 12, 165–168 (1968).
[Crossref]

Adant, C.

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[Crossref]

Ahluwalia, P. K.

A. Kumar and P. K. Ahluwalia, “Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors,” Eur. Phys. J. B 85, 186 (2012).
[Crossref]

Ajayan, P. M.

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Ali, M. N.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Al-Mahboob, A.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Anghel, S.

Arimondo, E.

E. Arimondo, F. Casagrande, L. A. Lugiato, and P. Glorieux, “Repetitive passive Q-switching and bistability in lasers with saturable absorbers,” Appl. Phys. B 30, 57–77 (1983).
[Crossref]

Augustin, J.

J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, “Electronic band structure of the layered compound,” Phys. Rev. B 62, 10812–10823 (2000).
[Crossref]

Bai, J.

Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, “Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C 121, 23744–23751 (2017).
[Crossref]

Bansil, A.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Berkdemir, A.

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

Bikorimana, S.

Biswas, K.

M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
[Crossref]

Blau, P.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (2002).
[Crossref]

Blau, W. J.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Boardman, A. D.

Böker, T.

J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, “Electronic band structure of the layered compound,” Phys. Rev. B 62, 10812–10823 (2000).
[Crossref]

Boyd, R. W.

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-focusing: Past and Present (Springer, 2009).

Bredas, J. L.

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[Crossref]

Brewer, R. G.

T. K. Gustafson, P. L. Kelley, R. Y. Chiao, and R. G. Brewer, “Self-trapping in media with saturation of the nonlinear index,” Appl. Phys. Lett. 12, 165–168 (1968).
[Crossref]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Burshtein, Z.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (2002).
[Crossref]

Casagrande, F.

E. Arimondo, F. Casagrande, L. A. Lugiato, and P. Glorieux, “Repetitive passive Q-switching and bistability in lasers with saturable absorbers,” Appl. Phys. B 30, 57–77 (1983).
[Crossref]

Cava, R. J.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Chang, C.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Chang, T. R.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Chen, S.

Chen, Y.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

Chen, Y. C.

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Chenet, D. A.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Cheng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Chiao, R. Y.

T. K. Gustafson, P. L. Kelley, R. Y. Chiao, and R. G. Brewer, “Self-trapping in media with saturation of the nonlinear index,” Appl. Phys. Lett. 12, 165–168 (1968).
[Crossref]

Cinti, R.

Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
[Crossref]

Clayton, C. R.

G. P. Halada and C. R. Clayton, “Comparison of Mo-N and W-N synergism during passivation of stainless steel through X-ray photoelectron spectroscopy and electrochemical analysis,” J. Vac. Sci. Technol. A 11, 2342–2347 (1993).
[Crossref]

Coleman, J. N.

G. Cunningham, D. Hanlon, N. McEvoy, G. S. Duesberg, and J. N. Coleman, “Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2,” Nanoscale 7, 198–208 (2015).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Contarini, S.

S. F. Ho, S. Contarini, and J. Rabalais, “Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum,” J. Phys. Chem. 91, 4779–4788 (1987).
[Crossref]

Cui, Y. T.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Cullen, D. A.

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

Cunningham, G.

G. Cunningham, D. Hanlon, N. McEvoy, G. S. Duesberg, and J. N. Coleman, “Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2,” Nanoscale 7, 198–208 (2015).
[Crossref]

Dadap, J. I.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Dai, L.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
[Crossref]

Dai, X.

X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
[Crossref]

Das, P. K.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Deng, L. G.

L. G. Deng and H. K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42, 2936–2941 (2003).
[Crossref]

Ding, H.

W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
[Crossref]

Ding, Y.

Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B 406, 2254–2260 (2011).
[Crossref]

Dong, N.

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

Dorsinville, R.

Du, B.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Du, K.

X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
[Crossref]

Duan, C. G.

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “Linear optical properties and multiphoton absorption of alkali halides calculated from first principles,” Phys. Rev. B 57, 2222–2228 (1998).
[Crossref]

Duc, T. M.

Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
[Crossref]

Dudin, P.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Duesberg, G. S.

G. Cunningham, D. Hanlon, N. McEvoy, G. S. Duesberg, and J. N. Coleman, “Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2,” Nanoscale 7, 198–208 (2015).
[Crossref]

Dwelk, H.

J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, “Electronic band structure of the layered compound,” Phys. Rev. B 62, 10812–10823 (2000).
[Crossref]

Elías, A. L.

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Eyert, V.

J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, “Electronic band structure of the layered compound,” Phys. Rev. B 62, 10812–10823 (2000).
[Crossref]

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Felser, C.

M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
[Crossref]

Feng, D. L.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Feng, P. X.

F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. Feng, “Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions,” Small 12, 5802–5808 (2016).
[Crossref]

Feng, Y.

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Flynn, S.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Frentrup, W.

J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, “Electronic band structure of the layered compound,” Phys. Rev. B 62, 10812–10823 (2000).
[Crossref]

Gao, M.

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Gao, W.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Gibson, Q. D.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Glorieux, P.

E. Arimondo, F. Casagrande, L. A. Lugiato, and P. Glorieux, “Repetitive passive Q-switching and bistability in lasers with saturable absorbers,” Appl. Phys. B 30, 57–77 (1983).
[Crossref]

Gong, Q. H.

X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[Crossref]

Grenet, G.

Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
[Crossref]

Gu, M.

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Gu, Z. Q.

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “Linear optical properties and multiphoton absorption of alkali halides calculated from first principles,” Phys. Rev. B 57, 2222–2228 (1998).
[Crossref]

Guo, Q.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Guo, Y.

Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, “Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C 121, 23744–23751 (2017).
[Crossref]

Gustafson, T. K.

T. K. Gustafson, P. L. Kelley, R. Y. Chiao, and R. G. Brewer, “Self-trapping in media with saturation of the nonlinear index,” Appl. Phys. Lett. 12, 165–168 (1968).
[Crossref]

Gutiérrez, H. R.

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

Hagan, D. J.

Halada, G. P.

G. P. Halada and C. R. Clayton, “Comparison of Mo-N and W-N synergism during passivation of stainless steel through X-ray photoelectron spectroscopy and electrochemical analysis,” J. Vac. Sci. Technol. A 11, 2342–2347 (1993).
[Crossref]

Haldolaarachchige, N.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Hanlon, D.

G. Cunningham, D. Hanlon, N. McEvoy, G. S. Duesberg, and J. N. Coleman, “Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2,” Nanoscale 7, 198–208 (2015).
[Crossref]

He, C.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

He, M.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Hercules, D. M.

W. E. Sartz, K. J. Wynne, and D. M. Hercules, “X-ray photoelectron spectroscopic investigation of Group VIA elements,” Anal. Chem. 43, 1884–1887 (1971).
[Crossref]

Herman, I. P.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Hirschberger, M.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Ho, S. F.

S. F. Ho, S. Contarini, and J. Rabalais, “Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum,” J. Phys. Chem. 91, 4779–4788 (1987).
[Crossref]

Hoesch, M.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Hone, J.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

Hu, J.

F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. Feng, “Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions,” Small 12, 5802–5808 (2016).
[Crossref]

Huang, L.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

Huang, Y.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser,” Photon. Res. 3, A79–A86 (2015).
[Crossref]

Hussain, Z.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Ijaz, S.

S. Ijaz, A. Mahendru, and D. Sanderson, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (2002).
[Crossref]

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

Jana, M. K.

M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
[Crossref]

Janowitz, C.

J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, “Electronic band structure of the layered compound,” Phys. Rev. B 62, 10812–10823 (2000).
[Crossref]

Jeng, H. T.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Jhon, Y. I.

Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, and Y. M. Jhon, “Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2,” Nanoscale 8, 2309–2316 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Jhon, Y. M.

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, and Y. M. Jhon, “Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2,” Nanoscale 8, 2309–2316 (2016).
[Crossref]

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Jiang, J.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Jin, W.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Jugnet, Y.

Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
[Crossref]

Kalisky, Y.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (2002).
[Crossref]

Kelley, P. L.

T. K. Gustafson, P. L. Kelley, R. Y. Chiao, and R. G. Brewer, “Self-trapping in media with saturation of the nonlinear index,” Appl. Phys. Lett. 12, 165–168 (1968).
[Crossref]

Kikta, M. R.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (2002).
[Crossref]

Kim, J. H.

Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, and Y. M. Jhon, “Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2,” Nanoscale 8, 2309–2316 (2016).
[Crossref]

Kim, T. K.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Kim, Y.

Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, and Y. M. Jhon, “Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2,” Nanoscale 8, 2309–2316 (2016).
[Crossref]

Kong, W. D.

W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
[Crossref]

Koo, J.

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Kresse, G.

G. Kresse, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

Kulyuk, L.

Kumar, A.

A. Kumar and P. K. Ahluwalia, “Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors,” Eur. Phys. J. B 85, 186 (2012).
[Crossref]

Kurtz, R.

D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, and R. Stockbauer, “A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2,” J. Vac. Sci. Technol. A 6, 1067–1071 (1988).
[Crossref]

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

Lama, P.

Late, D. J.

M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
[Crossref]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

Lee, J.

F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. Feng, “Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions,” Small 12, 5802–5808 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Lee, J. H.

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Lee, S.

Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, and Y. M. Jhon, “Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2,” Nanoscale 8, 2309–2316 (2016).
[Crossref]

Li, J.

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “Linear optical properties and multiphoton absorption of alkali halides calculated from first principles,” Phys. Rev. B 57, 2222–2228 (1998).
[Crossref]

Li, P.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Li, Y.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser,” Photon. Res. 3, A79–A86 (2015).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

Li, Z.

X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
[Crossref]

Lian, C. S.

W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
[Crossref]

Liang, T.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Lin, H.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Lin, M.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Liu, C. L.

X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[Crossref]

Liu, H. K.

L. G. Deng and H. K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42, 2936–2941 (2003).
[Crossref]

Liu, H. M.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Liu, X.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Liu, Y.

H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, and Y. P. Sun, “Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer,” Europhys. Lett. 110, 37004 (2015).
[Crossref]

Liu, Z.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Liu, Z. B.

López-Urías, F.

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Lu, C.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Lu, S.

Lu, T. M.

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Lu, W. J.

H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, and Y. P. Sun, “Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer,” Europhys. Lett. 110, 37004 (2015).
[Crossref]

Lugiato, L. A.

E. Arimondo, F. Casagrande, L. A. Lugiato, and P. Glorieux, “Repetitive passive Q-switching and bistability in lasers with saturable absorbers,” Appl. Phys. B 30, 57–77 (1983).
[Crossref]

Lukishova, S. G.

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-focusing: Past and Present (Springer, 2009).

Luo, Z.

Lv, H. Y.

H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, and Y. P. Sun, “Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer,” Europhys. Lett. 110, 37004 (2015).
[Crossref]

Ma, X.

X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
[Crossref]

Madey, T.

D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, and R. Stockbauer, “A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2,” J. Vac. Sci. Technol. A 6, 1067–1071 (1988).
[Crossref]

Mahendru, A.

S. Ijaz, A. Mahendru, and D. Sanderson, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (2002).
[Crossref]

Manzke, R.

J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, “Electronic band structure of the layered compound,” Phys. Rev. B 62, 10812–10823 (2000).
[Crossref]

Mao, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Mao, Z.

F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. Feng, “Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions,” Small 12, 5802–5808 (2016).
[Crossref]

Martinez, A.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

McEvoy, N.

G. Cunningham, D. Hanlon, N. McEvoy, G. S. Duesberg, and J. N. Coleman, “Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2,” Nanoscale 7, 198–208 (2015).
[Crossref]

Micu, A.

Mitioglu, A.

Mo, S. K.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Moore, R.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Mueller, D.

D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, and R. Stockbauer, “A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2,” J. Vac. Sci. Technol. A 6, 1067–1071 (1988).
[Crossref]

Nguyen, T. T. A.

Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
[Crossref]

Ni, J.

Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B 406, 2254–2260 (2011).
[Crossref]

Nie, Z.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

Niu, W.

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Niu, X. H.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Ong, N. P.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Osgood, R. M.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Pan, X.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
[Crossref]

Pan, X. C.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Park, J.

Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, and Y. M. Jhon, “Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2,” Nanoscale 8, 2309–2316 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Peng, J.

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Perea-López, N.

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

Persoons, A.

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[Crossref]

Pierce, B.

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[Crossref]

Poon, H. C.

Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
[Crossref]

Porte, L.

Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
[Crossref]

Prakash, N. S.

Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
[Crossref]

Qiu, J.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Quan, C.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Rabalais, J.

S. F. Ho, S. Contarini, and J. Rabalais, “Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum,” J. Phys. Chem. 91, 4779–4788 (1987).
[Crossref]

Rajamathi, C. R.

M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
[Crossref]

Rao, C. N.

M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
[Crossref]

Raravikar, N. R.

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Ren, Z.

Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, “Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C 121, 23744–23751 (2017).
[Crossref]

Ricco, A. J.

A. J. Ricco, H. S. White, and M. S. Wrighton, “X-ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: correlation of photoelectrochemical and capacitance-potential behavior with surface chemical composition,” J. Vac. Sci. Technol. A 2, 910–915 (1984).
[Crossref]

Richard, P.

W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
[Crossref]

Roman, E.

D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, and R. Stockbauer, “A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2,” J. Vac. Sci. Technol. A 6, 1067–1071 (1988).
[Crossref]

Sadowski, J. T.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Said, A. A.

Saltiel, S.

Sanderson, D.

S. Ijaz, A. Mahendru, and D. Sanderson, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (2002).
[Crossref]

Sartz, W. E.

W. E. Sartz, K. J. Wynne, and D. M. Hercules, “X-ray photoelectron spectroscopic investigation of Group VIA elements,” Anal. Chem. 43, 1884–1887 (1971).
[Crossref]

Schadler, L. S.

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Schmitt, F.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Schoop, L. M.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Shao, D. F.

H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, and Y. P. Sun, “Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer,” Europhys. Lett. 110, 37004 (2015).
[Crossref]

She, X.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Sheikbahae, M.

Sheik-Bahae, M.

Shen, Y. R.

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-focusing: Past and Present (Springer, 2009).

Shen, Z. X.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Shi, L.

Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B 406, 2254–2260 (2011).
[Crossref]

Shi, S.

Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B 406, 2254–2260 (2011).
[Crossref]

X. Q. Yan, X. L. Zhang, S. Shi, Z. B. Liu, and J. G. Tian, “Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale,” Opt. Express 19, 5559–5564 (2011).
[Crossref]

Shi, Y.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

Shi, Y. G.

W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
[Crossref]

Shih, A.

D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, and R. Stockbauer, “A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2,” J. Vac. Sci. Technol. A 6, 1067–1071 (1988).
[Crossref]

Shimony, Y.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (2002).
[Crossref]

Singh, A.

M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
[Crossref]

Song, F.

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
[Crossref]

Song, F. Q.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Song, Q.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
[Crossref]

Stockbauer, R.

D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, and R. Stockbauer, “A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2,” J. Vac. Sci. Technol. A 6, 1067–1071 (1988).
[Crossref]

Stryland, E. W. V.

Sun, H.

X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
[Crossref]

Sun, Y. P.

H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, and Y. P. Sun, “Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer,” Europhys. Lett. 110, 37004 (2015).
[Crossref]

Sun, Z.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Sutter, P.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Tackx, P.

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[Crossref]

Tan, Q.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Tan, S. G.

H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, and Y. P. Sun, “Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer,” Europhys. Lett. 110, 37004 (2015).
[Crossref]

Tanev, S.

Tang, D.

Tang, F.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Tang, W.

Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B 406, 2254–2260 (2011).
[Crossref]

Tao, J.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Terrones, H.

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

Terrones, M.

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

Tian, J. G.

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

Torres-Torres, C.

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

van der Zande, A. M.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Van Stryland, E. W.

Vobornik, I.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Waghmare, U. V.

M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
[Crossref]

Walser, A.

Wan, X.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
[Crossref]

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser,” Photon. Res. 3, A79–A86 (2015).
[Crossref]

Wan, X. G.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Wan, Y.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Wang, C.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Wang, D. S.

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “Linear optical properties and multiphoton absorption of alkali halides calculated from first principles,” Phys. Rev. B 57, 2222–2228 (1998).
[Crossref]

Wang, F.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Wang, G. C.

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Wang, H.

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
[Crossref]

Wang, J.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

A. A. Said, D. J. Hagan, E. W. V. Stryland, J. Wang, J. Young, M. Sheikbahae, and T. H. Wei, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
[Crossref]

Wang, J. T.

W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
[Crossref]

Wang, K.

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Wang, P.

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Wang, X.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Wang, X. F.

X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[Crossref]

Wang, Y.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
[Crossref]

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B 406, 2254–2260 (2011).
[Crossref]

Wang, Y. X.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Wang, Z. W.

X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[Crossref]

Wei, J.

F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. Feng, “Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions,” Small 12, 5802–5808 (2016).
[Crossref]

Wei, T. H.

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

Wen, S.

Weng, J.

White, H. S.

A. J. Ricco, H. S. White, and M. S. Wrighton, “X-ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: correlation of photoelectrochemical and capacitance-potential behavior with surface chemical composition,” J. Vac. Sci. Technol. A 2, 910–915 (1984).
[Crossref]

Wrighton, M. S.

A. J. Ricco, H. S. White, and M. S. Wrighton, “X-ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: correlation of photoelectrochemical and capacitance-potential behavior with surface chemical composition,” J. Vac. Sci. Technol. A 2, 910–915 (1984).
[Crossref]

Wu, S. F.

W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
[Crossref]

Wynne, K. J.

W. E. Sartz, K. J. Wynne, and D. M. Hercules, “X-ray photoelectron spectroscopic investigation of Group VIA elements,” Anal. Chem. 43, 1884–1887 (1971).
[Crossref]

Xie, B. P.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Xie, Z.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

Xiong, J.

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Xu, D. F.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Xu, J.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

Xu, X.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, “Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C 121, 23744–23751 (2017).
[Crossref]

Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, “Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C 121, 23744–23751 (2017).
[Crossref]

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
[Crossref]

Xu, Y.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Yan, H.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Yan, S.

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Yan, X. Q.

Yang, C. L.

W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
[Crossref]

Yang, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Yang, H. F.

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

Yang, Y.

X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
[Crossref]

Yao, Z.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Ye, F.

F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. Feng, “Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions,” Small 12, 5802–5808 (2016).
[Crossref]

Yeh, P. C.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Young, J.

Yu, J. G.

X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[Crossref]

Zaki, N.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Zeng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhan, J.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Zhang, C.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

Zhang, D.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

Zhang, H.

Zhang, K.

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Zhang, L.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Zhang, M.

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Zhang, R.

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

Zhang, S.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

Zhang, W.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Zhang, X.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhang, X. C.

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Zhang, X. L.

Zhang, Y.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Zhao, C.

Zhao, J.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Zhao, Q.

Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, “Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C 121, 23744–23751 (2017).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zhao, X. J.

X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[Crossref]

Zhao, Y. P.

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Zhong, M.

Zhou, B.

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Zhou, Y.

Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, “Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C 121, 23744–23751 (2017).
[Crossref]

Zhu, C.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

Zhu, L.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Zhu, S.

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

Zou, Y.

2D Mater. (1)

C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, and M. Terrones, “Third order nonlinear optical response exhibited by mono- and few-layers of WS2,” 2D Mater. 3, 021005 (2016).
[Crossref]

ACS Nano (1)

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Adv. Funct. Mater. (1)

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Adv. Mater. (1)

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Anal. Chem. (1)

W. E. Sartz, K. J. Wynne, and D. M. Hercules, “X-ray photoelectron spectroscopic investigation of Group VIA elements,” Anal. Chem. 43, 1884–1887 (1971).
[Crossref]

Appl. Phys. B (1)

E. Arimondo, F. Casagrande, L. A. Lugiato, and P. Glorieux, “Repetitive passive Q-switching and bistability in lasers with saturable absorbers,” Appl. Phys. B 30, 57–77 (1983).
[Crossref]

Appl. Phys. Lett. (5)

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, and F. Wang, “Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films,” Appl. Phys. Lett. 112, 171112 (2018).
[Crossref]

M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, and R. Zhang, “Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 111, 031906 (2017).
[Crossref]

W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2,” Appl. Phys. Lett. 106, 081906 (2015).
[Crossref]

T. K. Gustafson, P. L. Kelley, R. Y. Chiao, and R. G. Brewer, “Self-trapping in media with saturation of the nonlinear index,” Appl. Phys. Lett. 12, 165–168 (1968).
[Crossref]

Appl. Surf. Sci. (1)

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Chem. Phys. Lett. (1)

X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[Crossref]

Chem. Rev. (1)

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[Crossref]

Electrochim. Acta (1)

X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, and J. Wang, “Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction,” Electrochim. Acta 171, 72–80 (2015).
[Crossref]

Eur. Phys. J. B (1)

A. Kumar and P. K. Ahluwalia, “Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors,” Eur. Phys. J. B 85, 186 (2012).
[Crossref]

Europhys. Lett. (1)

H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, and Y. P. Sun, “Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer,” Europhys. Lett. 110, 37004 (2015).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Ijaz, A. Mahendru, and D. Sanderson, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (2002).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

S. F. Ho, S. Contarini, and J. Rabalais, “Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum,” J. Phys. Chem. 91, 4779–4788 (1987).
[Crossref]

J. Phys. Chem. C (1)

Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, “Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C 121, 23744–23751 (2017).
[Crossref]

J. Phys. Condens. Matter (1)

M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. Rao, “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter 27, 285401 (2015).
[Crossref]

J. Vac. Sci. Technol. A (3)

D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, and R. Stockbauer, “A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2,” J. Vac. Sci. Technol. A 6, 1067–1071 (1988).
[Crossref]

G. P. Halada and C. R. Clayton, “Comparison of Mo-N and W-N synergism during passivation of stainless steel through X-ray photoelectron spectroscopy and electrochemical analysis,” J. Vac. Sci. Technol. A 11, 2342–2347 (1993).
[Crossref]

A. J. Ricco, H. S. White, and M. S. Wrighton, “X-ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: correlation of photoelectrochemical and capacitance-potential behavior with surface chemical composition,” J. Vac. Sci. Technol. A 2, 910–915 (1984).
[Crossref]

Laser Photon. Rev. (1)

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

Nanoscale (4)

Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, and Y. M. Jhon, “Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2,” Nanoscale 8, 2309–2316 (2016).
[Crossref]

G. Cunningham, D. Hanlon, N. McEvoy, G. S. Duesberg, and J. N. Coleman, “Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2,” Nanoscale 7, 198–208 (2015).
[Crossref]

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7, 2978–2986 (2015).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Nat. Nanotechnol. (1)

Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111–115 (2014).
[Crossref]

Nat. Photonics (2)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, “Large, non-saturating magnetoresistance in WTe2,” Nature 514, 205–208 (2014).
[Crossref]

Opt. Eng. (1)

L. G. Deng and H. K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42, 2936–2941 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. B (4)

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “Linear optical properties and multiphoton absorption of alkali halides calculated from first principles,” Phys. Rev. B 57, 2222–2228 (1998).
[Crossref]

G. Kresse, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, and G. Grenet, “Photoelectron diffraction on clean W(110) surface and bulk 4f core levels,” Phys. Rev. B 37, 8066–8071 (1988).
[Crossref]

J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, “Electronic band structure of the layered compound,” Phys. Rev. B 62, 10812–10823 (2000).
[Crossref]

Phys. Rev. Lett. (3)

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
[Crossref]

J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2,” Phys. Rev. Lett. 115, 166601 (2015).
[Crossref]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Physica B (1)

Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B 406, 2254–2260 (2011).
[Crossref]

RSC Adv. (1)

Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, and L. Dai, “The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths,” RSC Adv. 6, 103830 (2016).
[Crossref]

Sci. Rep. (1)

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, “The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,” Sci. Rep. 6, 29254 (2016).
[Crossref]

Science (1)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

Small (2)

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. Feng, “Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions,” Small 12, 5802–5808 (2016).
[Crossref]

Other (1)

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-focusing: Past and Present (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Optical path diagram of the Z-scan experiment.
Fig. 2.
Fig. 2. Characterization of thin WTe2 film. (a) XPS. (b) Raman spectrum. (c) Atomic force microscopy (AFM) image. The step at the edge shows that the thickness of the film is typically 70  nm. (d) Absorption curve along with the reference mica substrate.
Fig. 3.
Fig. 3. OA Z-scan results of the WTe2 sample deposited on the mica substrate. (a) OA Z-scan result of the WTe2/mica and the mica substrate. (b) Normalized transmission as a function of the WTe2 sample position under different intensities at the focal point. (c) Saturation absorption fitting. (d) Electronic band structures of WTe2. (e) Simplified electronic band model of WTe2. (f) Slow saturation absorption fitting.
Fig. 4.
Fig. 4. CA Z-scan results of the WTe2 sample deposited on mica substrate. (a) CA Z-scan result under 15.603  GW/cm2 incident peak power intensity. (b) Nonlinear refractive index and nonlinear phase shift as a function of excitation peak power intensity.
Fig. 5.
Fig. 5. First-principles calculation of linear refractive index of WTe2. (a) Linear refractive index. (b) Local image of refractive index.

Tables (1)

Tables Icon

Table 1. Comparison of Third-Order Nonlinear Coefficients between WTe2 and Other Two-Dimensional Materials

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T(z)=m=0(βI0Leff1+z2/z02)m(m+1)3/2,
T=[1α(I)L]/(1α0L),
α(I)=α01+I/IS+βI,
T(L)=T0+TFN(L)T01T0(TmaxT0),
TFN=ln{1+T0[eσgsE(0)1]}/σgsE(0),
T(z)=14ΔΦ0(z/z0)(z2/z02+1)(z2/z02+9),
Imχ(3)(esu)=c2n02β(m/W)/240π2ω,
Reχ(3)(esu)=cn02n2(m2/W)/120π2,